
Improved Basic
Block Reordering[1]

Andy Newell and Sergey Pupyrev

Group 20: Zijian Zhang, Huiruo Zou,
Yunhao Wang, Zhaoyuan Zhang

Overview
1. Introduction
2. Approach
3. Related Work
4. Optimization Model
5. ExtTSP
6. Heuristic Algorithm
7. Evaluation
8. Limitations and Potential Future Directions
9. References

10. Q & A

Introduction
PGO: Profile-Guided Binary Optimization

● Function and Basic Block Reordering
● Identical Code Folding
● Function Inlining
● Unreachable Code Elimination
● Register Allocation
● ……

Introduction
Current techniques for basic block reordering:

● increasing the average number of instructions
executed per cache line

● reducing the number of mispredicted branches
● minimizing cache line conflicts

This paper:

Design and implement an algorithm reordering
basic blocks layouts in memory that directly
optimizes the performance of an application.

* colored according to their hotness in the profile

Approach
(1) Learn a proxy metric that describes the relationship between the

performance of a binary and the ordering of its basic blocks.
(a) identifying a set of features representing how basic block ordering can influence

performance,
(b) collecting training data by running extensive experiments and measuring the

performance, and
(c) using machine learning to select the best combination of the features for a score that

best predicts CPU performance.

(2) Suggest an efficient algorithm that, given a control flow graph for a
procedure, builds an improved ordering of the basic blocks optimizing the
learned metric.

Related Work
Pettis and Hansen[2]:

● Basis for the majority of modern code reordering techniques.
● An approach greedily merges chains of functions and is designed to

primarily reduce ITLB misses.

Most of the existing works focus on field reordering and structure splitting
based on the field hotness and data affinities.

Optimization Model - Basic Block Reordering

● Position blocks so that the hottest successor
of a block will most likely be a fall-through
branch, that is, located right next to the
predecessor in memory layout. (B0-B1-B2)

● Reduces the number of taken branches and
the working set size of the I-cache, while
relieving pressure from the branch predictor
unit. (Order 1. to 2.)

1.

2.

* colored according to their hotness in the profile

Optimization Model - Data Collection
● Extract a weighted directed control flow graph for

every function in the profiled binary.
● Vertices (basic blocks) and Edges (branches) of the

graph are extracted via the BOLT infrastructure, which
is based on LLVM.

● Weights between the basic blocks correspond to the
total number of times the jumps appear in collected
Last Branch Records (LBR), a list of the last 16 taken
branches, in Intel X86 processor.

* colored according to their hotness in the profile

Optimization Model - TSP

Reordering Problem Formulation: TRAVELING SALESMAN PROBLEM (TSP)

Definition: Given a directed control flow graph comprising of basic blocks and
frequencies of jumps between the blocks, find an ordering of the blocks such that
the number of fall-through jumps is maximized.

TSP score:

Where w(s,t) is the frequency and len(s, t) is the jump length from branch s to t.

*jump length: the distance (in bytes) between the end of the source block to the beginning of the target
block

Optimization Model - More Characteristics

The performance might also depend on other characteristics of a branch, which are NOT
included in TSP.

● The length of a jump impacts the performance of instruction caches.
● The direction of a branch plays a role for branch
● The branches can be classified into unconditional (if the out-degree is one) and

conditional (if the out-degree is two)

We need a new score to include these characteristics!

 ExtTSP

ExtTSP
As for scoring the ordering, we also need to consider some characteristics of branch

1. w(s,t): the frequency of branch s ➡ t
2. 0 ≤ Ks,t≤ 1: the weight coefficient modeling the relative importance of the branch

optimization
a. Six categories

i. Conditional and Unconditional of fall-through, forward, and backward
3. hs,t : a function accounts for the importance of branch length

a. 1 for zero-length jumps
b. 0 for jumps exceeding a prescribed length
c. Monotonically decreased between these two values

Learning Parameters
The parameters for ExtTSP cannot be decided manually

● Run experiments on:
○ Clang and HipHop Virtual Machine (HHVM)

● Each experiment consists of:
○ Constructing A distinct ordering of BB
○ Running a binaring
○ Measuring performance metrics vis the Linux perf tool

● This paper evaluated 50 distinct block orderings and conducted 250 exp.
(5 different algorithms).

● Trying to find the parameters that have the highest correlation with the
performance.

Learning Parameters
● After combining

similar weights(diff<
0.05) and excluding
small values(value <
0.05)

● Here is the final
unified model

Heuristic for Basic Block Reordering in Memory
Greedy Heuristic

Step 1: Initialize Chains

Heuristic for Basic Block Reordering in Memory
Greedy Heuristic

Step 2: Iterate through all pairs of Chains

Heuristic for Basic Block Reordering in Memory
Greedy Heuristic

Step 3: Compute Merge Gain

Heuristic for Basic Block Reordering in Memory
Greedy Heuristic

Step 4: Merge the pair of Chains with highest ExtTSP Gain

Evaluation
perf on HipHop Virtual Machine(HHVM) - reduction rate of misses

Evaluation
Performance Improvement - Clang and GCC

Evaluation
Perf - reduction of misses

(with/without PGO)

Limitations & Potential Future Directions
● Limitations

1. Many complementary optimizations are not investigated in detail.

2. The measurable gains from the heuristics algorithm is only produced within the scope of each
individual function.

● Potential Future Directions

1. Integrate complementary optimizations into the algorithm, such as checking unrolling loops and/or
duplicating blocks to avoid extra jumps.

2. After doing further research, the refinement of the heuristics algorithm can probably take
advantage of the cross-procedure reordering[3].

References
[1] A. Newell and S. Pupyrev. “Improved Basic Block Reordering.” IEEE
Transactions on Computers, vol. 69, no. 12, 2020, pp. 1784–1794.

[2] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in

 SIGPLAN Notices, vol. 25, no. 6. ACM, 1990, pp. 16–27.

[3] J. Torrellas, C. Xia, and R. L. Daigle, “Optimizing the instruction

cache performance of the operating system,” IEEE Transactions on

Computers, vol. 47, no. 12, pp. 1363–1381, 1998.

Q&A Group 20: Zijian Zhang, Huiruo Zou, Yunhao
Wang, Zhaoyuan Zhang

Improved Basic Block Reordering[1]

Andy Newell and Sergey Pupyrev

