
Exploiting Superword Level Parallelism (SLP)
with Multimedia Instruction Sets

Presented by:
Group 16 - Joel Harrison, Owen Hoffend, Rohan Naik, Daniel Wan

Larsen, S., & Amarasinghe, S. (2000). Exploiting Superword Level Parallelism with Multimedia
Instruction Sets. SIGPLAN Not., 35(5), 145–156.

Table of Contents

1. Introduction

SIMD instructions & Vectorization

Motivation for SLP

SLP Example

2. SLP Vectorization Algorithm

High-Level Overview

Detailed Description

3. Results

% of Dynamic Instructions Eliminated

Strengths/Weaknesses & Future Work

Introduction - SIMD & Vectorization
● SIMD Instructions: Single Instruction, Multiple Data

○ Hardware feature for parallel execution (ex: Intel’s Advanced Vector Extensions, AVX)

○ Execute same op on a vector of values, write back a vector a values

● Vectorization:
○ Process of exposing SIMD execution opportunities

○ Auto-vectorization: Vectorization performed by compiler

Vectorized Code

C0 = A0 + B0

C1 = A1 + B1

C2 = A2 + B2

C3 = A3 + B3

Sequential Code

A0 A1 A2 A3

B0 B1 B2 B3

A0+B0 A1+B1 A2+B2 A3+B3

C[0:3] = A[0:3] +vec B[0:3]

op=vec_add

SIMD Hardware

Introduction - Why SLP?

Auto-Vectorization was failing because...

● Vectorization was done on a case-by-case basis

● Often failed to vectorize complex code

● Required complex loop optimizations

SLP Vectorization set out to...

● Generalize the vectorization process

● Identify more parallelization opportunities

● Keep the algorithm simple and robust

● Operate at the Basic Block level

Original Loop:

Loop after scalar expansion
and loop fission

Vectorizable

NOT Vectorizable

SLP Example: Uncovering SLP via Loop Unrolling

● SLP alg. operates at BB level, but loop unrolling helps
○ Unrolled instrs tend to have the same ops

○ Also tends to expose adjacent references

● Can pack groups of instructions w/ same ops

● Pack operands using special HW instructions

pack()/unpack()

Original Loop:

After Unrolling:

for (i=0; i<16; i+=4){
 localdiff0 = ref[i+0] - curr[i+0];
 localdiff1 = ref[i+1] - curr[i+1];
 localdiff2 = ref[i+2] - curr[i+2];
 localdiff3 = ref[i+3] - curr[i+3];

 diff0 += abs(localdiff0);
 diff1 += abs(localdiff1);
 diff2 += abs(localdiff2);
 diff3 += abs(localdiff3);
}

for (i=0; i<16; i+=4){
 localdiff = ref[i] - curr[i];
 diff += abs(localdiff);
}

for (i=0; i<16; i+=4){
 curr_v = pack(curr[i+0:i+3]);
 ref_v = pack(ref[i+0:i+3]);
 localdiff_v = curr_v - ref_v; //SIMD
 diff_v += abs(localdiff_v); //SIMD (couldn’t do this before)
}

Vectorized Pseudocode

SLP Vectorization Algorithm Overview

Overall algorithm for performing SLP vectorization is:

1. Perform Loop Unrolling

2. Memory Alignment Analysis for each BB
○ Want to find adjacent references: A[i], A[i+1]

○ Often profitable to vectorize these (data locality)

○ Create a “PackSet” that holds pairs of adjacent refs in BB

3. Extend the PackSet:
○ Merge pairs of adjacent refs

○ Add independent isomorphic instrs from the BB

○ Isomorphic = Same ops, same order. Can be packed.

4. Schedule vector instrs from the set following DU chains

BBn

dest[i+0] = a + e * src[i+0];
dest[i+1] = b + f * src[i+1];
dest[i+2] = c + g * src[i+2];
dest[i+3] = d + h * src[i+3];

Isomorphic Instructions

dest2[i+0] = a + e * dest[i+0];
dest2[i+1] = (b + f) * dest[i+1];
dest2[i+2] = c * g + dest[i+2];
dest2[i+3] = d * (h + dest[i+3]);

NOT Isomorphic Instructions

Building the PackSet

● Within a BB: Find the set of pairs of adjacent isomorphic

instructions, s.t. each instr appears at most twice (once as a “top”

and again as a “bottom”)

○ Register-only ops are always adjacent

● Combine pairs into larger groups

● “Top” of one pair must equal “Bottom” of other pair

 (BBn) PackSet Groups

(1) b = a[i]
e = a[i+1]
h = a[i+2]

(2) d = b+c
g = e+f
k = h+j

(1) b = a[i]
e = a[i+1]

(2) e = a[i+1]
h = a[i+2]

(3) d = b+c
g = e+f

(4) g = e+f
k = h+j

BBn PackSet (pairs)BBn (instrs)
b = a[i]
d = b+c
e = a[i+1]
g = e+f
h = a[i+2]
k = h+j

Scheduling

● Packing and unpacking SIMD vectors is costly

● Rough speedup measure:

● Key Idea: Schedule groups following DU chains

● Reduces the required number of packs/upacks.

○ Results of previous SIMD ops will be ready in a SIMD register

 (BBn) PackSet Groups

(1) b = a[i]
e = a[i+1]
h = a[i+2]

(2) d = b+c
g = e+f
k = h+j

(BBn) Vectorized Schedule
a_v = pack(a[i+0:i+2])
beh_v = a_v //SIMD op
cfj_v = pack(c, f, j)
dgk_v = beh_v + cfj_v //SIMD op
d, g, k = unpack(dgk_v)

Scheduling Continued

● Schedule statements by original order (when possible)

○ Only after all dependencies have been fulfilled

● For cycle, split apart group with earliest statement

x = a[i+0] + k1
y = a[i+1] + k2
z = a[i+2] + s

q = b[i+0] + y
r = b[i+1] + k3
s = b[i+2] + k4

Simple Vectorizing Compiler

● Simplified version of SLP

● Limit packing to unrolled version of same statement

￮ Only one possible grouping for each statement

● Not great for long vector architectures

￮ Unroll factor has to be consistent with vector size

￮ Unrolling could make basic blocks that overwhelm the

analysis and code generator

Results

● Measured % of dynamic instructions eliminated for a theoretical

datapath
○ Need n - 1 instructions to move n values into SIMD register

○ Measured by instrumenting code w/counters

● Benchmarks consisted of both scientific and multimedia

applications
○ SPEC95fp suite for scientific benchmarks

○ Variety of kernels for multimedia benchmarks, including matrix

multiplication and RGB to YUV conversion

● 20-70% of dynamic instructions eliminated for most benchmarks,

fairly evenly distributed

Results

● Significant correlation between instructions eliminated and code
w/vector components
○ Most instructions saved were vector operations, fewer instructions

saved w/analysis of general loop parallelism
● Multimedia generally showed more instruction elimination

○ Most obvious is RGB to YUV conversion

Results

● Also measured performance on a microprocessor supporting the

AltiVec instruction set
○ Many benchmarks required double precision floats, which the processor

did not have support for

○ Limited set of benchmarks for real-world performance

● Measured performance speedup with parallelized vs unparalleled code

Strengths/Weaknesses & Future Work
Weaknesses:

● Paper written in 2000 (SSE2 introduced in 2000)
■ Support for double precision floats

● Inflexible - SIMD viewed as something mostly for multimedia
○ Lots of matrix multiplication

○ No support for moving data between register files

○ Not all HW supports the required packing/unpacking instructions

● Compiler is still not robust
○ Small source modifications greatly affect parallelism extracted

○ Hard to determine safety

■ Loop-carried dependencies, especially for memory

● Some optimizations are language-specific

Strengths/Weaknesses & Future Work

Strengths:

● Achieved substantial dynamic instruction count reduction on many

benchmarks

● Much better support for SIMD today
○ Many instructions in SSE/AVX that support packing of different sizes

○ Support for more data types

Future Work:

● Hard to extend SLP parallelism beyond basic blocks
○ Couldn’t find in LLVM - Our project focuses on this issue

○ Key idea: Use profile data to build superblocks, then SLP vectorize within them

Questions?

