
Title Slide 2
Reducing False Sharing on Shared Memory Multiprocessors

through Compile Time Data Transformations

Tor E. Jeremiassen, Susan J. Eggers
Presented by Tony Bai, Brandon Kayes, Daniel Hoekwater, Thomas Smith

What is false sharing?

● Multiple CPUs, each with their own cache

● Different CPUs using different pieces of data should be able to run

completely in parallel

● False sharing: The different pieces of data end up on the same

cache line, so the CPUs must coordinate whenever either piece of

data is changed
○ A CPU that writes to a falsely shared cache line must invalidate all other

CPUs’ caches

○ Other CPUs will incur cache misses when they try to read the falsely shared

cache line

What is false sharing?
struct {
 int thread_one_data;
 int thread_two_data;
} shared;

void thread_one() {
 for (int i = 0; i < 1000; ++i) {
 ++shared.thread_one_data;
 }
}

void thread_two() {
 for (int i = 0; i < 1000; ++i) {
 printf(“%d\n”, shared.thread_two_data);
 }
}

What is false sharing?

thread_two_data

thread_one_data

Cache line 1

CPU A - thread_one

...

thread_two_data

thread_one_data

Cache line 1

...

store

load

CPU B - thread_two

Group and Transpose
● Physically group per-process data together by changing the layout of data

structures in memory

● If each processor’s data is less than the cache block size, it may be padded

● May also improve spatial locality

typeA Vect1[N]

typeB Vect2[N]

typeC Vect3[N]

struct {
typeA Vect1;
typeB Vect2;
typeC Vect3;
gt_pad1 Padding;

} GTVect[N];
...

= cache block

Indirection
● When it's not physically possible to change the data layout, we can use indirection

○ Pointers are read-only

● Run time overhead
○ additional space for the pointers
○ additional memory access for each reference to the data

typeA Vect1[N]

typeA* Vect1[N]

Buffer0
Buffer1 Buffer2

Buffer3

Pad and Align
● Pads and aligns scalars, array elements, and locks on cache block boundaries

● Increases data set size, so may increase conflict and capacity misses and reduce spatial locality
○ Therefore only pad data structures that lack processor locality, i.e., where the possible loss of spatial

locality is insignificant relative to the savings in false sharing.

typeA Vect1[7] struct {
typeA Vect1[4];
typeA padding[3];
typeA Vect2[3];

} PadVect;
cache line 1 cache line 1 cache line 2

Detecting and Applying Transformations
● Compile-time analysis is used to pinpoint data structures that are susceptible to

false sharing. Approximate memory access pattern is computed.
○ Stage 1: Inter-procedural analysis of the control flow. CFG nodes annotated accordingly.
○ Stage 2: Non-concurrency analysis using barrier synchronization points to determine which

portions of a program can execute in parallel and which cannot.
○ Stage 3: Summary side-effect analysis and static profiling on a per-process basis (based on

the control flow determined in Stage 1) for each phase (determined in Stage 2).

● After static analysis, heuristics were used to determine where to mitigate false

sharing
○ Compare results of the per-process side-effect analysis to profiling information from

simulations that showed the number of false sharing misses per data structure.
○ Transformations applied when reduction in false sharing exceeds any performance loss

from reduced spatial locality

Results

● Evaluated performance for multiple different programs
○ Maxflow - maximum flow in a directed graph
○ Pverify - logical verification
○ Topopt - topological optimization
○ Fmm - fast multipole method
○ Radiosity - equilibrium distribution of light
○ Raytrace - rendering of 3-dimensional scene

○ More: LocusRoute, Mp3d, Pthor, Water

Results - Comparison

Results - Performance Breakdown
Program Total

Reduction
in False
Sharing

Fraction of Reduction by Transformation

Group &
Transpose

Indirection Pad & Align Locks

Maxflow 56.5% 49.2% 7.3%

Pverify 91.2% 6.4% 81.6% 3.1%

Topopt 79.9% 61.3% 18.6%

Fmm 90.8% 84.8% 6.0%

Radiosity 93.5% 85.6% 1.0% 6.8%

Raytrace 78.3% 70.4% 3.3% 4.6%

Paper Pros

● Novel ideas to reduce false-sharing

● Static Analysis

● Techniques help with both performance and scalability!

Paper Cons

● Reordering members of struct may be disallowed

● Can lead to extra memory usage and less locality

● Indirection creates extra overhead

● Static analysis

○ Heuristics are unclear

Conclusion
● False sharing is a silent killer of performance in concurrent programs

● By using static analysis, Jeremiassen and Eggers identify heuristics to

detect where false sharing occurs and determine how best to fix it

● If locality is not hurt too much, the Group & Transpose, Indirection, and

Pad & Align transformations can be applied to reduce false sharing

● Performance is demonstrably improved on a variety of benchmarks

