
Learning Cache Replacement
with CACHEUS [1]

Group 15, EECS 583, Fall 2021

Jiachen Liu, Linyi Jin, Ziqiao Ma, Wanqi Liang
(In Speaking Order)

Dec 6th, 2021

Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao, Giri Narasimhan
USENIX Conference on File and Storage Technologies (FAST 21), 2021.

Introduction

Design ExperimentIntroduction Motivation

• Memory System:
∙ Cache:

Fast but relatively small in capacity;

∙ Permanent storage:

Large but relatively slow in speed;

• Machine Learning (ML):
∙ Improves decision making;

• Cache Management + Machine Learning:
∙ Improves performance.

CPU
Register

Cache

Main Memory
Cache

Disk
Local / Remote

SpeedSi
ze

☆

• LRU-Friendly
∙ Best handled by the least recently used (LRU) caching algorithm;

• LFU-friendly
∙ Best handled by the least frequently used (LFU) caching algorithm;

• Scan
∙ A subset of stored items are accessed exactly once;

• Churn
∙ Repeated accesses to a subset of stored items with equal probability.

Workload Primitives

Design ExperimentIntroduction Motivation

• Caching algorithms handling of workload primitive types:

Workload Primitives

Introduction Motivation Design Experiment

Algorithm Churn Scan LRU LFU

ARC [3]
✗ ✓ ✓ ✗

LIRS [4]
✗ ✓ ✗ ✗

DLIRS [5]
✗ ✓ ✓ ✗

LeCaR [2] ✓ ✗ ✓ ✓

• ML-Based: Reinforcement Learning On Cache Replacement [2]

∙ Simple: LRU, LFU as experts;

∙ Adaptive: Update weights;

∙ Outperforms state-of-the-art: Small cache sizes.

LeCaR: Introduction

Introduction Motivation Design Experiment

LeCaR

Cache

H_LRU H_LFUHistory

LRU

LFU

W_LRU

W_LFU

• Fixed Learning Rate:
∙ Empirically chosen: 0.45.

LeCaR: Limitations

Introduction Motivation Design Experiment

• Cannot Handle Scan:

LeCaR: Limitations

Introduction Motivation Design Experiment

Algorithm Churn Scan LRU LFU

ARC ✗ ✓ ✓ ✗

LIRS ✗ ✓ ✗ ✗

DLIRS ✗ ✓ ✓ ✗

LeCaR ✓ ✗ ✓ ✓

CACHEUS: Solutions

Introduction Motivation Design Experiment

• Adaptive learning rate;

• Improve experts:
∙ Introduce scan resistance

■ Replace LRU: ARC/LIRS/DLIRS

-> Failed

■ Scan resistant LRU: SR-LRU

∙ Improve churn resistance

■ Churn resistant LFU: CR-LFU

P1 P2 . . . Pk

Expert A Expert B

Cacheus

Systems

Update
expert’s
weight
upon

feedback

 W_A W_B

• Cache partitioning: similar to ARC and LIRS.
∙ Partition Reuse (R):

■ Items with multiple accesses;

∙ Partition Scan Resistance (SR):

■ Single access items;

■ Older items with multiple accesses.

• Why Partition SR?
∙ MRU evicts the previously inserted page placed at the top of the stack;

∙ SR Houses new items so that they don’t affect important items in R;

∙ SR allows SR-LRU to be scan resistant.

Design

SR-LRU: Cache Partitioning

Introduction Motivation Experiment

MRU: Most Recently Used
LRU: Least Recently Used

• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of SR;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of R;

• Hit in Cache R:

∙ Move x to the MRU position of R;

• Hit in Cache SR:

∙ Move x to the MRU position of R;

Design

SR-LRU: Algorithm Explained

Introduction Motivation Experiment

• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of SR;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of R;

• Hit in Cache R:

∙ Move x to the MRU position of R;

• Hit in Cache SR:

∙ Move x to the MRU position of R;

Design

SR-LRU: Algorithm Explained

Introduction Motivation Experiment

• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of SR;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of R;

• Hit in Cache R:

∙ Move x to the MRU position of R;

• Hit in Cache SR:

∙ Move x to the MRU position of R;

Design

SR-LRU: Algorithm Explained

Introduction Motivation Experiment

• Scan + LFU-Load: Left;
∙ A performance increase in small cache sizes;

• Scan + LRU-Load: Right.
∙ A performance increase in small cache sizes;

Design

SR-LRU: Evaluation

Introduction Motivation Experiment

LFU-friendly LRU-friendly
Scan

• Cache partitioning:
∙ Partition by Frequency (MFU/LFU):

■ Cache partitioned by frequency of use;

∙ Ordered by Recency (MRU/LRU):

■ Each partition maintaining recent uses.

• Why Frequency + Recency?
∙ LRU repeatedly inserted and evicted items into/from the cache

if #accessed > cache size;

∙ LFU assigns equal importance to all items with the same frequency;

∙ CR-LFU Chooses the MRU item to break ties when several LFU.

Design

CR-LFU: Cache Partitioning

Introduction Motivation Experiment

MRU: Most Recently Used
LRU: Least Recently Used

MFU: Most Frequently Used
LFU: Least Frequently Used

• Miss in Cache + Miss in History:
∙ Evict x at the MRU position of LFU;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of MFU;

• Hit in Cache MFU:

∙ Move x to the MRU position of MFU;

• Hit in Cache LFU:

∙ Move x to theMRU position of MFU;

Design

CR-LFU: Algorithm Explained

Introduction Motivation Experiment

• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of LFU;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of MFU;

• Hit in Cache MFU:

∙ Move x to the MRU position of MFU;

• Hit in Cache LFU:

∙ Move x to theMRU position of MFU;

Design

CR-LFU: Algorithm Explained

Introduction Motivation Experiment

• Miss in Cache + Miss in History:
∙ Insert new item to the MRU position of LFU;

• Miss in Cache + Hit in History:

∙ Move x to the MRU position of MFU;

• Hit in Cache MFU:

∙ Move x to the MRU position of MFU;

• Hit in Cache LFU:

∙ Move x to theMRU position of MFU;

Design

CR-LFU: Algorithm Explained

Introduction Motivation Experiment

Design

CR-LFU: Evaluation

Introduction Motivation Experiment

• Pure Churn: Left;
∙ Avg Performance Increase: 8.67%;

• Churn + LRU-Load: Right.
∙ Avg Performance Increase: 3.83%;

LRU-friendly
Churn

Experiment

Experiments

Introduction Motivation Design

Dataset #Traces

FLU 184

MSR 22

CloudPhysics 99

CloudVPS 18

CloudCache 6

Total 329

• Datasets: 5 different sources;

• Cache size: 0.05, 0.1, 0.5, 1,5, 10%;

• Comparison:

∙ 3 CACHEUS variants:

■ (ARC, LFU)

■ (LIRS, LFU)

■ (SR-LRU, CR-LFU)

∙ 6 baselines:

■ LRU, LFU, ARU, LIRS, LeCaR, DLIRS

• Total experiments: 17,766

Experiment

CACHEUS: Evaluation

Introduction Motivation Design

Figure: CACHEUS (ARC, LFU) vs.others

Figure: CACHEUS (LIRS,LFU) vs.others

Figure: CACHEUS (SR-LRU,CR-LFU) vs.others

• Paired t-test analysis;

• Significance:

∙ P-value: threshold of 0.05;

∙ Green: CACHEUS variant significantly better;

∙ Red: CACHEUS variant significantly worse;

∙ Gray: no significant difference;

• Effective size:

∙ Cohen’s d-measure;

∙ Bright color: high effective size.

Experiment

CACHEUS: Statistical Analysis

Introduction Motivation Design

Figure: CACHEUS (ARC, LFU) vs.others

Figure: CACHEUS (LIRS,LFU) vs.others

Figure: CACHEUS (SR-LRU,CR-LFU) vs.others

• CHACHEUS Variants:

∙ (SR-LRU, CR-LFU) is distinctly the best;

• Results:

∙ Best in 47%;

∙ Worse in 13%;

∙ Insignificant in 40%;

∙ Effective size [-0.31, 1.08] .

Experiment

Conclusion

Introduction Motivation Design

• Cache Management + Machine Learning:

∙ Improves performance;

• Workload primitive types:

∙ LRU-friendly, LFU-friendly, Churn, Scan;

• CACHEUS: Improved Cache replacement algorithm:

∙ Adaptive learning rate;

∙ Improved experts: SR-LRU and CR-LFU;

∙ Comprehensive evaluations;

∙ Outstanding performance.

[1] Learning Cache Replacement with CACHEUS [Paper] [Code] [Video]
Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao, Giri Narasimhan
USENIX Conference on File and Storage Technologies (FAST 21), 2021.

[2] Driving Cache Replacement with ML-based LeCaR
Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, Giri Narasimhan
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 18), 2018.

[3] ARC: A Self-tuning, Low Overhead Replacement Cache
N. Megiddo, D. S. Modha
USENIX Conference on File and Storage Technologies (FAST 03), 2003.

[4] LIRS: An Efficient Low Inter-reference Recency Set Replacement Policy to Improve Buffer Cache Performance
S. Jiang and X. Zhang
ACM Sigmetrics Conference (SIGMETRICS 02), 2002.

[5] DLIRS: Improving low inter-reference recency set cache replacement policy with dynamics
C. Li
11th ACM International Systems and Storage Conference (SYSTOR 18), 2018.

[6] ACME: Adaptive caching using multiple experts
I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A. Brandt, D. D. Long
WDAS, 2002.

References

https://www.usenix.org/system/files/fast21-rodriguez.pdf
https://github.com/sylab/cacheus
https://www.usenix.org/conference/fast21/presentation/rodriguez

