
Software Prefetching for Indirect Memory Accesses

Authors: Sam Ainsworth, Timothy M. Jones

Presented By: Group 3
Arham Jain, Hyung Rae Cho, Michael Alvin,
Zihao Deng

1

Background + Motivation

Many data processing and HPC workloads are
memory-latency bound.

● Solution? Prefetching
● Hardware stride prefetcher

A A+2 A+4 A+6 A+8

Time

Stride of 2

What if the data access pattern is not regular? e.g. indirect memory access

● Rather than A[i], we want to access A[B[i]]

● Hardware prefetchers fail - they fetch B[i + 1] quickly but not data in A

2

Intro to Software Prefetching

Analyze the code and insert prefetching instructions at compile time.

● Many workloads (e.g. graphs)
perform stride-indirect
traversals starting from an
array

● We can look ahead in the
base array and prefetch future
values from the target array

3

Challenges in Software Prefetching

for (i = 0; i < NUM_KEYS; i++) {
 key_buff1[key_buff2[i]]++;
}

for (i = 0; i < NUM_KEYS; i++) {
 SWPF(key_buff1[key_buff2[i + offset]]); // intuitive
 SWPF(key_buff2[i + offset * 2]); // required for optimal performance
 key_buff1[key_buff2[i]]++;
}

Software prefetching performance for code
above on an Intel Haswell micro-architecture

● Inserting prefetch instructions manually for
maximal performance is challenging even
in simple cases.

● Choosing a good prefetch distance is
critical to avoid fetching the data too late
(when the offset is too small), or polluting
the cache (when the offset is too large).

4

Prefetch Generation Overview

1. Backwards depth-first search to find induction variables and instructions that reference

the induction variables

2. Perform safety analysis
a. Remove instructions with (side effect) function calls and non-induction-variable phi nodes

b. Perform address bounds check to limit the range of induction variables to known valid values

c. Disallow unsafe prefetches

3. Calculate offsets and generate prefetch instructions

5

1. Find induction variables and associated instructions

● For each load in a loop, DFS is called.

● Find induction variable (IV) while walking

through the data dependence graph

(Use-Def) using DFS. (2~10)

● When multiple IVs exist, only the IV in

closest (innermost) loop to load is picked

(21).

6

1. Find induction variables and associated instructions (ex)

for(i = 0; i < size; i++) {

b[a[i]]++

prefetch(b[a[i + ?]])

prefetch(a[i + ?])

}

7

2. Perform safety analysis

● Prefetches can’t cause faults, but loads to calculate the address of the prefetch can

● Need to limit the range of the prefetching induction variable (can’t prefetch past the

max size of the induction variable)

● Give up if stores happen to data structure that is used to generate the loads

○ Eg, x[y[z[i]]] - if we store to z, we can’t safely prefetch on x as x[y[z[i + 1]]] might

not make sense anymore

8

2. Perform safety analysis (ex)

for(i = 0; i < size; i++) {

b[a[i]]++

if(i + ? < asize) {

prefetch(b[a[i + ?]])

prefetch(a[i + ?])

}

}

9

3. Calculate offset and generate prefetch instructions

● Prefetching too early risks cache

pollution and data being evicted

before use

● Prefetching too late risks the data

not being fetched early enough to

mask the cache miss

● Therefore, calculate offset to

schedule prefetch

offset = c (t - l)
 t

c = Micro-architecture specific constant

t = Number of loads in total sequence

l = Position of a given load in its sequence

10

3. Calculate offset and generate prefetch instructions (ex)

for(i = 0; i < size; i++) {

b[a[i]]++

if(i + 32 < asize) {

prefetch(b[a[i + 32]]) // l = 1

}

if(i + 64 < asize) {

prefetch(a[i + 64]) // l = 0

}

}

offset = c (t - l)
 t

c = Micro-architecture specific constant = 64

t = Number of loads in total sequence = 2

l = Position of a given load in its sequence

11

Result - Performance gain

● Based on the architectural features

of the system, the pass shows

different speedup.

● Shows near optimal performance

for Hash Join (database access),

Conjugate gradient and Integer

Sort regardless of system.

● Pass accomplishes speed up in most

of benchmarks.

12

Result-Look Ahead Distance

● Short distance results in cache miss and

long distance would result in cache

pollution.

● Optimal when distance is 64, but larger

distances can also show near optimal

performance.

● Cache miss is more detrimental than

cache pollution.

13

Strengths

● Safe optimization that avoids faults (as long as the original code is fine)

● Generally provides a speedup to memory bound code

● Real world benefits - hashmaps, graphs, databases, game engines

● Optimal lookahead is fairly consistent among architectures

14

Limitations

● Very specific set of conditions to do it safely

○ Prefetched loads need bounds checking

○ Even then, faults can occur earlier due to the prefetch address

calculation

● Ignores additional performance in exchange for simplicity

● Works well on benchmarks, real world code is not always that

straightforward

● Software prefetching is slower and uses more energy than hardware

prefetching

15

Experiment Setup

Benchmarks

Integer Sort(IS)

Conjugate Gradient(CG)

Random Access(RA)

Hash Join(HJ-2,HJ-8)

Graph 500

Implement

Manual(Almost Optimal)

Pass Generated

System

Haswell(IS)

Xeon Phi(CG)

A57

A53

16

