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Background + Motivation

Many data processing and HPC workloads are Time
memory-latency bound.

e Solution? Prefetching DA EARSESLNESEN

e Hardware stride prefetcher Stride of 2

What if the data access pattern is not regular? e.g. indirect memory access

e RatherthanAli],wewanttoaccess A[B[i]]
e Hardware prefetchers fail - they fetch B[i + 1] quickly but not datain A



Intro to Software Prefetching

Analyze the code and insert prefetching instructions at compile time.
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Many workloads (e.g. graphs)
perform stride-indirect
traversals starting from an
array

We can look ahead in the
base array and prefetch future
values from the target array



Challenges in Software Prefetching

for (i = 0; i < NUM_KEYS; i++) {

for (i =0; i < NUM_KEYS; i++) { SWPF(key buffi[ key buff2[ i + offset ] ]): // intuitive
key_buffi[ key_buff2[i]]++; =) SWPF(key buff2[ i + offset * 2 1); // required for optimal performance
} key buffi[ key buff2[i]]++:
Y
1.4
e Inserting prefetch instructions manually for B e S
maximal performance is challenging even % 1.2 [t —— .
in simple cases. 52, T L S s
1
e Choosing a good prefetch distance is 0.9 :
Intuitive  Offset too small Offset too big Optimal

critical to avoid fetching the data too late
(when the offset is too small), or polluting
the cache (when the offset is too large).

Prefetching Technique

Software prefetching performance for code
above on an Intel Haswell micro-architecture



Prefetch Generation Overview

1. Backwards depth-first search to find induction variables and instructions that reference
the induction variables

2. Perform safety analysis
a. Remove instructions with (side effect) function calls and non-induction-variable phi nodes
b. Perform address bounds check to limit the range of induction variables to known valid values
c. Disallow unsafe prefetches

3. Calculate offsets and generate prefetch instructions



1. Find induction variables and associated instructions

For each load in aloop, DFS is called.

Find induction variable (V) while walking

through the data dependence graph
(Use-Def) using DFS. (2~10)

When multiple IVs exist, only the IV in
closest (innermost) loop to load is picked

(21).
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DFS (inst) {

candidates = {}
foreach (o: inst.src_operands):
// Found induction variable, finished this path.
if (o is an induction wvariable):
candidates U= { (o, {inst})}
// Recurse to find an induction variable.
elif (o is a variable and is defined in a loop):
if (((iv, set) = DFS(loop_def(o))) != null):
candidates U= {(iv, {inst}Uset)}

// Simple cases of 0 or 1 induction variable.
if (candidates.size == 0):

return null
elif (candidates.size == 1):

return candidates|[O0]

// There are paths based on multiple induction

// variables, so choose the induction variable in
// the closest loop to the load.

indvar = closest_loop_indvar (candidates)

// Merge paths which depend on indvar.
return merge_instructions (indvar, candidates)



1. Find induction variables and associated instructions (ex)

1 start: alloc a, asize

2 alloc b, bsize
for(i = 0; | < size; i++) { 3 IOOp: phl l, [#0, I..1]
4 geptl, a,i
bla[i]]++ 5 Id t2, t1
) 6 gep t3, b, t2
prefetch(b[a[i + ?]]) . Id t4, 3
H 8 add t5, t4, #1
refetch(afi + ? y 14,
P el D 9 str t3, t5
} 10  addii, i, #1
11 cmp size, i.1

12 bne loop



2. Perform safety analysis

® Prefetches can't cause faults, but loads to calculate the address of the prefetch can
® Need to limit the range of the prefetching induction variable (can’t prefetch past the

max size of the induction variable)
® Give upif stores happen to data structure that is used to generate the loads

o Eg, x[ylz[i]]] - if we store to z, we can't safely prefetch on x as x[y[z[i + 1]]] might

not make sense anymore



2. Perform safety analysis (ex)

for(i = 0; i < size; i++) {
blal[i]]++
if(i + ? < asize) {
prefetch(b[a[i + ?]])

prefetch(ali + ?])

1 start: alloc a, asize

2
3 loop:

alloc b, bsize
phi i, [#0, i.1]
gep t1, a, i
Id t2, t1

gep t3, b, t2
Id t4, t3

add t5, t4, #1
str t3, t5

add i.1, i, #1
cmp size, i.1
bne loop




3. Calculate offset and generate prefetch instructions

e Prefetchingtoo early risks cache
pollution and data being evicted
before use

e Prefetchingtoo late risks the data
not being fetched early enough to
mask the cache miss

e Therefore, calculate offset to
schedule prefetch

offset =c(t-1)
t

c = Micro-architecture specific constant
t = Number of loads in total sequence

| = Position of a given load in its sequence
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3. Calculate offset and generate prefetch instructions (ex)

for(i = 0; i < size; i++) {
blali
el offset =c (t - 1)
t

if(i + 32 < asize) {

prefetch(b[ali + 32]]) // | = 1 c = Micro-architecture specific constant = 64

}

if(i + 64 < asize) {

t = Number of loads in total sequence = 2

| = Position of a given load in its sequence
prefetch(afi + 64]) //1=0
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Speedup

Speedup

Result - Performance gain
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(d) Xeon Phi

Based on the architectural features
of the system, the pass shows
different speedup.

Shows near optimal performance
for Hash Join (database access),
Conjugate gradient and Integer
Sort regardless of system.

Pass accomplishes speed up in most
of benchmarks.
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Speedup

Speedup

Result-Look Ahead Distance
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Figure 6: Varying look-ahead distance shows the best is usually the consistent across systems.

Short distance results in cache miss and
long distance would result in cache
pollution.

Optimal when distance is 64, but larger
distances can also show near optimal
performance.

Cache miss is more detrimental than
cache pollution.
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Strengths

Safe optimization that avoids faults (as long as the original code is fine)
Generally provides a speedup to memory bound code

Real world benefits - hashmaps, graphs, databases, game engines
Optimal lookahead is fairly consistent among architectures
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Limitations

e \ery specific set of conditions to do it safely
o Prefetched loads need bounds checking
o Eventhen, faults can occur earlier due to the prefetch address

calculation
e |gnores additional performance in exchange for simplicity
e Works well on benchmarks, real world code is not always that

straightforward
e Software prefetching is slower and uses more energy than hardware

prefetching
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Experiment Setup

Implement
Manual(Almost Optimal)

Pass Generated

Benchmarks
Integer Sort(1S)
Conjugate Gradient(CG)
Random Access(RA)
Hash Join(HJ-2,HJ-8)

Graph 500

System
Haswell(IS)
Xeon Phi(CG)
A57

A53
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