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What is false sharing?

● Multiple CPUs, each with their own cache

● Different CPUs using different pieces of data should be able to run 

completely in parallel

● False sharing: The different pieces of data end up on the same 

cache line, so the CPUs must coordinate whenever either piece of 

data is changed
○ A CPU that writes to a falsely shared cache line must invalidate all other 

CPUs’ caches

○ Other CPUs will incur cache misses when they try to read the falsely shared 

cache line



What is false sharing?
struct {
    int thread_one_data;
    int thread_two_data;
} shared;

void thread_one() {
    for (int i = 0; i < 1000; ++i) {
        ++shared.thread_one_data;
    }
}

void thread_two() {
    for (int i = 0; i < 1000; ++i) {
        printf(“%d\n”, shared.thread_two_data);
    }
}



What is false sharing?
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Group and Transpose
● Physically group per-process data together by changing the layout of data 

structures in memory

● If each processor’s data is less than the cache block size, it may be padded

● May also improve spatial locality

typeA Vect1[N]

typeB Vect2[N]

typeC Vect3[N]

struct {
typeA Vect1;
typeB Vect2;
typeC Vect3;
gt_pad1 Padding;

} GTVect[N];
...

= cache block



Indirection
● When it's not physically possible to change the data layout, we can use indirection

○ Pointers are read-only

● Run time overhead
○ additional space for the pointers
○ additional memory access for each reference to the data

typeA Vect1[N]

typeA* Vect1[N]
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Pad and Align
● Pads and aligns scalars, array elements, and locks on cache block boundaries

● Increases data set size, so may increase conflict and capacity misses and reduce spatial locality
○ Therefore only pad data structures that lack processor locality, i.e., where the possible loss of spatial 

locality is insignificant relative to the savings in false sharing.

typeA Vect1[7] struct { 
typeA Vect1[4];
typeA padding[3];
typeA Vect2[3]; 

} PadVect;
cache line 1 cache line 1 cache line 2



Detecting and Applying Transformations
● Compile-time analysis is used to pinpoint data structures that are susceptible to 

false sharing. Approximate memory access pattern is computed.
○ Stage 1: Inter-procedural analysis of the control flow. CFG nodes annotated accordingly.
○ Stage 2: Non-concurrency analysis using barrier synchronization points to determine which 

portions of a program can execute in parallel and which cannot.
○ Stage 3: Summary side-effect analysis and static profiling on a per-process basis (based on 

the control flow determined in Stage 1) for each phase (determined in Stage 2).

● After static analysis, heuristics were used to determine where to mitigate false 

sharing
○ Compare results of the per-process side-effect analysis to profiling information from 

simulations that showed the number of false sharing misses per data structure. 
○ Transformations applied when reduction in false sharing exceeds any performance loss 

from reduced spatial locality 



Results

● Evaluated performance for multiple different programs
○ Maxflow - maximum flow in a directed graph
○ Pverify - logical verification
○ Topopt - topological optimization
○ Fmm - fast multipole method
○ Radiosity - equilibrium distribution of light
○ Raytrace - rendering of 3-dimensional scene

○ More: LocusRoute, Mp3d, Pthor, Water



Results - Comparison



Results - Performance Breakdown
Program Total 

Reduction 
in False 
Sharing

Fraction of Reduction by Transformation

Group & 
Transpose

Indirection Pad & Align Locks

Maxflow 56.5% 49.2% 7.3%

Pverify 91.2% 6.4% 81.6% 3.1%

Topopt 79.9% 61.3% 18.6%

Fmm 90.8% 84.8% 6.0%

Radiosity 93.5% 85.6% 1.0% 6.8%

Raytrace 78.3% 70.4% 3.3% 4.6%



Paper Pros

● Novel ideas to reduce false-sharing

● Static Analysis

● Techniques help with both performance and scalability!



Paper Cons

● Reordering members of struct may be disallowed

● Can lead to extra memory usage and less locality

● Indirection creates extra overhead

● Static analysis

○ Heuristics are unclear



Conclusion
● False sharing is a silent killer of performance in concurrent programs

● By using static analysis, Jeremiassen and Eggers identify heuristics to 

detect where false sharing occurs and determine how best to fix it

● If locality is not hurt too much, the Group & Transpose, Indirection, and 

Pad & Align transformations can be applied to reduce false sharing

● Performance is demonstrably improved on a variety of benchmarks


