
1

Improved Basic Block Reordering
Andy Newell and Sergey Pupyrev

Abstract—Basic block reordering is an important step for profile-guided binary optimization. The state-of-the-art goal for basic block
reordering is to maximize the number of fall-through branches. However, we demonstrate that such orderings may impose suboptimal
performance on instruction and I-TLB caches. We propose a new algorithm that relies on a model combining the effects of fall-through
and caching behavior. As details of modern processor caching is quite complex and often unknown, we show how to use machine
learning in selecting parameters that best trade off different caching effects to maximize binary performance.
An extensive evaluation on a variety of applications, including Facebook production workloads, the open-source compilers Clang and
GCC, and SPEC CPU benchmarks, indicate that the new method outperforms existing block reordering techniques, improving the
resulting performance of applications with large code size. We have open sourced the code of the new algorithm as a part of a post-link
binary optimization tool, BOLT.

Index Terms—Code generation, Code layout, Optimizing compilers, Profile-guided optimizations, Graph algorithms

F

1 INTRODUCTION

P ROFILE-guided binary optimization (PGO) is an impor-
tant step for improving performance of large-scale ap-

plications that tend to contain huge amounts of code. Such
techniques, also known as feedback-driven optimization
(FDO), are designed to improve code locality which leads
to better utilization of CPU instruction caches. In practice
tools like AutoFDO [1], Ispike [2], PLTO [3], HFSort [4], and
BOLT [5] speed up binaries by 5% − 15% depending on
workload and CPU architecture, and thus, are widely used
for a variety of complex applications.

PGO is comprised of a number of optimization passes
such as function and basic block reordering, identical code
folding, function inlining, unreachable code elimination,
register allocation, and others. Typical targets for optimiza-
tions are an instruction cache (I-cache) used to hold exe-
cutable instructions and a translation lookaside buffer (I-
TLB) used to speed up virtual-to-physical address transla-
tion for instructions. The reordering passes directly optimize
code layout, and thus impact performance the most [2], [5].
Therefore, even small improvements in the underlying al-
gorithms for code reordering significantly affect the benefit
of PGO tools.

Current techniques for basic block reordering optimize a
specific dimension of CPU performance such as (i) cache line
utilization by increasing the average number of instructions
executed per cache line, (ii) the branch predictor by reducing
the number of mispredicted branches, and (iii) the instruc-
tion cache miss rate by minimizing cache line conflicts. An
application’s overall performance depends on a combina-
tion of these dimensions. Since modern processors employ
a complex and often non-disclosed strategy for execution, it
is challenging to consider all of these effects at once when
optimizing an ordering of basic blocks. In this paper, we make
the first, to the best of our knowledge, attempt to design and
implement a block reordering algorithm that directly optimizes

• A. Newell is with Facebook, Inc., Menlo Park, CA, USA.
E-mail: newella@fb.com

• S. Pupyrev is with Facebook, Inc., Menlo Park, CA, USA.
E-mail: spupyrev@fb.com

the performance of an application.
Our approach consists of two main steps. Firstly, we

learn a proxy metric that describes the relationship between
the performance of a binary and the ordering of its basic
blocks. This is achieved by (i) identifying a set of features
representing how basic block ordering can influence per-
formance, (ii) collecting training data by running extensive
experiments and measuring the performance, and (iii) us-
ing machine learning to select the best combination of the
features for a score that best predicts CPU performance. Sec-
ondly, we suggest an efficient algorithm that, given a control
flow graph for a procedure, builds an improved ordering of
the basic blocks optimizing the learned metric. Since the
constructed metric correlates highly with the performance
of a binary, we observe overall efficiency gains, despite
possible regressions of individual CPU characteristics.

The contributions of the paper are the following.
• We identify an opportunity for improvement over the

classical approach for basic block reordering, initiated
by Pettis and Hansen [6]. Then we extend the model and
suggest a new optimization problem with the objective
closely related to the performance of a binary.

• We then develop a new practical algorithm for basic
block reordering. The algorithm relies on a greedy
technique for solving the optimization problem. We
describe the details of our implementation, which scales
to real-world instances without significant impact on the
running time of a binary optimization tool.

• We propose a Mixed Integer Programming formulation
for the aforementioned optimization problem, which is
capable of finding optimal solutions on small functions.
Our experiments with the exact method demonstrate
that the new suggested heuristic finds an optimal or-
dering of basic blocks in 98% of real-world functions
with 30 or fewer blocks.

• Finally, we extensively evaluate the new algorithm on a
variety of applications, including Facebook production
workloads, open-source compilers, Clang and GCC, and
SPEC CPU 2017 benchmarks. The experiments indicate
that the new method outperforms the state-of-the-art

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

80
9.

04
67

6v
2

 [
cs

.P
L

]
 1

1
A

pr
 2

02
0

2

block reordering techniques, improving the resulting
performance by 0.5% − 1%. We have open sourced the
code of our new algorithm as a part of BOLT [5], [7].

The paper is organized as follows. We first discuss lim-
itations of the existing model for basic blocks reordering
and suggest an improvement in Section 2. We describe
an efficient heuristic (Section 3) and an exact algorithm
(Section 4) for solving the new problem. Next, in Section 5,
we present experimental results, which are followed by a
discussion of related work in Section 6. We conclude the
paper and discuss possible future directions in Section 7.

2 LEARNING AN OPTIMIZATION MODEL

The state-of-the-art approach for basic block reordering is
based on the idea of collocating frequently executed blocks
together. The goal is to position blocks so that the hottest
successor of a block will most likely be a fall-through
branch, that is, located right next to the predecessor. This
strategy reduces the number of taken branches and the
working set size of the I-cache, while relieving pressure from
the branch predictor unit. More formally, the reordering
problem can be formulated as follows. Given a directed
control flow graph comprising of basic blocks and fre-
quencies of jumps between the blocks, find an ordering
of the blocks such that the number of fall-through jumps
is maximized. This is the maximum directed TRAVELING
SALESMAN PROBLEM (TSP), a widely studied NP-hard com-
binatorial optimization problem.

The simplicity of the model and solid practical results
made TSP-based algorithms very popular in the code opti-
mization community. To the best of our knowledge, Boesch
and Gimpel [8] are the first ones to formulate the problem
of finding an ordering of basic block as the path covering
problem on a control flow graph, which is equivalent to
solving TSP. They describe an optimal algorithm on acyclic
directed graphs and suggest a heuristic for general digraphs.
Later the same path covering model has been studied in a
series of papers suggesting optimal algorithms for special
classes of digraphs and heuristics for general digraphs [9],
[10]. In their seminal paper from 1990 [6], Pettis and Hansen
present two heuristics for positioning of basic blocks. We
observe that both heuristics are designed to solve (possibly
non-optimally) TSP. Later, one of the heuristics (seemingly
producing better results) has been extended by Calder and
Grunwald [11], Torrellas et al. [12], and Luk et al. [2]. We
stress that the majority of existing algorithms for block
reordering utilize the TSP model. A variant of the Pettis-
Hansen algorithm is used by most of the modern binary
optimizers, including PLTO [3], Ispike [2], BOLT [5], and the
link-time optimizer (LTO) of the GCC compiler [13].

Notice that solving TSP alone is not sufficient for con-
structing a good ordering of basic blocks. It is easy to find
examples of control flow graphs with multiple different
orderings that are all optimal with respect to the TSP ob-
jective. Consider for example a control flow graph in Fig. 1
in which the maximum number of fall-through branches is
achieved with two orderings that utilize a different number
of I-cache lines in a typical execution. For these cases, an
algorithm needs to take into consideration non-fall-through
branches to choose the best ordering. However, maximizing

B0

1000

B1

B3B2

B4

5

500

995

B0 B1 B2 B3 B4

B0 B1 B2 B4 B3

64 bytes

500

500

5

5

Fig. 1. Two orderings of basic blocks with the same TSP score (1995)
resulting in different I-cache utilization. All blocks have the same size of
16 bytes and colored according to their hotness in the profile.

the number of fall-through jumps is not always preferred
from the performance point of view. Consider a control
flow graph with seven basic blocks in Fig. 2. It is not hard
to verify that the ordering with the maximum number of
fall-through branches is one containing two concatenated
chains, B0�B1�B3�B4 and B5�B6�B2 (upper-right in
Fig. 2). Observe that for this placement, the hot part of
the function occupies three 64-byte cache lines. Arguably a
better ordering is the lower-right in Fig. 2, which uses only
two cache lines for the five hot blocks, B0, B1, B2, B3, B4, at
the cost of breaking the lightly weighted branch B6�B2.

How do we identify the best ordering of basic blocks?
The question is fairly difficult and even experts may have
hard time determining which ordering leads to the max-
imum performance of a binary. A naive approach is to
exhaustively evaluate every valid block placement and then
profile the binary to collect relevant performance metrics.
Obviously due to the enormous search space, this approach
is infeasible for practical use. A natural improvement is
to reduce the search space and experiment only with the
most promising orderings. This technique, also known as
iterative compilation or autotuning, is a natural task for
machine learning [14], [15]. While in certain scenarios the
overhead is justifiable, we found this approach imprac-
tical for our production systems due to long build and
deployment times. Therefore, we use another strategy for
optimization by developing a score function that is used as
a proxy for estimating the quality of an ordering. The idea
is to perform extensive experiments profiling an application
in order to understand what aspects and features of the
block placement affect the resulting performance. After this
first phase, employ a machine learning technique to build
an optimization model and derive a quality metric for an
ordering. As a final step, design an algorithm to optimize
the constructed score function.

Next we describe the process in detail, explaining the
data collection phase and presenting the developed score
function. Since our new approach for basic block reorder-
ing is implemented in a post-link optimizer BOLT [5] and
evaluated on modern Intel x86 processors, we describe the
steps that are typical for this setup. Note however that the
approach is not tied to the binary optimizer and can be
similarly applied in other environments.

3

B0

1000

B1

B3

B4

B2

B5

550

550

455

5

5

450B6

5

B0 B1 B3 B4 B6B5 B2

B0 B1 B3 B4 B5B2 B6

64 bytes 64 bytes 64 bytes

Fig. 2. A control flow graph with jump frequencies (left) and two possible
orderings of basic blocks (right). All blocks have the same size (in bytes)
and colored according to their hotness in the profile. An optimal TSP-
based layout (upper right) utilizes three cache lines for the hot code,
while an arguably better layout (lower right) can be built with a new
EXTTSP model.

2.1 Data Collection

Following most of the recent works on profile-guided
code optimizations [1], [2], [4], [5], we rely on sam-
pling techniques for collecting profile data. Although the
sampling-based approach is typically less accurate than the
instrumentation-based one, it incurs significantly less mem-
ory and performance overheads, making it the preferred
way of profiling binaries in actual production environments.
We utilize hardware support of Intel x86 processors to col-
lect Last Branch Records (LBR), which is a list of the last 16
taken branches. From the list of branches, that are sampled
according to a specified event, we infer the frequencies
of jumps between basic blocks. Specifically, we extract a
weighted directed control flow graph for every function
in the profiled binary. The vertices (basic blocks) and the
edges (branches) of the graph, along with the sizes of the
blocks, are extracted statically via the BOLT infrastructure,
which is based on LLVM [16]. The weights between the basic
blocks correspond to the total number of times the jumps
appear in collected LBRs. We stress that before processing,
we augment collected LBRs with fall-through jumps, as
LBRs only contain information about taken branches; to this
end, we utilize a simple algorithm similar to one described
by Chen et al. [17]. Notice that we ignore indirect branches,
procedure calls, and returns while constructing the control
flow graph.

We have experimented with several different events to
collect LBRs, including cycles, retired instructions, and taken
branches, and using various levels of precise event based
sampling. We observed that independently of the utilized
event and processor microarchitecture, the extracted jump
frequencies do not always follow the expected distribution;
refer to [5], [17], [18] for concrete examples and possible
explanations of the phenomenon. Hence, we use by default
the cycles event to sample LBRs.

A common technique for ensuring edge weights are
more realistic is solving the MINIMUM COST MAXIMUM
FLOW problem on the control flow graph, which was ini-
tiated by Levin et al. [19] and later adopted by several
groups [17], [18], [20], [21]. In contrast with the earlier
works, our experiments with the flow-based approach did
not produce performance gains in comparison with the orig-
inal (possibly biased) data. A problematic example for the
approach is illustrated in Fig. 3a, where the arguably most
realistic adjustment is highlighted. Depending on how the

B1

3000

B2

B4B3

400600

B0

3000

B1

3000

B2

B4B3

12001800

B0

3000

(a)

B1

3000

B2

B4B3

01000

B0

3000

B1

3000

B2

B4B3

03000

B0

3000

(b)

Fig. 3. Two examples of an original incomplete profile (left) and its real-
istic correction (right) that cannot be reconstructed using the MINIMUM
COST MAXIMUM FLOW model. Bold numbers show most realistic adjust-
ments of the edge weights satisfying flow conservation constraints.

costs of the edges are assigned, an algorithm for MINIMUM
COST MAXIMUM FLOW will either produce frequencies 2600
and 400 or 600 and 2400 for jumps B2�B3 and B2�B4,
respectively. However, it is desirable to keep the proba-
bilities of the branches at B2 (approximately) the same.
A related issue is shown in Fig. 3b. Here an algorithm
may decide to send some flow along edge B2�B4, thus
making basic block B4 hot. This adjustment prohibits future
compiler optimizations that position hot and cold parts of
the function in different sections of the binary. Therefore,
we avoid modifying jump frequencies via the flow-based
approach, leaving for the future the task of increasing profile
precision.

2.2 Engineering a Score Function
Our goal is to design a function x → f(x), that takes in a
feature vector x, characterizing an ordering of basic blocks,
and produces a real value f(x), indicating an expected
performance of a binary for the ordering. We assume that
the execution time of a single basic block is independent
of the block ordering within a function. Thus, the ordering
only affects branches between the blocks, which may incur
some delay in the execution, for example due to a miss in the
instruction cache. However, not all branches equally affect
the performance. An important feature of a branch is the
jump length, that is, the distance (in bytes) between the end
of the source block to the beginning of the target block;
see Fig. 4. For example, it is a common belief that zero-
length jumps (equivalently, fall-through branches) impose
the smallest performance overhead. This is the main moti-
vation for the TSP model, whose objective can be formally
expressed as follows:

TSP =
∑
(s,t)

w(s, t)×
{
1 if len(s, t) = 0,

0 if len(s, t) > 0,

where w(s, t) is the frequency and len(s, t) is the length
of branch s�t. An optimal ordering corresponds to the
maximum value of the expression; thus, we call it the score
of TSP. The performance, however, might also depend on
other characteristics of a branch, which we discuss next. In
our study, we consider the following features.
• The length of a jump impacts the performance of in-

struction caches. Longer jumps are more likely to result
in a cache miss than shorter ones. In particular, a jump
with the length shorter than 64 bytes has a chance to
remain within the same cache line.

4

y

0

x

bytes
16 32 48

Fig. 4. The lengths of a for-
ward jump, x�y, and a backward
jump, y�x, are 16 and 48 bytes,
respectively.

0

0.1

b
ra
n
ch

im
p
o
rt
a
n
ce

jump length, bytes
1024640

forward
backward

1
fall-through

Fig. 5. The dependency be-
tween the length of a jump and
its importance for the EXTTSP
model.

• The direction of a branch plays a role for branch pre-
dicting. A branch s�t is called forward if s < t, that is,
block s precedes block t in the ordering; otherwise, the
branch is called backward.

• The branches can be classified into unconditional (if the
out-degree is one) and conditional (if the out-degree is
two). A special kind of branches is between consecutive
blocks in the ordering that are called fall-through; in this
case, a jump instruction is not needed.

We introduce a new score that estimates the quality
of a basic block ordering taking into account the branch
characteristics. In the most generic form, the new function,
called EXTENDED TSP (EXTTSP), is expressed as follows:

ExtTSP =
∑
(s,t)

w(s, t)×Ks,t × hs,t
(
len(s, t)

)
,

where the sum is taken over all branches in the control
flow graph. Here w(s, t) is the frequency of branch s�t and
0 ≤ Ks,t ≤ 1 is a weight coefficient modeling the relative
importance of the branch for optimization. We distinguish
six types of branches arising in code: conditional and un-
conditional versions of fall-through, forward, and backward
branches. Thus, we introduce six coefficients for EXTTSP.
The lengths of the jumps are accounted in the last term of the
expression, which increases the importance of short jumps.
A non-negative function hs,t

(
len(s, t)

)
is defined by value

of 1 for zero-length jumps, value of 0 for jumps exceeding a
prescribed length, and it monotonically decreases between
the two values. To be consistent with the objective of TSP,
the EXTTSP score needs to be maximized for the best perfor-
mance. Notice that EXTTSP is a generalization of TSP, as the
latter can be modeled by setting Ks,t = 1, h

(
len(s, t)

)
= 1

for fall-through branches and Ks,t = 0 otherwise.
In general we cannot manually select the most appropri-

ate constants of EXTTSP that best model the performance of
modern processors. Next we describe a process for learning
these constant values that lead to the best performance.

2.3 Learning Parameters
As a preliminary step of our study, we run multiple ex-
periments with two binaries, the Clang compiler and the
HipHop Virtual Machine (HHVM) [22]. Each experiment
consists of constructing a distinct ordering of basic blocks,
running a binary, and measuring its performance metrics
via the Linux perf tool. In order to build a variety of block
orderings for the same binary, we utilize five algorithms

(described in Section 5.1) and apply them for a certain
percentage of randomly selected functions. In total, we
evaluated 50 distinct block orderings and conducted 250
experiments (five per ordering) for each of the two binaries.

Our first finding is that the traditional TSP score has
a relatively high correlation with the performance of the
binaries; see Fig. 6. However, there are several unexpected
outliers that cannot be explained by the model. In order
to choose suitable parameters for the EXTTSP score, we
employ the so-called black-box solver developed by Letham
et al. [23], which is a powerful tool for optimizing functions
with computationally expensive evaluations. Formally, our
problem can be stated as finding parameters for EXTTSP
that have the highest correlation with the performance of
a binary in the experiments. Here we try to maximize the
Kendall rank correlation coefficient, τ , between the observed
performance (instructions per cycle) and the predicted im-
provement given by the EXTTSP score. Notice that the
Pearson correlation coefficient, ρ, is not the best choice
for optimization, as the relationship between observed and
predicted values might not be linear. The black-box solver,
which is based on Bayesian optimization, is able to compute
values for a collection of continuous parameters that max-
imize the correlation coefficient. This is done via a careful
exploration of the search space taking into account noise in
real-world experiment outcomes. In our study we introduce
six variables for weight coefficients, K , of ExtTSP. The
jump-length function, h(·), is considered to be of the form(
1−

(
len(jump)

M

)α)
with two variables M > 0 and α > 0

for different types of branches.
The black-box solver found a model that better predicts

the observed values; see Fig. 6. The new model increases
the Kendall correlation coefficient τ from 0.877 to 0.906
for Clang and from 0.897 to 0.921 for HHVM. The models
constructed for Clang and HHVM are not identical, though
they share many similarities. Next we present a unified
variant of the model in which we round and combine
parameters with similar weights (having difference less than
0.05), and exclude ones having small values (less than 0.05).
We did not notice a discrepancy between the actual and
the rounded EXTTSP models, meaning that the resulting
solution works well for both of the binaries and is robust
to the choice of constants. Recall that better block orderings
correspond to higher values of EXTTSP.

ExtTSP=
∑
(s,t)

w(s, t)×

1 if len(s, t) = 0,

0.1·
(
1− len(s,t)

1024

)
if 0< len(s, t)≤1024

and s < t,

0.1·
(
1− len(s,t)

640

)
if 0< len(s, t)≤640

and t < s,

0 otherwise.

Intuitively, EXTTSP resembles the traditional TSP
model, as the number of fall-through branches is the dom-
inant factor. The main difference is that EXTTSP rewards
longer jumps. The impact of such jumps is significantly
lower and it linearly decreases with the length of a jump.
Next we summarize our high-level observations regarding
the new score function.

5

8

6

4

2

0

sp
ee

du
p,

 %

1086420
TSP

1086420
ExtTSPscore improvement (%)

ρ=0.973 τ=0.877 ρ=0.984 τ=0.906
(a) Clang

6
5
4
3
2
1
0

sp
ee

du
p,

 %

3020100
TSP

3020100
ExtTSPscore improvement (%)

ρ=0.985 τ=0.897 ρ=0.989 τ=0.921
(b) HHVM

Fig. 6. The relationship between the performance (instructions per cycle) of two binaries and the TSP and EXTTSP scores measured for various
orderings of basic blocks. The values correspond to the relative improvements over the non-optimized binary with the original ordering provided by
the compiler.

• The suggested parameters for EXTTSP correlate well
with the overall performance of a binary in a
production-like environment, though we also observe
moderate correlation (in the order of ρ = 0.8) between
the values of EXTTSP and the measured number of I-
cache misses.

• We have not observed significant differences be-
tween the importance of conditional and unconditional
branches that seem to be similarly relevant for the
quality of a block ordering. It contradicts to the intuition
of Calder and Grunwald [11] who assign noticeably
different weights depending on the type of a branch.

• The maximum length of a jump affecting EXTTSP is
fairly large: 16 and 10 cache lines for forward and back-
ward branches, respectively. The importance of a non-
fall-through branch linearly decreases with its length;
see Fig. 5. We experimented with non-linear decreasing
functions but did not discover a significant improve-
ment; hence, we use the simpler variant.

• We found that forward branches are more important for
an ordering than backward ones; see Fig. 5 for a depen-
dency of the weights of the two types of branches on the
EXTTSP score. Both types of non-fall-through branches
are noticeably less important than fall-throughs in the
constructed model, which is reflected in the low coeffi-
cient (0.1) in the expression.

Finding an optimal solution for the EXTENDED TSP
problem is NP-hard. Next we describe our heuristic.

3 A HEURISTIC FOR EXTTSP
Our algorithm finds an optimized ordering of basic blocks
for every function in the binary. It operates with a weighted
control flow graph G = (V,E,w) containing a set of basic
blocks, V , and directed edges, E, representing branches
between the blocks. An edge (s, t) ∈ E corresponds to
a jump from a block s ∈ V to a block t ∈ V and its
weight, w(s, t), corresponds to the frequency of the jump.
We assume that the sizes (in bytes) of the basic blocks are
a part of the input. The goal of the algorithm is to find an
ordering of V with an improved ExtTSP score (as defined
in Section 2) while keeping a given entry point, v∗ ∈ V , the
first in the ordering.

Algorithm 1: Basic Block Reordering

Input : control flow graph G = (V,E,w),
the entry point v∗ ∈ V

Output: ordering of basic blocks (v∗ = B1, B2, . . . , B|V |)

Function ReorderBasicBlocks
for v ∈ V do /* initial chain creation */

Chains← Chains ∪ (v);

while |Chains| > 1 do /* chain merging */
for ci, cj ∈ Chains do

gain[ci, cj]← ComputeMergeGain(ci, cj);

/* find best pair of chains */
src, dst← argmax

i,j
gain[ci, cj];

/* merge the pair and update chains */
Chains← Chains ∪ Merge(src, dst) \ {src, dst};

return ordering given by the remaining chain;

Function ComputeMergeGain(src, dst)
/* try all ways to split chain src */
for i = 1 to blocks(src) do

/* break the chain at index i */
s1 ← src[1 : i];
s2 ← src[i+ 1 : blocks(src)];
/* try all valid ways to concatenate */

scorei�max

ExtTSP(s1, s2, dst) if v∗ 6∈dst
ExtTSP(s1, dst, s2) if v∗ 6∈dst
ExtTSP(s2, s1, dst) if v∗ 6∈s1, dst
ExtTSP(s2, dst, s1) if v∗ 6∈s1, dst
ExtTSP(dst, s1, s2) if v∗ 6∈src
ExtTSP(dst, s2, s1) if v∗ 6∈src

/* the gain of merging chains src and dst */
return max

i
scorei − ExtTSP(src)− ExtTSP(dst);

On a high level, our algorithm is a greedy heuristic that
works with chains (ordered sequences) of basic blocks; see
Algorithm 1 for an overview. Initially all chains are isolated
basic blocks. Then we iteratively merge pairs of chains so as

6

to improve the ExtTSP score. On every iteration, we pick
a pair of chains whose merging yields the biggest increase
in ExtTSP, and the pair is merged into a new chain. The
procedure stops when there is only one chain left, which
determines the resulting ordering of basic blocks.

An important aspect of our approach is the way two
chains are merged; see function COMPUTEMERGEGAIN of
Algorithm 1. In order to merge a pair of chains, src and
dst, we first split chain src into two subchains, s1 and
s2, that retain the ordering of blocks given by src. Then
we consider all six possible ways of combining the three
chains, s1, s2, and dst, into a single one, discarding the
ones that do not place entry point v∗ at the beginning. A
chain with the largest ExtTSP over all possible splitting
indices of src and permutations of s1, s2, dst is chosen
as the result. The motivation here is to increase the search
space in comparison to the simpler concatenation of two
chains. The simplest example in which chain splitting helps
is depicted in Fig. 7. A greedy concatenation merges block
B0 with B2 on the first iteration, which results in the final
ordering (B0, B2, B1). In contrast, chain splitting allows to
build an ordering (B0, B1, B2), which has a higher EXTTSP
score since all the edges are forward.

B0

99

B1

B2

100

99

Fig. 7. An example of a control flow graph in which naive chain concate-
nation produces suboptimal ordering.

What is the computational complexity of Algorithm 1?
A naive implementation takes O(|V |5) steps: There are |V |
merge iterations that process at most |V |2 pairs of chains per
iteration with O(|V |2) steps needed to compute a merge
gain between two chains. However, this is an overestima-
tion, as we argue below. First observe that the ExtTSP
score between two chains, c1 and c2, can be positive only
if there is a branch between c1 and c2; thus, the number
of candidate chain pairs for merging is upper bounded by
the total number of branches in the control flow graph,
|E|. The second observation is that one can memoize the
results of COMPUTEMERGEGAIN function and re-use them
throughout the computation. It is easy to see that the merge
gain depends only on a pair of chains; hence, if neither of
the two chains is merged at an iteration, then we do not
need to recompute the gain for the pair at the next iteration.
Putting the two observations together, the running time of
Algorithm 1 is bounded by O

(∑
c blocks(c) · degree(c)

)
,

where the sum is taken over all chains taking part in a merge
with blocks(c) being the number of blocks in the chain and
degree(c) being the number of branches from and to the
chain. In the worst case, this sums up to O(|V |2|E|) time in
general, which equals toO(|V |3) for real-world control flow
graphs.

3.1 Large functions

While cubic running time is acceptable for reordering most
of the functions we experimented with, there are several
exceptions with a large number of basic blocks. In order
to deal with these cases, we introduce a threshold, k > 1,
on the maximum size of a chain that is considered for
splitting in COMPUTEMERGEGAIN. If the size of a chain,
c, exceeds the threshold, that is, blocks(c) > k, then we only
try a simple concatenation of c with other chains. With the
modification, the complexity of Algorithm 1 is estimated by
O(k · |V |2), which is quadratic when k is a constant. In our
implementation, we use k = 128 as the default value.

3.2 Reordering of cold blocks

Notice that Algorithm 1 is not trying to optimize layout of
cold basic blocks that are never sampled during profiling.
However, one may still want to modify their relative order,
as this could affect the code size as follows. Consider pairs
of cold basic blocks, s and t, such that the only outgoing
branch from s is the only incoming branch to t. If s and t are
not consecutive in the resulting ordering, then one would
need to introduce an unconditional branch instruction. In
contrast, if t follows s in the ordering, then the instruction is
not needed as t is on the fall-through path of s. In order
to guarantee that Algorithm 1 always merges such pairs
into a chain, we modify the weights of cold edges in the
control flow graph before the computation. Specifically we
set w(s, t) = ε1 (for some 0 < ε1 � 1) if (s, t) ∈ E
corresponds to a cold fall-through branch in the original
binary, and set w(s, t) = ε2 (for some 0 < ε2 < ε1) if (s, t)
corresponds to a cold non-fall-through branch. Such weights
make it desirable to merge original fall-through branches,
even if they are cold according to the profile.

3.3 Code layout in memory

Apart from basic block reordering, profile-guided optimiza-
tion tools typically perform two other passes directly affect-
ing the layout of functions in the generated code: hot/cold
code splitting and code alignment [1], [5]. The first one splits
hot and cold basic blocks into separate sections, while the
second pass aligns the blocks at cache line boundaries via
introducing NOP instructions. We stress that both optimiza-
tions are complimentary to basic block reordering and their
benefits are additive. In our experiments, we evaluate the
effect of reordering alone, with all other optimization passes
applied for the binary.

4 AN OPTIMAL ALGORITHM FOR EXTTSP

We now demonstrate how EXTTSP is formulated as a Mixed
Integer Program (MIP). A MIP is a method to find optimal
solutions for NP-hard problems whose objective and require-
ments are represented by linear functions. This is a time-
consuming technique that can be applied only for small
instances, and we use the optimal MIP solutions to better
understand the quality of our heuristic.

7

maximize
∑

(s,t) w(s, t)× f(ds,t)
subject to xs ∈ R, s ∈ V

ds,t ∈ R, (s, t) ∈ E
zs,t ∈ {0, 1}, s, t ∈ V, s 6= t

xt − xs ≥ Ls −M
×(1− zs,t), s, t ∈ V, s 6= t

xs − xt ≥ Lt −M · zs,t, s, t ∈ V, s 6= t
ds,t = xt − xs − Ls, (s, t) ∈ E

The objective is a summation over the contribution of
each edge (s, t) ∈ E in the control flow graph to EXTTSP.
The contribution of an edge is the number of jumps, w(s, t),
weighted by a value dependent on the length of the jump,
ds,t = len(s, t). The piece-wise function shown in Fig. 5
converts the length to the desired weight. This function
is formulated in MIP by introducing additional integer
variables to cope with the non-convex shape [24].

The constraints express the complete search space of all
legal starting bytes xs for each block s ∈ V considering
the size of the block, Ls. For all pairs of blocks, s and t,
either the final ordering has s before t (that is, xt − xs ≥
Ls) or t before s (that is, xs − xt ≥ Lt). A binary variable
zs,t is utilized to enforce one of those two constraints. The
distances used in the objective, ds,t, are constrained to be
the distance between the end of block s and the start of
block t. Negative distances correspond to backward jumps
which are incorporated into the piece-wise function in the
objective. We utilize the Xpress solver for finding optimal
solutions of the MIP model.

5 EVALUATION

The experiments presented in this section were conducted
on Linux-based servers powered by Intel microprocessors.
The applications were compiled using either GCC 8.3 or
Clang 7.1 with -O3 optimization level.

5.1 Techniques

We compare our new algorithm (referred to as ext-tsp)
with the following competitors.
• original is the ordering provided by the compiler.
• tsp is the ordering constructed by the “top-down”

heuristic suggested by Pettis and Hansen [6]. The al-
gorithm starts by placing the entry basic block for a
function, and then iteratively finding a successor with
the heaviest edge to the last placed block. If all succes-
sors have already been selected, then one picks the block
with the largest connection to the already placed blocks.

• ph is the Pettis-Hansen “bottom-up” algorithm [6]. The
algorithms maintains a collection of chains of basic
blocks, which correspond to paths in the control flow
graph. Initially every block forms its own chain. Look-
ing at the arcs from largest to smallest, two different
chains are merged together if the arc connects the tail
of one chain to the head of another. Once the merging
stage is done, the chains are ordered so as to maximize
the weight of backward edges to achieve the best per-
formance of the branch predictor.

TABLE 1
Basic properties of evaluated binaries

hot blocks per function
.text (MB) IPC functions p50 p95 max

HHVM 285 0.83 12,687 40 454 10,664
Multifeed 395 0.95 24,037 15 151 9,228
Proxygen 160 0.63 9,997 10 97 945

Clang 48 0.82 7,013 25 241 11,218
GCC 15 0.76 10,269 11 152 3,354

8

6

4

2

0

sp
ee

du
p,

 %

HHVM Multifeed1 Multifeed2 Proxygen

4.
8

1.
5

5.
0

3.
5

4.
8

1.
5

6.
0

4.
55.
1

2.
0

6.
0

4.
0

5.
6

2.
0

7.
0

5.
0

 tsp ph cache ext-tsp

Fig. 8. Performance improvements of various reordering algorithms over
original measured for different Facebook workloads.

• cache represents a modification of the Pettis-Hansen
algorithm suggested by Luk et al. for the Ispike post-
link optimizer [2]. The difference from ph is in the last
step, ordering of chains of basic blocks. The chains are
sorted by their density, that is, the total execution count
of a chain divided by the sum of sizes of its basic blocks.
Placing hottest chains first reduces conflicts in the I-
cache and improves code locality.

• mip is an optimal algorithm for ExtTSP described in
Section 4. Since the running time of the approach is
not practical for large functions, we only compare the
results of mip on a subset of small functions.

All the algorithms are implemented in an open-source
post-link binary optimizer BOLT [7].

5.2 Facebook Workloads
This section evaluates various basic block ordering algo-
rithms on four large-scale binaries deployed at Facebook’s
data centers. The first system, which is our primary use case
for ext-tsp, is the HipHop Virtual Machine (HHVM) [22],
that serves as an execution engine for PHP at Facebook,
Wikipedia, Baidu, and other large websites. The two bina-
ries of Multifeed are responsible for News Feed. Proxygen
is a Facebook service for cluster load balancing. The HHVM
binary is built using GCC with LTO, while Multifeed and
Proxygen are compiled with Clang with AutoFDO enabled
to enhance their performance. All the Facebook services
are running with huge pages enabled and utilize function
reordering [4]. Table 1 provides basic properties of the
evaluated binaries.

Fig. 8 presents a performance comparison of four ba-
sic block ordering algorithms on the Facebook workloads.
The results are obtained by using an internal performance-
measurement tool for running A/B experiments; see [23],
[25] for an overview. The tool is used at Facebook for a wide

8

25

20

15

10

5

0

re
du

ct
io

n,
 %

I-cache
miss

I-TLB
miss

LLC
miss

Branch
miss

Instructions

18
.7

10
.3

3.
5 5.

7

0.
12

18
.9

9.
8

3.
4

6

0.
11

19
.3

10
.9

3.
3

6.
1

0.
28

20
.8

9.
9

3.
5

6.
2

0.
35

 tsp ph cache ext-tsp

Fig. 9. perf metrics measured for the HHVM binary.

range of performance evaluations by running experiments
on a set of isolated machines that process the same pro-
duction traffic over several days. We measure performance
as the CPU utilization during steady state. As a baseline,
we observe the performance of the binaries optimized with
BOLT using the original block ordering algorithm. In the
case of HHVM, this is an original ordering constructed by the
compiler, while for Multifeed and Proxygen, the ordering is
a result of processing the binaries with PGO. The figure re-
ports mean relative improvements of various block ordering
algorithms over original along with their 95% confidence
intervals. In the experiments, we notice that differences in
CPU utilization among the block ordering algorithms are
highly correlated with the differences in instructions per
cycle (IPC).

Overall we observe that ext-tsp performs better than
alternative ordering algorithms on three of the evaluated bi-
naries. The relative speedup is close to 1% for Multifeed2 and
around 0.5% for HHVM and Proxygen. We stress that the
measurements for Multifeed1 are noticeably noisier than the
alternatives with a typical deviation from the mean around
0.5%−1%. To better understand the benefits of applying the
new block ordering algorithm, we perform a more detailed
evaluation of HHVM. The results are depicted in Fig. 9.
The main advantage of block ordering optimization is an
improved performance of the L1 I-cache, that exhibits over
19% miss reduction. The new ordering algorithm increases
this value to 21%. The number of branch and I-TLB misses
is also significantly reduced, with ext-tsp being the best
for the branch misses counter. We also see a modest im-
provement in the performance of the last level cache, though
the difference between various ordering algorithms is not
prominent.

5.3 Open-Source Compilers
Since basic block reordering primarily improves the perfor-
mance of the I-cache, our optimization can be beneficial for
any front-end bound application with large code size. We
illustrate this by experimenting with binaries of two open-
source compilers, Clang and GCC, whose .text sections
are 48MB and 15MB, respectively; see Table 1. For these
experiments, we utilize a dual-node 28-core 2.4 GHz Intel
Xeon E5-2680 (Broadwell) with 256GB RAM. The size of
the L1 I-cache on the processor is only 32KB, which makes
the two binaries good candidates for profile-guided layout
optimizations.

8

6

4

2

0

sp
ee

du
p,

 %

Clang Clang
PGO+LTO

GCC GCC
PGO

7.
12

2.
76

7.
32

2.
51

7.
11

3.
18

7.
59

3.
03

6.
81

3.
38

7.
61

2.
92

7.
86

4.
17

8.
20

3.
65

 tsp ph cache ext-tsp

Fig. 10. Performance improvements of various reordering algorithms
over original measured for Clang and GCC.

40

30

20

10

0
re

du
ct

io
n,

 %

34
.1

19
.3

2.
9 5.

2

0.
31

36
.4

20
.4

2.
8 5.

6

0.
28

37
.1

23
.1

2.
8 5.

5

0.
28

39
.8

21
.9

2.
9 5.

7

0.
47

 tsp ph cache ext-tsp

G
C

C

25

20

15

10

5

0

re
du

ct
io

n,
 %

I-cache
miss

I-TLB
miss

LLC
miss

Branch
miss

Instructions

14
.5

12
.4

2.
2 3.

6

0

16
.9

17
.2

2.
4 3.

8

0

16
.3

11
.7

2.
5 4.

1

0

19
.8

17
.1

2.
6 4.

1

0

G
C
C
+PG

O

Fig. 11. perf metrics measured for the GCC binary with (bottom)
and without (top) PGO applied. The improvements are on top of the
original block ordering using the same configuration.

For the evaluation of Clang, we use the release_71
branch of LLVM. We ran the evaluation in two modes, Clang
and Clang+PGO+LTO; see Fig. 10. First we build a release
version of the binary using GCC and collect a profile data
by compiling a medium-sized template-heavy C++14 source
file. For the first experiment (Clang), we optimize the binary
of Clang with BOLT using various orderings of basic blocks,
and compile a different collection of about 100 C++14 source
files. Hence, the train and the test datasets are different in
the evaluation. Every experimental run is repeated 1000
times to increase precision of our measurements so that
the average mean deviation is within 0.05%. The baseline
in Fig. 10 corresponds to a binary processed with BOLT
using the original ordering of basic blocks. Thus, the
improvements are attributed only to block reordering, while
all other optimizations (e.g., function reordering or inlining)
are the same across the experiments.

For our next experiment, Clang+PGO+LTO, we in ad-
dition enable PGO and LTO support. To this end, we first
built an instrumented version of Clang, and then used the
instrumented compiler to build the binary again with the

9

default options of GCC. The collected profile data was used
to do another build of Clang with PGO and LTO enabled.
The results in Fig. 10 indicate that block reordering alone
provides 2% − 4% performance improvements, even when
applied on top of GCC with PGO and LTO. This finding is
consistent with earlier evaluations of BOLT, where the gains
are attributed to an improved code layout [5].

For the evaluation of GCC, we use version 8.3 of the
compiler. Again, we collected a profile data by compiling
the single source file, and perform testing using the larger
C++14 project. Similar to Clang, we ran experiments in two
modes; however, we did not use LTO due to build errors re-
lated to C++ exceptions. The effect of applying various block
ordering techniques on two versions of the GCC binary
(with and without PGO enabled) is shown in Fig. 10. As ex-
pected, the relative improvements are smaller for the binary
built with PGO. The new algorithm, ext-tsp, provides the
largest gains outperforming competitors by 0.5%−0.8%; the
differences are identified as statistically significant. Fig. 11
presents the impact of block ordering algorithms on key
architectural metrics for GCC. As in the case with HHVM,
the improvements are largely attributed to a reduction in
I-cache and I-TLB misses. Other relevant metrics are also
improved in comparison with the original ordering but
there is little difference among the ordering techniques.

5.4 SPEC CPU 2017
In this section we evaluate basic block reordering on the
SPEC CPU 2017 benchmark. We utilize 16 C/C++ programs
compiled using GCC with LTO and ran experiments on
the same hardware as in the previous section. We analyze
the performance of the binaries optimized by BOLT with
various ordering algorithms, using original as a baseline.
Profile data is collected using a separate SPEC train mode.

We observe that the SPEC binaries are much smaller than
the typical applications used in modern data centers. There-
fore, they are unlikely to be front-end bound and exhibit
many I-cache and I-TLB misses. Fig. 12 presents the results
of our experiments on the largest binaries that contain at
least 100KB of hot code according to the collected profile.
We do not see a consistent advantage of applying basic block
reordering for the binaries. In most of the experiments we
record a high variance in the running times, which often
exceeds the differences between means. An optimized block
ordering yields a statistically significant improvement over
original only for three binaries: gcc4.5 and namd (using
ext-tsp), and xalancbmk (using cache). For the largest
program, gcc4.5, the ext-tsp algorithm achieves 1.5%
speedup outperforming the best competitor by 0.4%.

To understand the source of regressions, we analyze
two binaries from the benchmark, x264 and omnetpp,
whose running times increase by 0.5% − 1.5% after block
reordering. In the former case, we observe a substantial
growth in the number of branch misses, which leads to the
performance regression. In the latter case, we found that
a different alignment of hot loops in the binary worsen the
performance despite a significant increase (20%) of the num-
ber of fall-through branches and a modest improvement
(around 5%) in the number of I-cache misses. We conclude
that for small binaries that are not front-end bound, both
TSP and EXTTSP are not accurate models.

-2

-1

0

1

2

sp
ee

du
p,

 %

gcc4.5
2100KB

perlbench
362KB

parest
290KB

blender
259KB

x264
229KB

namd
162KB

xalancbmk
146KB

omnetpp
130KB

cactuBSSN
117KB

 tsp ph cache ext-tsp

Fig. 12. Relative performance differences between original and al-
ternative block reordering methods on the largest binaries of the SPEC
2017 dataset. Positive values indicate improvements, negative ones in-
dicate regressions. For every binary, the size of the hot code is specified.

5.5 Analysis of EXTTSP

Here we present an evaluation of Algorithm 1 for solving
the EXTTSP problem. We design the experiments to answer
two questions: (a) How do various parameters of the al-
gorithm contribute to the solution and what are the best
default values? (b) How does the algorithm perform in com-
parison with existing heuristics and the optimal technique?

Considering the first question, we observe that ext-tsp
has only one parameter that affects its quality and perfor-
mance. As explained in Section 3, we introduce a threshold
k, which controls the maximum size of a chain that can be
split during optimization. In the extreme case with k = |V |,
all chains can be broken if that improves the objective;
however, the running time of the algorithm is cubic on the
number of basic blocks comprising a function. Another ex-
treme, k = 0, forbids chain splitting but makes the running
time quadratic. As Table 1 illustrates, some functions in the
dataset contain a few thousand of basic blocks. Hence, the
threshold should be chosen carefully, since it impacts the
quality of a solution and the time needed to process a binary,
which is important in production environments.

Fig. 13 illustrates the results of the experiments with
the chain splitting threshold. Multifeed1 is the binary whose
processing time is substantially affected by large values of k.
For k ≥ 1024, the combined running time of ext-tsp on
all functions of the Multifeed1 binary is around 2 minutes,
while for HHVM it is less than 20 seconds. For k = 0, the
processing times are 6 and 4 seconds for the binaries, respec-
tively. The difference between the corresponding solutions
in the EXTTSP score ranges between 0.3% and 0.7%; note
that according to our analysis in Section 2 and Fig. 6, this
translates to a performance difference of 0.1% − 0.3%. The
value k = 128 provides a reasonable compromise between
processing speed and solution quality, and thus, it is utilized
as the default value for ext-tsp in all our experiments.

In order to analyze the quality of solutions for EXTTSP
generated by Algorithm 1, we employ the optimal technique
presented in Section 4. We apply mip to all 2992 functions
containing at most 30 basic blocks in the HHVM binary. For
these small functions, mip finds a provably optimal solution
in 2963 (99%) of the cases in less than one minute. Out of
these instances with the known optimal ordering, ext-tsp
finds an equivalent solution in 2914 (98.3%) cases. For the
remaining 49 functions, the EXTTSP score produced by

10

0.6
0.5
0.4
0.3
0.2
0.1
0.0Ex

tT
SP

 im
pr

ov
em

en
t,

%

2 8 32 128 512
split threshold, k

100

80

60

40

20ru
nn

in
g

tim
e,

 s
ec

2 8 32 128 512
split threshold, k

 Clang
 HHVM
 Multifeed
 Proxygen

Fig. 13. The running times and the resulting EXTTSP scores produced
by ext-tsp (Algorithm 1) using various chain splitting thresholds for
binaries described in Table 1.

ext-tsp is on average 0.14% lower than the optimum. For
comparison, the runner-up approach on the same binary is
cache, which is able to reconstruct 2745 (92.6%) of optimal
orderings in the binary. The relative improvements in the
EXTTSP score over non-reordered functions are 27%, 29%,
29%, 31% for tsp, ph, cache, and ext-tsp, respectively,
which aligns with our experiments illustrated in Fig. 8.

We emphasize that mip is not considered a practical
approach, as it does not scale to instances with many
basic blocks. The average running time of mip on a func-
tion with 30 blocks exceeds 10 seconds, while it is below
a millisecond for all four alternatives, tsp, ph, cache,
and ext-tsp. Nevertheless, the aforementioned analysis
demonstrates that the new heuristic provides a close-to-
optimal solutions in the majority of real-world instances,
while being sufficiently fast to process large functions.

6 RELATED WORK

There exists a rich literature on profile-guided optimiza-
tions. Here we discuss previous works that are closely
related to code layout and our main contributions.

The work by Pettis and Hansen [6] is the basis for
the majority of modern code reordering techniques. The
goal is to create chains of basic blocks that are frequently
executed together in the order. As discussed in Section 2,
many variants of the technique have been suggested in
the literature and implemented in various tools [2], [3],
[8], [9], [10], [11], [12], [13]. Similar to our work, the tech-
niques are operating with a control flow graph and try
to lay out basic blocks tackling a variant of the TRAVEL-
ING SALESMAN PROBLEM. Alternative models have been
studied by Bahar et al. [26], Gloy et al. [27], and Lavaee
and Ding [28], where a temporal-relation graph is taken
into account. Temporal affinities between code instructions
can be utilized for reducing conflict cache misses [29] and
improving the performance of multiple applications using
a shared cache [30]. We emphasize that according to our
experiments, the performance of a front-end bound large-
scale binary can be largely predicted by its control flow
graph without considering more expensive models.

Code reordering at the function-level is also initiated by
Pettis and Hansen [6], who describe an algorithm that is
implemented in many compilers and binary optimization
tools [5], [13], [31], [32]. This approach greedily merges
chains of functions and is designed to primarily reduce I-
TLB misses. An improvement is recently proposed by Ottoni
and Maher [4], who suggest to work with a directed call

graph. Note that unlike our work, the techniques are heuris-
tics not aiming to produce code layouts that are optimal
from the performance point of view.

Another opportunity for improving performance is to
modify layout of data [33], [34], [35], [36]. Most of the
existing works focus on field reordering and structure
splitting based on the field hotness and data affinities.
While the problem of finding an optimal data layout is
computationally hard [37], [38], we believe that utilizing
machine learning may lead to improved heuristics resulting
in performance gains for real-world applications.

7 CONCLUSION

In this work we extended the state-of-the-art model for
reordering of basic blocks and developed a new efficient
algorithm to optimize the layout of a binary. We also per-
formed an extensive evaluation of various block ordering
techniques on a variety of real-world applications. The
experiments indicate that the new technique can improve
the performance of binaries that have been manually tuned
over the course of their development and optimized using
conventional compiler optimizations. There are several in-
teresting aspects of our approach that we discuss next.

Firstly, our approach employs a machine learning toolkit
to build a desired objective for optimization. As our eval-
uation demonstrates, the resulting model outperforms the
classical one, as the new objective correlates very well with
the performance of large-scale binaries. A possible risk here
is to over-tune a model for a specific application and miss
important details that might affect performance. The exper-
iments with the SPEC benchmark imply that the models
based on maximizing the number of fall-through branches
are too simplistic for binaries that are not front-end bound.

Secondly, our study focuses on optimizing applications
built with particular compilers and running on a specific
hardware. A reasonable future work is to verify whether
the presented approach can be generalized to other use
cases. Our preliminary experiments indicate that compara-
ble gains can be achieved on other Intel microprocessors
and alternative processor architectures. Similarly, the new
reordering algorithm is applied as a post-link optimization,
and we did not examine how it behaves on earlier compila-
tion stages. It would be interesting to investigate the effect
of the reordering applied at compilation time. In particular,
we plan in the future to integrate and compare ext-tsp
with the algorithms implemented in GCC [12] and Clang.

Finally, we point out that this paper considers a certain
aspect related to code generation: reordering of basic blocks
within a function. There are many complementary optimiza-
tions that we did not investigate in detail, for example, un-
rolling loops or duplicating blocks in order to avoid extra
jumps. An attractive direction is to allow cross-procedure re-
ordering in which basic blocks from different functions can
be interleaved in the final layout. This might further increase
code locality and improve cache utilization. Unfortunately,
our preliminary experiments with existing cross-procedure
heuristics [12] did not produce measurable gains; further
research of the technique is an intriguing future work.

11

ACKNOWLEDGMENTS

We thank Alon Shalita for fruitful initial discussions of
the project. We would also like to thank Rafael Auler and
Maksim Panchenko for their help with integrating the new
technique into BOLT.

REFERENCES

[1] D. Chen, D. X. Li, and T. Moseley, “AutoFDO: Automatic
feedback-directed optimization for warehouse-scale applications,”
in International Symposium on Code Generation and Optimization.
ACM, 2016, pp. 12–23.

[2] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike:
A post-link optimizer for the Intel R© Itanium R© architecture,” in
Code Generation and Optimization: Feedback-Directed and Runtime
Optimization. IEEE Computer Society, 2004, p. 15.

[3] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “PLTO: A
link-time optimizer for the Intel IA-32 architecture,” in Workshop
on Binary Rewriting, 2001, pp. 1–7.

[4] G. Ottoni and B. Maher, “Optimizing function placement for large-
scale data-center applications,” in International Symposium on Code
Generation and Optimization. IEEE Press, 2017, pp. 233–244.

[5] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “BOLT: A practical
binary optimizer for data centers and beyond,” in International
Symposium on Code Generation and Optimization. IEEE Press, 2019,
pp. 2–14.

[6] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in
SIGPLAN Notices, vol. 25, no. 6. ACM, 1990, pp. 16–27.

[7] “Binary Optimization and Layout Tool,” https://github.com/
facebookincubator/BOLT.

[8] F. T. Boesch and J. F. Gimpel, “Covering points of a digraph with
point-disjoint paths and its application to code optimization,”
Journal of the ACM, vol. 24, no. 2, pp. 192–198, 1977.

[9] C. Young, D. S. Johnson, M. D. Smith, and D. R. Karger, “Near-
optimal intraprocedural branch alignment,” SIGPLAN Notices,
vol. 32, no. 5, pp. 183–193, 1997.

[10] T. Hirata, A. Maruoka, and M. Kimura, “A polynomial time
algorithm to find a path cover of a reducible flow graph,” Syst.
Comput. Control, vol. 10, no. 3, pp. 71–78, 1979.

[11] B. Calder and D. Grunwald, “Reducing branch costs via branch
alignment,” in SIGPLAN Notices, vol. 29, no. 11. ACM, 1994, pp.
242–251.

[12] J. Torrellas, C. Xia, and R. L. Daigle, “Optimizing the instruction
cache performance of the operating system,” IEEE Transactions on
Computers, vol. 47, no. 12, pp. 1363–1381, 1998.

[13] A. Ramı́rez, J.-L. Larriba-Pey, C. Navarro, J. Torrellas, and
M. Valero, “Software trace cache,” in International Conference on
Supercomputing. ACM, 2014, pp. 261–268.

[14] A. H. Ashouri, W. Killian, G. P. John Cavazos, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Comput. Surv., vol. 51, no. 5, pp. 96:1–96:42, 2018.

[15] Z. Wang and M. O’Boyle, “Machine learning in compiler optimiza-
tion,” Proceedings of the IEEE, vol. PP, no. 99, pp. 1–23, 2018.

[16] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in International Sym-
posium on Code Generation and Optimization. IEEE Computer
Society, 2004, p. 75.

[17] D. Chen, N. Vachharajani, R. Hundt, X. Li, S. Eranian, W. Chen,
and W. Zheng, “Taming hardware event samples for precise and
versatile feedback directed optimizations,” IEEE Transactions on
Computers, vol. 62, no. 2, pp. 376–389, 2013.

[18] A. Nowak, A. Yasin, A. Mendelson, and W. Zwaenepoel, “Estab-
lishing a base of trust with performance counters for enterprise
workloads,” in USENIX Annual Technical Conference, 2015, pp. 541–
548.

[19] R. Levin, I. Newman, and G. Haber, “Complementing missing and
inaccurate profiling using a minimum cost circulation algorithm,”
in International Conference on High-Performance Embedded Architec-
tures and Compilers. Springer, 2008, pp. 291–304.

[20] D. Novillo, “SamplePGO: the power of profile guided optimiza-
tions without the usability burden,” in Proceedings of the 2014
LLVM Compiler Infrastructure in HPC. IEEE Press, 2014, pp. 22–28.

[21] X.-H. Liu, Y. Peng, and J.-Y. Zhang, “A sample profile-based opti-
mization method with better precision,” in International Conference
on Artificial Intelligence and Computer Science. DEStech, 2016, pp.
340–346.

[22] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers,
E. Smith, and O. Yamauchi, “The HipHop Virtual Machine,” in
SIGPLAN Notices, vol. 49, no. 10. ACM, 2014, pp. 777–790.

[23] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained
Bayesian optimization with noisy experiments,” Bayesian Analysis,
vol. 14, no. 2, pp. 495–519, 2019.

[24] K. L. Croxton, B. Gendron, and T. L. Magnanti, “A comparison
of mixed-integer programming models for nonconvex piecewise
linear cost minimization problems,” Management Science, vol. 49,
no. 9, pp. 1268–1273, 2003.

[25] E. Bakshy and E. Frachtenberg, “Design and analysis of bench-
marking experiments for distributed internet services,” in Interna-
tional Conference on World Wide Web, 2015, pp. 108–118.

[26] I. Bahar, B. Calder, and D. Grunwald, “A comparison of software
code reordering and victim buffers,” ACM SIGARCH Computer
Architecture News, vol. 27, no. 1, pp. 51–54, 1999.

[27] N. Gloy and M. D. Smith, “Procedure placement using temporal-
ordering information,” Transactions on Programming Languages and
Systems, vol. 21, no. 5, pp. 977–1027, 1999.

[28] R. Lavaee and C. Ding, “ABC Optimizer: Affinity based code
layout optimization,” University of Rochester, Tech. Rep., 2014.

[29] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient procedure
mapping using cache line coloring,” in SIGPLAN Notices, vol. 32,
no. 5. ACM, 1997, pp. 171–182.

[30] P. Li, H. Luo, C. Ding, Z. Hu, and H. Ye, “Code layout optimization
for defensiveness and politeness in shared cache,” in International
Conference on Parallel Processing. IEEE, 2014, pp. 151–161.

[31] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-
Pey, P. G. Lowney, and M. Valero, “Code layout optimizations
for transaction processing workloads,” in SIGARCH Computer
Architecture News, vol. 29, no. 2. ACM, 2001, pp. 155–164.

[32] W. J. Schmidt, R. R. Roediger, C. S. Mestad, B. Mendelson, I. Shavit-
Lottem, and V. Bortnikov-Sitnitsky, “Profile-directed restructuring
of operating system code,” IBM Systems Journal, vol. 37, no. 2, pp.
270–297, 1998.

[33] E. Raman, R. Hundt, and S. Mannarswamy, “Structure layout opti-
mization for multithreaded programs,” in International Symposium
on Code Generation and Optimization. IEEE, 2007, pp. 271–282.

[34] T. Eimouri, K. B. Kent, A. Micic, and K. Taylor, “Using field access
frequency to optimize layout of objects in the JVM,” in Annual
Symposium on Applied Computing. ACM, 2016, pp. 1815–1818.

[35] P. Roy and X. Liu, “StructSlim: A lightweight profiler to guide
structure splitting,” in International Symposium on Code Generation
and Optimization. ACM, 2016, pp. 36–46.

[36] T. M. Chilimbi and R. Shaham, “Cache-conscious coallocation of
hot data streams,” in SIGPLAN Notices, vol. 41, no. 6. ACM, 2006,
pp. 252–262.

[37] E. Petrank and D. Rawitz, “The hardness of cache conscious data
placement,” in SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp.
101–112.

[38] R. Lavaee, “The hardness of data packing,” SIGPLAN Notices,
vol. 51, no. 1, pp. 232–242, 2016.

https://github.com/facebookincubator/BOLT
https://github.com/facebookincubator/BOLT

	1 Introduction
	2 Learning an Optimization Model
	2.1 Data Collection
	2.2 Engineering a Score Function
	2.3 Learning Parameters

	3 A Heuristic for ExtTSP
	3.1 Large functions
	3.2 Reordering of cold blocks
	3.3 Code layout in memory

	4 An Optimal Algorithm for ExtTSP
	5 Evaluation
	5.1 Techniques
	5.2 Facebook Workloads
	5.3 Open-Source Compilers
	5.4 SPEC CPU 2017
	5.5 Analysis of ExtTSP

	6 Related Work
	7 Conclusion
	References

