
Generalized Dynamic Opaque Predicates: A New
Control Flow Obfuscation Method

Dongpeng Xu, Jiang Ming, and Dinghao Wu

College of Information Sciences and Technology
The Pennsylvania State University

{dux103,jum310,dwu}@ist.psu.edu

Abstract. Opaque predicate obfuscation, a low-cost and stealthy con-
trol flow obfuscation method to introduce superfluous branches, has been
demonstrated to be effective to impede reverse engineering efforts and
broadly used in various areas of software security. Conventional opaque
predicates typically rely on the invariant property of well-known number
theoretic theorems, making them easy to be detected by the dynamic
testing and formal semantics techniques. To address this limitation, pre-
vious work has introduced the idea of dynamic opaque predicates, whose
values may vary in different runs. However, the systematical design and
evaluation of dynamic opaque predicates are far from mature. In this pa-
per, we generalize the concept and systematically develop a new control
flow obfuscation scheme called generalized dynamic opaque predicates.
Compared to the previous work, our approach has two distinct advan-
tages: 1) We extend the application scope by automatically transforming
more common program structures (e.g., straight-line code, branch, and
loop) into dynamic opaque predicates; 2) Our system design does not
require that dynamic opaque predicates to be strictly adjacent, which is
more resilient to the deobfuscation techniques. We have developed a pro-
totype tool based on LLVM IR and evaluated it by obfuscating the GNU
core utilities. Our experimental results show the efficacy and general-
ity of our method. In addition, the comparative evaluation demonstrates
that our method is resilient to the latest formal program semantics-based
opaque predicate detection method.

Keywords: Software protection, obfuscation, opaque predicate, control
flow obfuscation

1 Introduction

Predicates are conditional expressions that evaluate to true or false. An opaque
predicate means its value are known to the obfuscator at obfuscation time, but
it is difficult for an attacker to figure it out afterwards. Used together with junk
code, the effect of opaque predicates results in a heavily cluttered control flow
graph with redundant infeasible paths. Therefore, any further analysis based
on the control flow graph will turn into arduous work. Compared with other
control flow graph obfuscation methods such as control flow flattening [26] and

1



call stack tampering [24], opaque predicates are more stealthy because it is dif-
ficult to differentiate opaque predicates from original path conditions in binary
code [4,5]. Also, another benefit of opaque predicates is they have a small im-
pact on the runtime performance and code size. First proposed by Collberg et
al. [6], opaque predicates have been applied widely in various ways, such as
software diversification [10,15], metamorphic malware mutation [2,3], software
watermarking [1,21], and Android Apps obfuscation [14]. Due to the low-cost
and stealthy properties, most real-world obfuscation toolkits have supported in-
serting opaque predicates into a program, through link-time program rewriting
or binary rewriting [8,13,18].

On the other hand, opaque predicate detection has attracted many secu-
rity researchers’ attention. Plenty of approaches have been proposed to identify
opaque predicates inside programs. For instance, Preda et al. [23], Madou [17]
and Udupa et al. [25] did research on opaque predicate detection based on the fact
that the value of opaque predicate doesn’t change during multiple executions.
The invariant property of those “static” opaque predicates leads to the fact that
they are likely to be detected by program analysis tools. Furthermore, recent
research work [19] shows that even dynamic opaque predicate, which is more
complicated and advanced than traditional static opaque predicates, can also
be detected by their deobfuscation tool. Dynamic opaque predicates overcome
the invariant weakness of static opaque predicates by using a set of correlated
predicates. The authors claims that they can detect static and dynamic opaque
predicates inside an execution binary trace.

Essentially, existing opaque predicates detection techniques utilize several
weaknesses of opaque predicates. First, as mentioned above, the invariant prop-
erty of traditional algebraic based opaque predicates reveals their existence.
Second, the design of dynamic opaque predicate is far from mature. Existing
technique can only insert dynamic opaque predicates into a piece of straight-line
code. It cannot spread dynamic opaque predicates across branch conditions. This
limitation leads to the consequence that all predicates constituting a dynamic
opaque predicate are adjacent, which is utilized by advanced opaque predicates
detection tools such as LOOP [19].

In order to overcome the limitations of current opaque predicates, we present
a systematic design of a novel control flow obfuscation method, Generalized Dy-
namic Opaque Predicates, which is able to inject diversified dynamic opaque
predicates into complicated program structures such as branch and loop. Being
compared with the previous technique which can only insert dynamic opaque
predicates into straight-line program, our new method is more resilient to pro-
gram analysis tools. We have implemented a prototype tool based on the LLVM
compiler infrastructure [16]. The tool first performs fine-grained data flow anal-
ysis to search possible insertion locations. After that it automatically transforms
common program structures to construct dynamic opaque predicates. We have
tested and evaluated the tool by obfuscating several hot functions of GNU core
utilities with different obfuscation levels. The experimental results show that our
method is effective and general in control flow obfuscation. Besides, we demon-

2



strate that our obfuscation can defeat the commercial binary difference analy-
sis tools and the state-of-the-art formal program semantics-based deobfuscation
methods. The performance data indicate that our proposed obfuscation only
introduces negligible overhead.

In summary, we make the following contributions.

– First, we propose an effective and generalized opaque predicate obfuscation
method. Our method outperforms existing work by automatically inserting
opaque predicates into more general program structures like branches and
loops, whereas previous work can only work on straight-line code.

– Second, we demonstrate our obfuscation is very resilient to the state-of-art
opaque predicate detection tool.

– Third, we have implemented our method on top of LLVM and the source
code is available.

The rest of the paper is organized as follows. Section 2 introduces the re-
lated work on opaque predicates and state-of-the-art opaque predicate detection
methods. Section 3 presents our new obfuscation method, generalized dynamic
opaque predicates in detail. Section 4 presents our implementation details. We
evaluate our method in Section 5 and conclude the paper in Section 6.

2 Related Work

In this section, we first introduce the related work on static and dynamic opaque
predicates. Then we discuss the drawbacks of current opaque predicate detec-
tion methods, which also inspires us to propose the generalized dynamic opaque
predicates.

2.1 Static Opaque Predicates

Static opaque predicates indicates the opaque predicates whose value is fixed
during runtime. Basically, there are two categories of static opaque predicates:
invariant opaque predicates and contextual opaque predicates. According to pre-
vious research work [19], invariant opaque predicates refer to those predicates
whose value always evaluates to true or false for all possible inputs. The predicate
is opaque since it is difficult to know the value in advance except the obfuscator.
Usually invariant opaque predicates are constructed by utilizing some algebraic
theorems [21] or quadratic residues [1] as follows.

∀x ∈ Z. (4x2 + 4) mod 19 6≡ 0

As a result of its simplicity, there are large numbers of invariant opaque
predicates candidates. On the other hand, the invariant feature also leads to
the shortage of this category of opaque predicates. One possible way to detect
invariant opaque predicates is to observe the branches that never change at run
time with fuzzing testing [17].

3



The other kind of static opaque predicates is contextual opaque predicate. It
is proposed by Drape [11] to avoid an opaque predicate always produces the fixed
value for all inputs. Contextual opaque predicate only evaluates to always true
or false under a given precondition. Typically this kind of opaque predicate is
an implication relation between two predicates, which is elaborately constructed
in a particular program context. An example of contextual opaque predicates is
presented as follows.

∀x ∈ Z. (7x− 5) mod 3 ≡ 0⇒ (28x2 − 13x− 5) mod 9 ≡ 0

In this example, the predicate (28x2 − 13x − 5) mod 9 ≡ 0 is always true
given (7x − 5) mod 3 ≡ 0 and x is an integer. In addition, the constant value
in contextual opaque predicates can be further obfuscated so as to hide the
implication relation [20].

2.2 Conventional Dynamic Opaque Predicates

Palsberg et al. [22] first introduce the concept of dynamic opaque predicates,
which consist of a family of correlated predicates that all present the same value
in one given execution, but the value may be changed in another execution. Thus
the values of the dynamic opaque predicates switch dynamically at run time.
Here we use the term “conventional dynamic opaque predicates” to distinguish
it from the generalized dynamic opaque predicates we proposed in this paper.
Particularly, since its design is still immature although the concept is noval,
conventional dynamic opaque predicate can only be injected into straight-line
programs, which results in that all predicates are set adjacently. We provide a
conventional dynamic opaque predicate example as follows.

1

2

3

1

2
1

3
2

3

(a) (b)

p

q

T F

T F

Fig. 1: An example of conventional dynamic opaque predicates.

Fig. 1(a) shows the original straight-line code and Fig. 1(b) shows the ob-
fuscated version using conventional dynamic opaque predicates. In this paper,

4



we use a rectangle to represent a basic block and the numbers inside to indi-
cate instructions. The small circles represent predicates. Section 3.2 provides
more detailed description of those symbols. In Fig. 1(b), p and q are two cor-
related predicates. They are evaluated to both true or false in any given run.
In the original program as shown in Fig. 1(a), three instructions are executed
one by one: [1 2 3]. In the obfuscated version, each execution either follows
all left branches (p ∧ q holds) or all right branches (¬p ∧ ¬q holds). The same
instruction sequence is executed in both cases: [1 2]->[3] when taking the left
branches and [1]->[2 3] vice versa. Since the predicate q split the two paths
into different segments, p and q have to be adjacent to maintain the semantic
equivalence.

2.3 Opaque Predicate Detection

Collberg et al. [6] first propose the idea of opaque predicates to prevent malicious
reverse engineering attempts. In addition, the authors also provide some ad-
hoc detection methods, such as “statistical analysis”. This approach utilize the
assumption that, if a predicate that always produces the same result over a
larger number of test cases, it is likely to be an opaque predicate. Due to the low
coverage of inputs, statistical analysis could lead to high false positive rates.

Preda et al. [23] propose to detect opaque predicates by another method
called abstract interpretation. However, their approach can only handle a specific
type of known invariant opaque predicates. Madou [17] first identifies candidate
branches that never changes at run time, and then verifies such predicates by
fuzz testing with a considerably high error rate. Furthermore, Udupa et al. [25]
utilize static path feasibility analysis to determine whether an execution path
is feasible. Note that their approaches are still based on detection of invariant
features such as infeasible branches, so they cannot detect the dynamic opaque
predicates.

Currently, the state-of-the-art work on opaque predicate detection is LOOP
[19], a logic oriented opaque predicate detection tool for obfuscated binary code.
The authors propose an approach based on symbolic execution and theorem
proving techniques to automatically detect static and dynamic opaque pred-
icates. When detecting invariant opaque predicates, LOOP perform symbolic
execution on an execution trace and check whether one branch condition is al-
ways true or false. Furthermore, it runs an logic implication check to decide
whether one predicate is a contextual opaque predicate.

Particularly, LOOP is also able to detect the conventional dynamic opaque
predicate. The detection is based on the fact that each predicate in a dynamic
opaque predicates is semantically equivalent, or in another word, they implies
each other logically, such as p and q in Fig. 1(b). Therefore, LOOP performs
two implication check on two adjacent predicates. One is on the execution trace
and the other is on the execution with the inverted path condition. Taking
the example in Fig. 1, LOOP decides it is a dynamic opaque predicate when
p ⇒ q and ¬p ⇒ ¬q both hold. By this approach, LOOP is able to check the
conventional dynamic opaque predicate.

5



However, to our knowledge, LOOP still utilizes the limitation of conventional
dynamic opaque predicates that all predicates should be adjacently injected into
a straight-line code. When testing ¬p ⇒ ¬q, LOOP first generates a new trace
by negating the path condition p. Then it tests whether the next predicate in
the new trace is equivalent to ¬q. If so, LOOP further checks whether the new
trace is semantically equivalent to the original trace. This procedure is very
time consuming, which limits LOOP’s searching capacity. Therefore, LOOP’s
heuristic is only checking two adjacent predicates such as p and q in Fig. 1.
In the following sections, we present that our method overcome the limitation
of existing conventional dynamic opaque predicate and lead to LOOP’s poor
detection ratio on our generalized dynamic opaque predicates.

3 Generalized Dynamic Opaque Predicates

In this section, we present the details of the generalized dynamic opaque predi-
cates method. First, we introduce the concept of correlated predicate. After that,
we explain how to insert generalized dynamic opaque predicates into straight-line
programs, branches and loops.

3.1 Correlated Predicates

Correlated predicate, as briefly discussed in Section 2.2, is a basic concept in
dynamic opaque predicate. In this section, we present the formal definition of
correlated predicate. First we need to define correlated variables. Correlated vari-
ables is a set of variables that are always evaluated to the same value in any
program execution. One common example of correlated variables is the aliases
of the same variable, like the pointers in C or the references in C++ or Java.

Correlated predicates are a set of predicates that are composed of correlated
variables and have a fixed relation of their true value. The fixed relation means
that, given a set of correlated predicates, if the true value of one of them is given,
all other predicates’ true value are known. Usually, it is intuitive to construct
correlated predicates using correlated variables. Table 1 shows some examples of
correlated predicates. The integer variables x, y and z in the first column is the
correlated variables (CV). The CP1 , CP2 and CP3 columns show three sets of
different correlated predicates.

Here we take the CP2 column as an example to show how correlated pred-
icates work. First, since x, y and z are correlated integer variables, they are
always equivalent. There are three predicates in CP2 , x%2 == 1, y%2 == 0 and
z%2 == 1. Note that x, y and z are integer variables, so they are either even
or odd. Therefore, given the true value of any one of these predicates, we can
immediately get the others’ true values. Furthermore, it is not necessary that
correlated predicates have similar syntax form. We can use semantically equiv-
alent operations to create correlated predicates. CP3 shows such an example.
Although the syntax of each predicate is different from others, they still meet
the definition of correlated predicates.

6



Table 1: Examples of correlates predicates.
CV CP1 CP2 CP3

x x > 0 x%2 == 1 x+x > 0
y y > 0 y%2 == 0 2*y <= 0
z z <= 0 z%2 == 1 z<<1 > 0

One problem we need to pay attention to is that the value of the correlated
variables should not be changed during the dynamic opaque predicates, which
ensures that every correlated variable are evaluated to the same value in all
dynamic opaque predicates in one execution. Therefore, we compute the def-
use chain inside a function and choose the section between two definitions of a
variable as the candidate to be obfuscated. Note that pointer access operations
could still cause the variable’s value changes. Our solution is performing a simple
alias analysis to decide whether the pointer is an alias of the variable. If not, we
can include the pointer access instructions inside the dynamic opaque predicates;
otherwise not. Since alias analysis is complicated and difficult, we only run a
light-weighted address-taken algorithm [12] in our implementation. It is flow-
insensitive and context-insensitive. If the analysis cannot tell whether the pointer
is an alias of the correlated variable, we will conservatively consider that it
could point to the variable and exclude it from the dynamic opaque predicates
candidates.

3.2 Straight-line Code

In this section, we present how to insert dynamic opaque predicate into a straight-
line code. Before digging into the details, we first explain the symbols in the
figures as follows.

1. A rectangle is a basic block.
2. A number in a rectangle represents one instruction.
3. A circle indicates a correlated predicate.
4. An arrow between two basic blocks indicates the control flow transfer. Typ-

ically, it is a conditional or unconditional jump. If there is only one arrow
between two blocks, it is an unconditional jump; otherwise, it is a conditional
jump.

Given the definition above, Fig. 2(a) shows a straight-line code which contains
only one basic block, in which there are five sequential instructions. If a straight-
line code comprises multiple basic blocks which are connected by unconditional
jumps, it can be merged into one basic block. So for the ease of understanding,
we use the single basic block example to present straight-line code.

When inserting dynamic opaque predicates into straight-line code, we have
two strategies, depth-first and breadth-first, whose obfuscation result is shown in
Fig. 2(c) and Fig. 2(e). Here we introduce the depth-first style first and briefly
discuss the breadth-first later since they are similar. When inserting dynamic

7



1

2

3

4

5

1

2
1

3

4

2

3

5
4

5

(a) (b) (c)

1

2

3

4

5

1

2

3

4

5

1

1

2

3

1

2

2

3

4

5

4

5

3

4

5

(d) (e)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 2: Dynamic opaque predicate insertion in straight-line code.

opaque predicates in depth-first style, we select the first correlated predicate
and then make a copy of the original basic block, as shown in Fig. 2(b). After
that, the two basic blocks are split at different locations so as to create two
chains of basic blocks in which each basic block are different with each other. At
last, we insert other correlated predicates to ensure that the control flow takes
either all left branches or all right branches.

Furthermore, when inserting depth-first dynamic opaque predicates, we could
insert as many correlated predicates as we can by splitting the basic blocks at dif-
ferent locations. As shown in Fig. 2(c), those basic blocks constitute two chains,
in which the execution flow will either take every left branch or right branch.
We call the basic block sequence that consists of all left or right branches an
opaque trace. In this paper, the multiple execution traces caused by the effect of
opaque predicates are called opaque trace. As shown in Fig. 2(c), if the execu-
tion flow takes all the left branches, the opaque trace is [1 2]->[3 4]->[5].
Similarly, when taking all right branches, the opaque trace is [1]->[2 3]->[4
5]. Therefore, Fig. 2(c) contains two opaque traces.

Generally speaking, the steps to insert depth-first dynamic opaque predicates
to a single basic block BB are described as follows.

1. Select a correlated variable and creating the first correlated predicate ac-
cordingly.

2. Clone a new basic block BB ′ from BB .

8



3. Split BB and BB ′ at different locations to create two sequences of basic
blocks, or say, two opaque traces T1 and T2 :

T1 = BB1 → BB2 → · · · → BBn

T2 = BB ′
1 → BB ′

2 → · · · → BB ′
n

4. Create and insert the remaining n− 1 correlated predicates.
5. Insert conditional or unconditional jumps into the end of each basic block

to create the correct control flow.

The other strategy is breadth-first inserting dynamic opaque predicates. It
create more opaque traces via correlated predicates that have multiple branches.
The inserting process is similar as depth-first. Assuming each predicate has three
branches, the first step is to select and insert the first correlated predicate and
create two copies of the original basic block as shown in Fig. 2(d). Then split
the three basic blocks at different offsets so as to create three opaque traces. At
last, insert the other correlated predicates and other jump instructions to adjust
the CFG. The result is shown in Fig. 2(e).

Furthermore, we can easily create more complicated generalized dynamic
opaque predicates by iteratively applying depth first and breadth first injection.
For example, the basic block [1,2,3] can also be split to create a depth first
generalized dynamic opaque predicate. Note that it naturally breaks the adja-
cency of the two predicates in Fig. 2(e). Being compared with the conventional
dynamic opaque predicate shown in Section 2.2 which only has two adjacent
predicates p and q, our method can insert more generalized and non-adjacent
dynamic opaque predicates in straight-line code.

3.3 Branches

In the previous section, we present the approach to inserting dynamic opaque
predicates into straight-line code. However, real world programs also consist of
other structures such as branches and loops. When considering inserting dy-
namic opaque predicates into branches or loops, one straight forward idea is
only inserting dynamic opaque predicates into basic blocks independently by
treating them as straight-line code. However, this idea has one obvious prob-
lem: it doesn’t spread the dynamic opaque predicates across the branch or loop
condition, so essentially it is still the same as what we have done in Section 3.2.

In this section, we describe the process to insert dynamic opaque predicates
into a branch program, which improves the program obfuscation level. For the
ease of presenting our approach, we consider the branch program which contains
three basic blocks as shown in Fig. 3(a). Our solution can also be applied to
more complicated cases such as each branch contains multiple basic blocks. As
shown in Fig. 3, Cond is the branch condition. BB1 is located before the branch
condition. BB2 is the true branch and BB3 is the false branch.

As the first step of inserting branch dynamic opaque predicate, we back-
wards search for an instruction that is independent from all instructions until

9



1

2

3

4

1

2
1

3

4

2

3

5

6

7

8

9

10

Cond
Cond

5

6

4

5

7
6

7

8

9

4

8

10
9

10

(a) (b)

1

2

3

4

1

2

3

Cond

5

6

7

4

5

6

7

8

9

10

4

8

9

10

(c)

BB1

BB2 BB3

BB1

BB2 BB3

BB1'

BB2' BB3'

T F

T F
T F

Fig. 3: Dynamic opaque predicate insertion in a branch program.

the branch condition, and also independent from the branch instruction. In this
paper, this instruction is called a branch independent instruction. Essentially, it
can be moved across the branch condition so as to create the offset in different
opaque traces. In Fig. 3(a), the underlined instruction 4 is a branch independent
instruction. Based on our observation, there are plenty of branch independent
instructions. For example, the Coreutils program ls contains 289 branch con-
ditions, in each of which we find at least one branch independent instruction.
Typically, these instructions prepare data which are used both in the true and
false branch.

After identifying the branch independent instruction, we select and insert the
correlated variables, then make a copy of each basic blocks. Moreover, we move
the instruction 4 along the right opaque trace across the branch condition and
Fig. 3(b) shows the result. Note that due to instruction 4 is branch independent,
so moving it to the head of basic blocks in the branches will not change the orig-
inal program’s semantics. At last, we create straight-line code dynamic opaque
predicates for BB1 , BB2 and BB3 . The final result of the obfuscated CFG is
shown in Fig. 3(c). We briefly summarize the steps of inserting dynamic opaque
predicates into a branch program as follows.

1. Find the branch independent instruction in BB1 .

10



2. Select and insert the correlated predicates.
3. Clone BB1 , BB2 and BB3 as BB ′

1 , BB ′
2 and BB ′

3 .
4. Move the branch independent instruction from BB ′

1 to BB ′
2 and BB ′

3 .
5. Split basic blocks and create dynamic opaque predicates as in straight-line

code.

3.4 Loops

Previous sections present the details about how to insert dynamic opaque pred-
icates into straight-line code and branch programs. In this section, we consider
inserting dynamic opaque predicates into a loop. In this paper, a loop refers to
a program which contains a backward control flow, such as Fig. 4(a). BB1 is
the first basic block of the loop body and BB2 is the last one. The dashed line
indicates other instructions in the basic block. The dashed arrow means other
instructions in the loop body, which could be a basic block, branch or even an-
other loop. Particularly, if there is only one basic block in the loop body, BB1

and BB2 refer to the same basic block.

1

2
2

1
1

3
3

2Cond

Cond

(a) (c)

3

(b)

BB1

BB2

2

1

2

1

3 3

Cond

BB1

BB2

BB1

BB2

BB1'

BB2'

BB1'

BB2'

Fig. 4: Dynamic opaque predicate insertion in a loop.

The key idea in inserting dynamic opaque predicates to a loop program is
finding a loop independent instruction and moving it across the loop condition in
the same opaque trace. We define loop independent instruction as an instruction
in a loop whose operands are all loop invariants. Loop invariant is a classical
concept in compiler optimization. A variable is called loop invariant if its value
never changes no matter how many times the loop is executed. For instance,

11



Fig. 5 shows a loop invariant. The variable m is defined outside the loop and
is never changed inside the loop. Each iteration of the loop accesses the same
array element A[m] and assigns it to the variable x. Therefore, m, A[m] and
x are loop invariant. Note that here we use the C source code to present the
idea. Actually we are working on the compiler IR level, where every instruction
is close to a machine instruction. As a result, in the IR level, all instructions
that only operate the loop invariants are loop independent instructions. For
instance, the instruction that load the value of A[m] from memory to x is an
loop independent instruction. Based on our observation, there are plenty of loop
independent instructions inside a loop body, such as the instructions to compute
a variable’s offset address. In the experiment, we find at least loop independent
instruction for each of the 61 loops in the Coreutils program ls.

1 for (i = 0; i < 10; i++) {
2 x = A[m]; /* loop invariant */
3 B[i] = x * i;
4 }

Fig. 5: An example of loop invariants.

In traditional compiler optimization, the loop independent instructions are
extracted out of the loop body so as to reduce the loop body size and further im-
prove the runtime performance. All compiler frameworks implement a data flow
analysis to analyze and identify the loop invariants. In this paper, we take ad-
vantage of the loop independent instructions to create the offset between opaque
traces. Consider the example shown in Fig. 4(a). First, we search and identify
that instruction 2 is a loop independent instruction. Second, we lift the instruc-
tion 2 to the beginning of the loop body, since other instructions might need
the output of instruction 2. Then we make copies of BB1 and BB2 as BB ′

1 and
BB ′

2 . After that we select the correlated predicates and initialize the first one to
ensure that it takes the left branch. The bold arrow in Fig. 4(b) indicates the
initialized predicates. We will soon discuss the reason. At last, the loop indepen-
dent instruction 2 is moved from BB ′

1 to BB ′
2 and the final result is shown in

Fig. 4(c). We summarize the steps of creating loop dynamic opaque predicates
as follows.

1. Find the loop independent instruction Ii .
2. Lift Ii to the beginning of the loop body in BB1 .
3. Select the correlated predicates and initialize the first one correctly.
4. Clone BB1 and BB2 as BB ′

1 and BB ′
2 .

5. Remove I ′i from BB ′
1 and add it to the end of BB ′

2 .
6. Add dynamic opaque predicates as separate basic blocks and according

jumps to build correct control flow.

12



Note that at the third step, we initialize the correlated variables so as to
ensure the control flow goes to the left branch at the first iteration. The reason
is that we have to make the loop invariant instructions executed at least once
at the first iteration of the loop in order to assure all loop invariants loaded,
computed and stored correctly. The value of correlated variables may change
during the dashed part of the loop body so as to divert the execution flow to
each opaque trace. Particularly, when the execution reaching the last iteration
of the loop, there is a redundant instruction 2 if the execution follows the right
branch. Since instruction 2 is loop independent, it doesn’t affect the semantic of
the program execution.

4 Implementation

Our implementation is based on Obfuscator-LLVM [13], an open source fork of
the LLVM compilation suite that aims to improve the software security via code
obfuscation and tamper-proofing. The architecture of our system is shown in
Fig. 6. The generalized dynamic opaque predicate obfuscator (GDOP obfuscator)
is surrounded with dashed lines. Basically, our automatic GDOP obfuscator
works as a pass in LLVM framework. The workflow contains three steps. First,
the LLVM frontend Clang read the source code and translate it into LLVM IR.
Second, GDOP obfuscator reads the IR and inserts generalized dynamic opaque
predicates to the appropriate location. At last, the LLVM backend outputs the
executable program based on the obfuscated IR files.

Clang

GDOP Obfuscator

Sequence

Branch

Loop

IR
Obfuscated 

IR LLVM

Backend

Source

Code

Executable

Code

Fig. 6: The architecture of dynamic opaque predicate obfuscator.

Particularly, we implement the procedure of inserting generalized dynamic
opaque predicates to a straight-line, branch and loop program as three separate
passes, which includes 1251 lines of C++ code in total. We also write a driver
program to invoke the three passes so as to insert all kinds of generalized dynamic
opaque predicates. In addition, we implement a junk code generator to insert
useless code into functions, such as redundancy branches and extra dependencies.
Moreover, we provide a compiler option for users to configure the probability
for inserting generalized dynamic opaque predicates. For each basic block, our
obfuscator generates a random number between zero and one. If the number is
smaller than the given probability, it tries to insert generalized dynamic opaque
predicates into the basic block; otherwise it skips the basic block.

13



5 Evaluation

We conduct our experiments with several objectives. First, we want to evaluate
whether our approach is effective to obfuscate control flow graph. To this end,
we measure control flow complexity of GNU Coreutils with three metrics. We
also test our tool with a commercial binary diffing tool which is based on control
flow graph comparison. Last but not least, we want to prove our approach can
defeat the state-of-the-art deobfuscation tool. Our testbed consists of an Intel
Core i7-3770 processor (Quad Core with 3.40GHz) and 8GB memory, running
Ubuntu Linux 12.04 LTS. We turn off other compiler optimization options by
using -g option.

5.1 Obfuscation Metrics with Coreutils

This section shows our evaluation result of inserting generalized dynamic opaque
predicates into the GNU Coreutils 8.23. Since the generalized dynamic opaque
predicate is an intra-procedural obfuscation [22], we evaluate it by comparing the
control flow complexity of the modified function before and after the generalized
dynamic opaque predicate obfuscation. In this experiments, we choose five hot
functions in the Coreutils program set by profiling. At the same time, we make
sure all the functions containing at least ten basic blocks1. After profiling, the
five hot functions we select are as follows.
1. get_next: This function is defined in tr.c. It returns the next single char-

acter of the expansion of a list.
2. make_format: This function is defined in stat.c. It removes unportable

flags as needed for particular specifiers.
3. length_of_file_name_and_frills: This function is defined in ls.c for

counting the length of file names.
4. print_file_name_and_frills: This function is also defined in ls.c. It

prints the file name with appropriate quoting with file size and some other
information as requested by switches.

5. eval6: This function is defined in eval6.c to handle sub-string, index, quot-
ing and so on.

The metrics that we choose to show the CFG complexity are the number
of CFG edges, the number of basic blocks and the cyclomatic number. The
cyclomatic number is calculated as e − n + 2 where e is the number of CFG
edges and n is the number of basic blocks. The cyclomatic number is considered
as the amount of decision points in a program [9] and has been used as the metrics
for evaluating obfuscation effects [7]. We first insert generalized dynamic opaque
predicates into the hot functions with two different probability level: 50% and
100%. After that, we perform functionality testing to make sure our obfuscation
is semantics-preserving. Table 2 shows the obfuscation metrics of the original
clean version and the obfuscated version. The data shows that our dynamic
opaque predicate obfuscation can significantly increase the program complexity.
1 We do not consider dynamic link library functions because our approach takes the
target program source code as input.

14



Table 2: Obfuscation metrics and BinDiff scores of hot functions in Coreutils.

Function # of Basic Blocks # of CFG Edges Cyclomatic Number Bindiff Score
Orig. 50% 100% Orig. 50% 100% Orig. 50% 100% 50% 100%

1 43 171 229 62 258 338 21 89 111 0.05 0.02
2 20 75 105 30 114 158 12 41 55 0.02 0.01
3 30 94 120 49 141 177 21 49 59 0.02 0.02
4 46 138 208 80 220 320 36 84 114 0.04 0.01
5 76 272 376 117 425 573 43 155 199 0.05 0.02

To test the control flow graph after our obfuscation is heavily cluttered, we
also evaluate our approach with BinDiff2, which is a commercial binary diffing
tool by measuring the similarity of two control flow graphs. We run BinDiff to
compare the 50% and 100% obfuscated versions with the original five programs
and the similarity score is presented in the fifth column in Table 2. The low
scores indicate that the obfuscated program is very different from the original
version.

5.2 Resilience

In this experiment, we evaluate the resilience to deobfuscation by applying
LOOP [19], the latest formal program semantics-based opaque predicate detec-
tion tool. The authors present a program logic-based and obfuscation resilient
approach to the opaque predicate detection in binary code. Their approach rep-
resents the characteristics of various opaque predicates with logical formulas and
verifies them with a constraint solver. According to the authors, LOOP is able
to detect various opaque predicates, including not only simple invariant opaque
predicates, but also advanced contextual and dynamic opaque predicates.

In our evaluation, we run two round of 100% obfuscation on the five Coreutils
functions and use LOOP to check them. The results are presented in Table 3.

Table 3: The result of LOOP detection.

Function Straight Line DOP Branch DOP Loop DOP
Total Detected Ratio Total Detected Ratio Total Detected Ratio

1 52 3 5.77% 21 0 0.00% 8 0 0.00%
2 28 2 7.14% 15 0 0.00% 6 0 0.00%
3 27 2 7.41% 23 0 0.00% 6 0 0.00%
4 54 5 9.26% 26 0 0.00% 8 0 0.00%
5 82 8 9.76% 52 0 0.00% 14 0 0.00%

As shown in Table 3, LOOP can detect very few number of the generalized
dynamic opaque predicates inserted in straight-line code but fails to detect all
2 http://www.zynamics.com/bindiff.html

15



those in branches and loops. We look into every generalized dynamic opaque
predicate that is detected by LOOP and find that they are all conventional
adjacent dynamic opaque predicates. We also check verify that LOOP fails to
detect the remaining generalized dynamic opaque predicates.

We carefully analyze LOOP’s report and find several reasons that lead to
LOOP’s poor detection ratio on generalized dynamic opaque predicates. First,
iterative injection causes LOOP fails to detect majority of the generalized dy-
namic opaque predicates in straight-line code. Our obfuscation method can be
iteratively executed on a candidate function, which means we are able to insert
generalized dynamic opaque predicates into the same function several times.
Note that each time we choose different correlated variables and different cor-
related predicates. Therefore, the generalized dynamic opaque predicates that
are inserted by the later pass will break the adjacency of those inserted by the
previous pass. In addition, junk code injection is another reason that prevents
LOOP’s detection.

Second, generalized dynamic opaque predicates spread across the branch or
loop structure so they naturally break the adjacency property, which causes
LOOP detects none of the generalized dynamic opaque predicates in branches
and loops. For example, when we execute the loop shown in Fig. 4, there are two
correlated but not adjacent predicates. They are separated by the instructions
in the dashed line and the loop condition. Therefore, the detection method in
the LOOP paper fails to detect the generalized dynamic opaque predicates.

5.3 Cost

This section presents the cost evaluation of our generalized dynamic opaque
predicate obfuscation. We evaluate the cost from two aspects: binary code size
and execution time. For binary code size, we measure and compare the number of
bytes of the compiled programs that contain the five hot functions. For instance,
we compare the size of tr’s binary code when inserting generalized dynamic
opaque predicates to function get_next with different probabilities such as 50%
and 100%. For the evaluation of execution time, we record and compare the
execution time of clean version and the obfuscated program. We configure the
switches and input files so as to ensure the control flow touches the obfuscated
function.

Table 4: Cost evaluation of the dynamic opaque predicate obfuscation.

Function Program Binary Size (Bytes) Execution Time (ms)
Orig. 50% 100% Ratio Orig. 50% 100%

1 tr 132,084 132,826 133,491 0.53% 2.2 2.2 2.4
2 stat 210,864 211,355 211,710 0.20% 4.0 4.0 4.1
3 ls 350,076 350,916 351,527 0.21% 23.2 23.4 23.7
4 ls 350,076 351,083 351,742 0.24% 23.2 23.3 23.8
5 expr 129,696 130,836 131,409 0.66% 0.6 0.6 0.6

16



Table 4 shows the evaluation result. We can observe that our approach
slightly increases the binary code size, which is less than 0.7%. Moreover, ac-
cording to our experiments, the generalized dynamic opaque predicates have a
small impact on program performance. The execution time of most programs
stays the same when inserting generalized dynamic opaque predicates with 50%
probability and increases a little when inserting with 100% probability.

5.4 Case Study

As mentioned in Section 5.2, our generalized dynamic opaque predicates can be
iteratively apply to a candidate program so as to create more obfuscated result.
In this section, we provide a case study to show the result of generalized dynamic
opaque predicate obfuscation iteration.

Table 5: Obfuscation metrics of sort_files.

Function # of Basic Blocks # of CFG Edges Cyclomatic Number
Orig. Round 1 Round 2 Orig. Round 1 Round 2 Orig. Round 1 Round 2

sort_files 19 160 405 25 255 539 8 97 136

The target function is the sort_files function in the ls program. We choose
this function since its CFG size is appropriate and it contains straight-line codes,
branches and loops, which are suited for inserting all three categories of gener-
alized dynamic opaque predicates. We perform two rounds of generalized dy-
namic opaque predicate obfuscation with 100% probability. Table 5 presents the
same measures as shown in the last section and Fig. 7 shows the result CFG.
Fig. 7(a) shows the original CFG of sort_files Fig. 7(b) presents the CFG
after the first round of dynamic opaque predicate obfuscation. Next, we perform
another round of dynamic opaque predicate obfuscation on (b) and the result is
shown in Fig. 7(c). The comparison of the three CFGs clearly indicates that our
generalized dynamic opaque predicate obfuscation can significantly modify the
intra-procedural control flow graph.

6 Conclusion

Opaque predicate obfuscation is a prevalent control flow obfuscation method
and has been widely applied both in malware and benign software protection.
Dynamic opaque predicate obfuscation is regarded as a promising method since
the predicate values may vary in different executions and thus make them more
resilient to detection. However, little work discusses the systematical design of
dynamic opaque predicates in detail. Also, some recent advanced deobfuscation
tools utilize certain specific properties as ad hoc heuristics to detect dynamic
opaque predicates. In this paper, we present generalized dynamic opaque pred-
icates to address these limitations. Our method automatically inserts dynamic

17



(a) The original CFG.
(b) The CFG after one
round of obfuscation.

(c) The CFG after two
rounds of obfuscation.

Fig. 7: Comparison between CFGs after different rounds of dynamic opaque pred-
icate obfuscation.

opaque predicates into common program structures and is hard to be detected
by the state-of-the-art formal program semantics-based deobfuscation tools. The
experimental results show the efficacy and resilience of our method with negli-
gible performance overhead.

Availability

To better facilitate future research, we have released the source code of our
dynamic opaque predicate obfuscation tool at https://github.com/s3team/
gdop.

18

https://github.com/s3team/gdop
https://github.com/s3team/gdop


Acknowledgements

We thank the anonymous reviewers for their valuable feedback. This research
was supported in part by the National Science Foundation (NSF) grants CNS-
1223710 and CCF-1320605, and the Office of Naval Research (ONR) grants
N00014-13-1-0175 and N00014-16-1-2265.

References

1. Arboit, G.: A method for watermarking Java programs via opaque predicates. In:
Proceedings of 5th International Conference on Electronic Commerce Research
(ICECR-5) (2002)

2. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using
control-flow graph matching. In: Proceedings of Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA’06) (2006)

3. Bruschi, D., Martignoni, L., Monga, M.: Code normalization for self-mutating mal-
ware. IEEE Security and Privacy 5(2) (2007)

4. Cappaert, J., Preneel, B.: A general model for hiding control flow. In: Proceedings
of the 10th Annual ACM Workshop on Digital Rights Management (DRM’10)
(2010)

5. Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., Yew, P.c.: Control flow ob-
fuscation with information flow tracking. In: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 42) (2009)

6. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Tech. rep., The University of Auckland (1997)

7. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’98) (1998)

8. Collberg, C., Myles, G., Huntwork, A.: Sandmark–a tool for software protection
research. IEEE Security and Privacy 1(4), 40–49 (July 2003)

9. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software engineering metrics and mod-
els. Benjamin-Cummings Publishing Co., Inc. (1986)

10. Coppens, B., De Sutter, B., Maebe, J.: Feedback-driven binary code diversification.
ACM Transactions on Architecture and Code Optimization (TACO) 9(4) (Jan
2013)

11. Drape, S.: Intellectual property protection using obfuscation. Tech. Rep. RR-10-02,
Oxford University Computing Laboratory (2010)

12. Hind, M., Pioli, A.: Which pointer analysis should i use? In: Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA ’00). pp. 113–123. ACM (2000)

13. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: Proceedings of the 1st International Workshop on
Software PROtection (SPRO’15) (2015)

14. Kovacheva, A.: Efficient Code Obfuscation for Android. Master’s thesis, University
of Luxembourg (2013)

15. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated software
diversity. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy
(SP’14) (2014)

19



16. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO’04) (2004)

17. Madou, M.: Application Security through Program Obfuscation. Ph.D. thesis,
Ghent University (2007)

18. Madou, M., Van Put, L., De Bosschere, K.: LOCO: An interactive code
(de)obfuscation tool. In: Proceedings of the 2006 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation (PEPM’06) (2006)

19. Ming, J., Xu, D., Wang, L., Wu, D.: LOOP: Logic-oriented opaque predicate de-
tection in obfuscated binary code. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS’15) (2015)

20. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of the 23th Annual Computer Security Applications Conference
(ACSAC’07) (December 2007)

21. Myles, G., Collberg, C.: Software watermarking via opaque predicates: Implemen-
tation, analysis, and attacks. Electronic Commerce Research 6(2), 155 – 171 (April
2006)

22. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experience
with software watermarking. In: Proceedings of the 16th Annual Computer Security
Applications Conference (ACSAC’00) (2000)

23. Preda, M.D., Madou, M., Bosschere, K.D., Giacobazzi, R.: Opaque predicate detec-
tion by abstract interpretation. In: Proceedings of 11th International Conference
on Algebriac Methodology and Software Technology (AMAST’06) (2006)

24. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools.
ACM Journal Name 1, 21 (2012)

25. Udupa, S.K., Debray, S.K., Madou, M.: Deobfuscation: Reverse engineering obfus-
cated code. In: Proceedings of the 12thWorking Conference on Reverse Engineering
(WCRE’05) (2005)

26. Wang, C., Hill, J., Knight, J.C., Davidson, J.W.: Protection of software-based
survivability mechanisms. In: Proceedings of the 2001 International Conference on
Dependable Systems and Networks (DSN’01) (2001)

20


	Generalized Dynamic Opaque Predicates: A New Control Flow Obfuscation Method

