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Network Programming 

● Reprogrammable network switches enable software defined networking 
(SDN) 

● High-level languages are used to express network design and properties 

● The compiler translates the high-level language constructs to 
hardware-level table-based forwarding rules
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NetKAT: Yet Another Programming Language

● A Verification First language where formal 
verification is built into the language from 
the beginning

● Provides formal semantics for network 
programming based on Kleene Algebra with 
Tests (KAT)

● Verification is performed via a 
semi-automatic equational reasoning in the 
algebraic framework

● Can express both local (switch level) and 
global (across switches/topological) 
behaviors 
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NetKAT Semantics
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Compiling NetKAT

● Global programs are hard to compile since they break switch boundaries

● The compiler must insert and maintain some state for global programs

● Local programs could be converted to forwarding tables easily but this 
approach is inefficient 
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The Local Compiler

● Forwarding Decision Diagrams (FDDs) are 
binary trees where the nodes are tests 
and the leaves are assignments

● Translate NetKAT programs  to FDDs. 
This is sound (Theorem  1)

● The FDDs are in ordered and reduced 
form

● The order of the fields is reflected in the 
order of the rules in the table

proto = http * (dst = 10.0.0.1 * pt ← 1 + dst = 
10.0.0.2 * pt ← 2 )
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The Global Compiler

● The NetKAT automaton is defined on guarded 
strings of form 

pkin * pk1 * dup * pk2
 … * pkout 

● A new PC field tracks the state of the automaton

● All NetKAT programs can be converted to a NetKAT 
automata. This is sound (Theorem 2)

● Textbook determinization and optimization 
techniques can be applied

● Take union of the FDDs of the local programs 
(green blobs in the NA) and treat it as a local 
program!
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Extract the local programs from the 
global program and let the physical 
network provide the links between the 
switches  



Virtualization 

● Virtualization is an abstraction that allows 
programmers to write more concise programs

● Virtual programs are defined against a virtual 
topology decoupling the program from the 
physical topology

● Can target various physical topologies
● Can provide a simple form of traffic isolation at 

the program level
● The compiler now needs to lower the virtual 

program to a specific physical topology
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Big switch virtual topology 



Virtualization

● The compiler gets 
○ a relation R that maps Virtual Ports to Physical ports
○ a virtual topology 
○ sets of in and out ports

● Packets are tracked across the virtual topology and the physical topology

● The fabric is a NetKAT program that updates the location of the packets in the physical 
topology when its location changes in the virtual topology (and vice versa) 

● Challenge: keeping the two locations consistent!

● Solution: a game between V (the program) and F (the fabric). F attempts to keep up with 
V; if it can’t, the physical topology can’t implement the program

● There could be multiple fabrics, each optimizing for different variables (e.g. # of hops, # 
of links)
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Experiments: Compilation Time for Local Compiler

a) compilation time for a data-center size network is okay

b) generating multiple small FDDs first helps

c) FDD ~10x better for the largest group (1k) and participants (300) 
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Experiments: Table Size and Time for Global Programs

a) 30% fewer rules on average (with simple optimizations)

b) Within 2x range of local tables (without minimizing the NetKAT automata)

c) Much slower than local compiler 
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Conclusion and Comments

● A compiler for the full NetKAT language with acceptable compilation time and 
table size overhead

● The concepts used (BDDs and finite automata) are well known and offer many 
optimizations/improvements directions for the compiler

● The formalism and syntax is awkward for FDDs since they need to inductively 
respect the ordering. Compare this to vanilla BDDs.  

● Getting the ordering right is important for BDDs!

● GKAT (POPL’20) brings decision complexity to near-linear (compared to 
NetKAT’s PSPACE) for a fragment of KAT. The automaton optimizations used 
here might not be needed if NetKAT moves to GKAT instead of full KAT.

13



Thank You!

Questions? 
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