Generalized Dynamic Opaque Predicates:
A New Control Flow Obfuscation Method

Authors: Dongpeng Xu, Jiang Ming, Dinghao Wu
Presenters: Gabe Garfinkel, Marshall Rhea, Michael Wolf

Background: Obfuscation

e Impede attempts to:

o Reverse engineer

o Find/exploit vulnerabilities

o Recognize
e Used on networks to impede attackers
e Malware uses it too

“Opaque Predicates”

e An expression that is always true or false
e Known to compiler, tough to detect at runtime

e Can construct branches that always choose one way
o But “look like” they are doing a real comparison

Ve € Z. (42* +4) mod 19 £ 0

“Opaque Predicates”

e Use toinsert superfluous branches

Code

v
1
2
Original 3
v
U

Opaque
Predicate

Correlated Predicates/Variables

e Correlated Predicates - A set of predicates that always evaluate to the same

value in a given program execution.

o Check DU chain to ensure variables are not re-assigned between predicates
o Based on correlated variables, which always have the same value

CcV CP; CPs CPg

X X >0 X%2 == 1| x+x > 0
y y > 0 Y%2 == 0 | 2xy <= 0
Z 2 <=0 | 2%2 ==1]|2z2<<1 >0

“Dynamic Opaque Predicates”

v
T;‘\F
1 X
2 X
3 X
Opaque i
Predicate +

R}

_“

i

Dynamic
Opaque

“Dynamic Opaque Predicates”

e Problems:

o Detectable using symbolic execution
o A program called LOOP exploits this

“Generalized Dynamic Opaque Predicates”

e Use dynamic opaque predicates across branch and loop

e More resistant to program analysis tools
o Butinreality, it’s just an “arms race”

e Additionally, do multiple passes

Branches

e Move an invariant instruction across a branch
o Execution before/after branch depends on predicate

1
2

v

cond

Original LK \R
3 4
8 0

Code

Across
Branch

Loop

A
e Move a loop-invariant to be first
o Then, in right branch, move it across backedge /.\

¥ X

3
2

Original * Across /
Code Loop cond

1 ¥
o
X

Results

e Ran obfuscator on five “hot” functions of GNU Coreutils 8.23
o More basic blocks, CFG edges, and higher cyclomatic number

e Opaque predicate algorithm (LOOP) performed very poorly
- Great performance against current standards

Table 2: Obfuscation metrics and BinDiff scores of hot functions in Coreutils. Table 3: The result of LOOP detection.
Finioi # of Basic Blocks| # of CFG Edges |Cyclomatic Number |Bindiff Score Function Straight Line DOP Branch DOP Loop DOP
Orig. 50% 100% |Orig. 50% 100%|Orig. 50% 100% | 50% 100% Total Detected Ratio |Total Detected Ratio | Total Detected Ratio
[1 43 171 229 [62 258 338 [21 89 111 [0.05 002 [1 52 3 5.77%| 21 0 0.00%] 8 0 0.00%
2 20 75 105 | 30 114 158 | 12 41 55 0.02 0.01 2 28 2 7.14%| 15 0 0.00%| 6 0 0.00%
3 30 94 120 | 49 141 177 | 21 49 59 0.02 0.02 3 27 2 7.41%| 23 0 0.00%| 6 0 0.00%
4 46 138 208 | 80 220 320 | 36 84 114 0.04 0.01 4 54 5 9.26%| 26 0 0.00%| 8 0 0.00%
5 76 272 376 | 117 425 573 | 43 155 199 0.05 0.02 5 82 8 9.76%| 52 0 0.00%| 14 0 0.00%

Cost

e Obfuscation caused marginal increases in runtime, file size
» Predicates do not appreciably change programs

Table 4: Cost evaluation of the dynamic opaque predicate obfuscation.

Binary Size (Bytes)

Execution Time (ms)

Function| Program—a e ——¢5m—100% — Ratio | Orig. _ 50% 100%
1 tr | 132,084 132,826 133,491 [053% | 2.2 22 24|
2 stat | 210,864 211,355 211,710 0.20% | 4.0 40 41
3 ls | 350,076 350,916 351,527 0.21% | 23.2 234 237
4 ls | 350,076 351,083 351,742 0.24% | 23.2 233 238
5 expr | 129,696 130,836 131,409 0.66% | 0.6 0.6 0.6

Strengths

e Creates a novel obfuscation with no known detection method
e Code base provided
e Simple yet effective methods

Weaknesses

e Lack of consideration of future de-obfuscation techniques
o E.g., always using correlated predicates, not considering loop or branch recognition methods

e Only used on one codebase
e Did not completely eliminate detection of Straight-Line DOPs

Conclusion

e Generalized Dynamic Opaque
Predicates allow for efficient and
efficient obfuscation

® There exists no current algorithm to
detect these predicates effectively,
especially in loops and branches

(b) The CFG after one (c) The CFG after two
(a) The original CFG. round of obfuscation. rounds of obfuscation.

Fig. 7: Comparison between CFGs after different rounds of dynamic opaque pred-
icate obfuscation.

Thank you!

Old Slides

“Dynamic Opaque Predicates” ¢
T .

Original
Code

Dynamic
Opaque

- -“

