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Introduction

Design ExperimentIntroduction Motivation

• Memory System:
∙ Cache: 

Fast but relatively small in capacity;

∙ Permanent storage: 

Large but relatively slow in speed;

• Machine Learning (ML):
∙ Improves decision making;

• Cache Management + Machine Learning:
∙ Improves performance.
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• LRU-Friendly
∙ Best handled by the least recently used (LRU) caching algorithm;

• LFU-friendly 
∙ Best handled by the least frequently used (LFU) caching algorithm;

• Scan 
∙ A subset of stored items are accessed exactly once;

• Churn 
∙ Repeated accesses to a subset of stored items with equal probability.
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• Caching algorithms handling of workload primitive types:

Workload Primitives
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Algorithm Churn Scan LRU LFU

ARC [3]
✗ ✓ ✓ ✗

LIRS [4]
✗ ✓ ✗ ✗

DLIRS [5]
✗ ✓ ✓ ✗

LeCaR [2] ✓ ✗   ✓ ✓



• ML-Based: Reinforcement Learning On Cache Replacement [2]

∙ Simple: LRU, LFU as experts;

∙ Adaptive: Update weights;

∙ Outperforms state-of-the-art: Small cache sizes.

LeCaR: Introduction
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• Fixed Learning Rate:
∙ Empirically chosen: 0.45.

LeCaR: Limitations
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• Cannot Handle Scan:

LeCaR: Limitations
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Algorithm Churn Scan LRU LFU

ARC ✗ ✓ ✓ ✗

LIRS ✗ ✓ ✗ ✗

DLIRS ✗ ✓ ✓ ✗

LeCaR ✓ ✗   ✓ ✓



CACHEUS: Solutions
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• Adaptive learning rate;

• Improve experts:
∙ Introduce scan resistance

■ Replace LRU: ARC/LIRS/DLIRS 

-> Failed

■ Scan resistant LRU: SR-LRU 

∙ Improve churn resistance

■ Churn resistant LFU: CR-LFU

P1 P2 . . . Pk

Expert A Expert B

Cacheus

Systems

Update 
expert’s 
weight 
upon 

feedback

 W_A  W_B



• Cache partitioning: similar to ARC and LIRS.
∙ Partition Reuse (R): 

■ Items with multiple accesses;

∙ Partition Scan Resistance (SR): 

■ Single access items;

■ Older items with multiple accesses.

• Why Partition SR?
∙ MRU evicts the previously inserted page placed at the top of the stack;

∙ SR Houses new items so that they don’t affect important items in R;

∙ SR allows SR-LRU to be scan resistant.

Design

SR-LRU: Cache Partitioning
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MRU: Most Recently Used
LRU: Least Recently Used



• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of SR;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of R;

• Hit in Cache R:

∙ Move x to the MRU position of R;

• Hit in Cache SR:

∙ Move x to the MRU position of R;

Design

SR-LRU: Algorithm Explained
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• Miss in Cache + Miss in History:
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• Scan + LFU-Load: Left;
∙ A performance increase in small cache sizes;

• Scan + LRU-Load: Right.
∙ A performance increase in small cache sizes;

Design

SR-LRU: Evaluation
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• Cache partitioning: 
∙ Partition by Frequency (MFU/LFU): 

■ Cache partitioned by frequency of use;

∙ Ordered by Recency (MRU/LRU): 

■ Each partition maintaining recent uses.

• Why Frequency + Recency?
∙ LRU repeatedly inserted and evicted items into/from the cache 

if #accessed > cache size;

∙ LFU assigns equal importance to all items with the same frequency;

∙ CR-LFU Chooses the MRU item to break ties when several LFU.

Design

CR-LFU: Cache Partitioning
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MRU: Most Recently Used
LRU: Least Recently Used

MFU: Most Frequently Used
LFU: Least Frequently Used



• Miss in Cache + Miss in History:
∙ Evict x at the MRU position of LFU;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of MFU;

• Hit in Cache MFU:

∙ Move x to the MRU position of MFU;

• Hit in Cache LFU:

∙ Move x to theMRU position of MFU;

Design

CR-LFU: Algorithm Explained
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• Miss in Cache + Miss in History:
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CR-LFU: Algorithm Explained
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Design

CR-LFU: Evaluation
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• Pure Churn: Left;
∙ Avg Performance Increase: 8.67%;

• Churn + LRU-Load: Right.
∙ Avg Performance Increase: 3.83%;

LRU-friendly
Churn



Experiment

Experiments
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Dataset #Traces

FLU 184

MSR 22

CloudPhysics 99

CloudVPS 18

CloudCache 6

Total 329

• Datasets: 5 different sources;

• Cache size: 0.05, 0.1, 0.5, 1,5, 10%;

• Comparison:

∙ 3 CACHEUS  variants:

■ (ARC, LFU)

■ (LIRS, LFU)

■ (SR-LRU, CR-LFU)

∙ 6 baselines: 

■ LRU, LFU, ARU, LIRS, LeCaR, DLIRS

• Total experiments: 17,766



Experiment

CACHEUS: Evaluation
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Figure: CACHEUS (ARC, LFU) vs.others

Figure: CACHEUS (LIRS,LFU) vs.others

Figure: CACHEUS (SR-LRU,CR-LFU) vs.others

• Paired t-test analysis;

• Significance:

∙ P-value: threshold of 0.05;

∙ Green: CACHEUS  variant significantly better;

∙ Red: CACHEUS  variant significantly worse;

∙ Gray: no significant difference;

• Effective size:

∙ Cohen’s d-measure;

∙ Bright color: high effective size.



Experiment

CACHEUS: Statistical Analysis
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Figure: CACHEUS (ARC, LFU) vs.others

Figure: CACHEUS (LIRS,LFU) vs.others

Figure: CACHEUS (SR-LRU,CR-LFU) vs.others

• CHACHEUS Variants:

∙ (SR-LRU, CR-LFU) is distinctly the best;

• Results:

∙ Best in 47%;

∙ Worse in 13%;

∙ Insignificant in 40%;

∙ Effective size [-0.31, 1.08] .



Experiment

Conclusion
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• Cache Management + Machine Learning:

∙ Improves performance;

• Workload primitive types:

∙ LRU-friendly, LFU-friendly, Churn, Scan;

• CACHEUS: Improved Cache replacement algorithm:

∙ Adaptive learning rate;

∙ Improved experts: SR-LRU and CR-LFU;

∙ Comprehensive evaluations;

∙ Outstanding performance.
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