
A Fast Compiler For
NetKAT

Steffen Smolka, Spiridon Eliopoulos, Nate Foster, Arjun Guha

Presented By Yonathan Fisseha (Group 28)

Outline

1. Network Programming

2. Introduction to NetKAT

3. Compiler Challenges for NetKAT

4. The Local Compiler

5. The Global Compiler

6. Virtualization

7. Experiments

8. Comments

2

Network Programming

● Reprogrammable network switches enable software defined networking
(SDN)

● High-level languages are used to express network design and properties

● The compiler translates the high-level language constructs to
hardware-level table-based forwarding rules

3

NetKAT: Yet Another Programming Language

● A Verification First language where formal
verification is built into the language from
the beginning

● Provides formal semantics for network
programming based on Kleene Algebra with
Tests (KAT)

● Verification is performed via a
semi-automatic equational reasoning in the
algebraic framework

● Can express both local (switch level) and
global (across switches/topological)
behaviors

4

NetKAT Semantics

5

Compiling NetKAT

● Global programs are hard to compile since they break switch boundaries

● The compiler must insert and maintain some state for global programs

● Local programs could be converted to forwarding tables easily but this
approach is inefficient

6

The Local Compiler

● Forwarding Decision Diagrams (FDDs) are
binary trees where the nodes are tests
and the leaves are assignments

● Translate NetKAT programs to FDDs.
This is sound (Theorem 1)

● The FDDs are in ordered and reduced
form

● The order of the fields is reflected in the
order of the rules in the table

proto = http * (dst = 10.0.0.1 * pt ← 1 + dst =
10.0.0.2 * pt ← 2)

7

The Global Compiler

● The NetKAT automaton is defined on guarded
strings of form

pkin * pk1 * dup * pk2
 … * pkout

● A new PC field tracks the state of the automaton

● All NetKAT programs can be converted to a NetKAT
automata. This is sound (Theorem 2)

● Textbook determinization and optimization
techniques can be applied

● Take union of the FDDs of the local programs
(green blobs in the NA) and treat it as a local
program!

8

Extract the local programs from the
global program and let the physical
network provide the links between the
switches

Virtualization

● Virtualization is an abstraction that allows
programmers to write more concise programs

● Virtual programs are defined against a virtual
topology decoupling the program from the
physical topology

● Can target various physical topologies
● Can provide a simple form of traffic isolation at

the program level
● The compiler now needs to lower the virtual

program to a specific physical topology

9

Big switch virtual topology

Virtualization

● The compiler gets
○ a relation R that maps Virtual Ports to Physical ports
○ a virtual topology
○ sets of in and out ports

● Packets are tracked across the virtual topology and the physical topology

● The fabric is a NetKAT program that updates the location of the packets in the physical
topology when its location changes in the virtual topology (and vice versa)

● Challenge: keeping the two locations consistent!

● Solution: a game between V (the program) and F (the fabric). F attempts to keep up with
V; if it can’t, the physical topology can’t implement the program

● There could be multiple fabrics, each optimizing for different variables (e.g. # of hops, #
of links)

10

Experiments: Compilation Time for Local Compiler

a) compilation time for a data-center size network is okay

b) generating multiple small FDDs first helps

c) FDD ~10x better for the largest group (1k) and participants (300)
11

Experiments: Table Size and Time for Global Programs

a) 30% fewer rules on average (with simple optimizations)

b) Within 2x range of local tables (without minimizing the NetKAT automata)

c) Much slower than local compiler
12

Conclusion and Comments

● A compiler for the full NetKAT language with acceptable compilation time and
table size overhead

● The concepts used (BDDs and finite automata) are well known and offer many
optimizations/improvements directions for the compiler

● The formalism and syntax is awkward for FDDs since they need to inductively
respect the ordering. Compare this to vanilla BDDs.

● Getting the ordering right is important for BDDs!

● GKAT (POPL’20) brings decision complexity to near-linear (compared to
NetKAT’s PSPACE) for a fragment of KAT. The automaton optimizations used
here might not be needed if NetKAT moves to GKAT instead of full KAT.

13

Thank You!

Questions?

14

Yonathan Fisseha
yonathan@umich.edu

