
High-level software pipelining in LLVM

Paper Authors:
Roel Jordans, Henk Corporaal

Presented by Group 18:
Yuze Dai, Qinjuan Xie, Yin Yuan, Jiayun Zou

Motivation

Concepts & Course Review

● Goal
○ Higher throughput (smaller II,

smaller stage count)
○ Lower register requirements

(smaller MaxLive)
● The task of generating an optimal

resource-constrained schedule for
loops is known to be NP-hard

● Heuristics

● Software Pipelining
○ Loop scheduling
○ Increasing the instruction

level parallelism
● II: Initiation Interval
● MaxLive: Maximum number of

simultaneously live values at any
cycle

Drawbacks of Existing Scheduling Techniques

● Huge Computational Cost
○ Aggressive Schedulings
○ Integer Linear Programming

● Not Considering Critical Path
○ Hypernode Reduction Modulo

Scheduling (HRMS)*

● Suboptimal Reduction
○ Stage Scheduling*

● Ejection of Previously Scheduled
Operations
○ Slack Scheduling*

*All three schedulings use heuristic technique

Swing Modulo Scheduling (SMS)

Node Ordering

Target
● Give priority to operations in the most critical paths.
● Try to reduce MaxLive

Traversing Algorithm
● Starts by the node at the bottom of the most critical path

and moves upwards, visiting all the ancestors
● Once all the ancestors have been visited all the

descendants of the already ordered nodes are visited but
now moving downwards.

● Successive upwards and downwards sweeps

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={12}
O={12}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={11}
O={12, 11}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={10, 6}
O={12, 11, 10}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={6, 8, 9}
O={12, 11, 10, 8}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={6, 9, 5, 2}
O={12, 11, 10, 8, 5}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={6, 9, 2, 1}
O={12, 11, 10, 8, 5, 6}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={9, 2, 1}
O={12, 11, 10, 8, 5, 6, 1}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={}
O={12, 11, 10, 8, 5, 6, 1, 2, 9}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Example

R: set of nodes to be ordered
O: set of nodes been ordered

R={}
O={12, 11, 10, 8, 5, 6, 1, 2, 9, 3, 4, 7}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Scheduling

Tries to schedule the operations as close as possible to the
neighbors that have already been scheduled.
If an operation u has:
● Only predecessors in the partial schedule, then u is

scheduled as soon as possible.
● Only successors in the partial schedule, then u is

scheduled as late as possible.
● Both predecessors and successors, rare case, only

occurs once for each recurrence.

Scheduling, O={12, 11, 10, 8, 5, 6, 1, 2, 9, 3, 4, 7}

n1

n5

n8

n10

n11

n12

n3

n4

n7

n2

n9 n6

Experiments and Results

Benchmark

● C++ (LEDA libraries)

● Perfect Club benchmark suite without subroutine calls or
conditional exits.

● Compared with HRMS(Hypernode reduction modulo
scheduling) and Top-Down scheduling.

Compilation Speed

https://xkcd.com/303/

(1258 Loops of the Perfect Club benchmark)

Register Usage

Comparison with Optimal Solution

Strength and Weakness

 Strength Weakness

● Produced schedules are very

close to the optimal

scheduling

● Low computational cost

● Required a slight higher registers

and stages than optimal schedule

● Missing opportunities for further

instruction level parallelism by

only handling simple basic block

loops

Conclusions

Conclusion

● SMS produces near optimal schedules while requiring a very low compilation

time.

● Outperforms other heuristics approaches, which is measured by the attained

initiation interval, register requirements and stage count.

● Compares against the optimal solution which was obtained using an integer

linear programming approach.

● SMS obtains the initiation interval in all the cases and its schedules requiring

only 5% more registers and a 1% higher stage count.

Q&A

