
Function Merging by Sequence Alignment 
(FMSA)

Rocha, R. C., Petoumenos, P., Wang, Z., Cole, M., & Leather, H.
In 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO '19)

Presenters: (Group 19) Jiaxing Yang, Yuzhou Mao



Motivation

● Reducing code size is important for resource constrained systems

https://developer.amazon.com/blogs/alexa/post/2a32d792-d471-4136-8262-79962a2b4d72/cpu-memory-and-storage-for-alexa-built-in-devices

https://developer.amazon.com/blogs/alexa/post/2a32d792-d471-4136-8262-79962a2b4d72/cpu-memory-and-storage-for-alexa-built-in-devices


Background

● Limitations of state-of-the-art (SOTA) [1] and 
LLVM's identical merging technique [2]

https://cmusphinx.github.io/doc/sphinxbase/glist_8c_source.html[1] Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and Anshuman 
Dasgupta. Exploiting Function Similarity for Code Size Reduction. (LCTES '14)

[2] https://llvm.org/docs/MergeFunctions.html

https://cmusphinx.github.io/doc/sphinxbase/glist_8c_source.html
https://llvm.org/docs/MergeFunctions.html


Approach - Overview

● Linearize each function
○ Represent CFG as a sequence of 

labels and instructions
● Apply a sequence alignment algorithm

○ From bioinformatics
○ To identify similar regions

● Code generation
○ To generate the merged function



Approach - Linearization

● Traverse the CFG

○ For each block, output the label and 

instructions

● Maintain the original order of instructions 

inside a single block

● Edges are represented by branches + 

labels



Approach - Sequence Alignment

● SA is widely used in molecular biology

○ Identify similar DNA subsequences

● Needleman-Wunsch algorithm is used

○ Optimal with a given scoring system

○ Based on dynamical programming



Approach - Equivalence Evaluation

● Equivalence between instructions

○ Semantically equivalent opcodes

○ Equivalent types

■ Can be losslessly bitcasted

● Equivalence between labels

○ Labels of normal basic blocks are ignored



Approach - Code Generation

To maintain the semantics of the original functions, we must be able to pass the parameters to the 

newly merged function

● Function identifier is needed to guard blocks from different functions

● The original parameters need to be merged

○ Order is unimportant

● Try to reuse parameters

○ Reduce overhead

○ Avoid select instructions



Approach - Code Generation

Return types also need to be merged.

● Two non-void return types

○ Use the larger one as base

○ Bitcast return values as the base

○ Reverse on the caller side

● One void return type

○ Directly return the non-void type

○ The return value will be discarded by the caller



Approach - Code Generation

Two passes to generate merged function

● First pass creates basic blocks and instructions

○ Keep a mapping: original instructions and labels -> corresponding merged values

○ Create extra basic blocks and branches to maintain the semantics

● Second pass assigns operands and connect blocks

○ Use the mapping from previous pass

○ Use select instruction to choose values from different functions





Profitable Functions

● Estimate similarity of two functions

○ Opcode frequencies

○ Type frequencies (return type / parameter type)

(Position in a priority queue ordered by similarity)



Experiments

● C/C++ SPEC CPU2006 (results below) and MiBench

Code size reduction for the linked object compared to baseline (no function merging)



Conclusion and Future Work

● Strengths

○ Addresses limitations of SOTA and outperforms by 2.4x on average

● Weaknesses

○ Larger compilation overhead

○ No improvement on some benchmarks

● Future directions

○ reduce compilation overhead

○ further code size reduction on some benchmarks 



Questions?

Thanks!


