
Authors: Dongpeng Xu, Jiang Ming, Dinghao Wu

Presenters: Gabe Garfinkel, Marshall Rhea, Michael Wolf

Generalized Dynamic Opaque Predicates: 
A New Control Flow Obfuscation Method



● Impede attempts to:
○ Reverse engineer
○ Find/exploit vulnerabilities
○ Recognize

● Used on networks to impede attackers
● Malware uses it too

Background: Obfuscation



“Opaque Predicates”

● An expression that is always true or false
● Known to compiler, tough to detect at runtime
● Can construct branches that always choose one way

○ But “look like” they are doing a real comparison



“Opaque Predicates”

● Use to insert superfluous branches

Original
Code

1

2

3 Opaque
Predicate

1

2

3

X

X

X

T F



Correlated Predicates/Variables

● Correlated Predicates - A set of predicates that always evaluate to the same 
value in a given program execution.
○ Check DU chain to ensure variables are not re-assigned between predicates
○ Based on correlated variables, which always have the same value



“Dynamic Opaque Predicates”

Dynamic 
Opaque

1

2
1

3
2

3

T

T

F

F

Opaque
Predicate

1

2

3

X

X

X

T F



“Dynamic Opaque Predicates”

● Problems: 
○ Detectable using symbolic execution
○ A program called LOOP exploits this



“Generalized Dynamic Opaque Predicates”

● Use dynamic opaque predicates across branch and loop
● More resistant to program analysis tools

○ But in reality, it’s just an “arms race”

● Additionally, do multiple passes



Branches

● Move an invariant instruction across a branch
○ Execution before/after branch depends on predicate

Original
Code

1

2

cond

3 4

1

cond

3

1

2

2

3
4

2

4
Across 
Branch

L R

L R



Loop

● Move a loop-invariant to be first
○ Then, in right branch, move it across backedge

Original
Code

1

2

cond

3

1
2

1

Across 
Loop

3

2
3

cond



Results

● Ran obfuscator on five “hot” functions of GNU Coreutils 8.23
○ More basic blocks, CFG edges, and higher cyclomatic number

● Opaque predicate algorithm (LOOP) performed very poorly
● Great performance against current standards



Cost

● Obfuscation caused marginal increases in runtime, file size
● Predicates do not appreciably change programs



Strengths

● Creates a novel obfuscation with no known detection method
● Code base provided
● Simple yet effective methods



● Lack of consideration of future de-obfuscation techniques
○ E.g., always using correlated predicates, not considering loop or branch recognition methods

● Only used on one codebase
● Did not completely eliminate detection of Straight-Line DOPs

Weaknesses



Conclusion

● Generalized Dynamic Opaque 
Predicates allow for efficient and 
efficient obfuscation

● There exists no current algorithm to 
detect these predicates effectively, 
especially in loops and branches



Thank you!



Old Slides



“Dynamic Opaque Predicates”

Original
Code

Dynamic 
Opaque

1

2

3

1

2
1

3
2

3

T

T

F

F


