High-level software pipelining in LLVM

Paper Authors:
Roel Jordans, Henk Corporaal
Presented by Group 18:
Yuze Dai, Qinjuan Xie, Yin Yuan, Jiayun Zou




Motivation



Concepts & Course Review

e Software Pipelining e Goal
o Loop scheduling o Higher throughput (smaller I,
o Increasing the instruction smaller stage count)
level parallelism o Lower register requirements

e IlI: Initiation Interval (smaller MaxLive)
e MaxLive: Maximum number of e The task of generating an optimal

simultaneously live values at any resource-constrained schedule for

cycle loops is known to be NP-hard

e Heuristics



Drawbacks of Existing Scheduling Techniques

e Huge Computational Cost e Suboptimal Reduction

o Aggressive Schedulings o Stage Scheduling*

o Integer Linear Programming e Ejection of Previously Scheduled
e Not Considering Critical Path Operations

o Hypernode Reduction Modulo o Slack Scheduling*

Scheduling (HRMS)*

*All three schedulings use heuristic technique



Swing Modulo Scheduling (SMS)



Node Ordering

Target
e Give priority to operations in the most critical paths.
e Trytoreduce MaxLive
Traversing Algorithm
e Starts by the node at the bottom of the most critical path
and moves upwards, visiting all the ancestors
e Once all the ancestors have been visited all the
descendants of the already ordered nodes are visited but
now moving downwards.
e Successive upwards and downwards sweeps



R: set of nodes to be ordered
O: set of nodes been ordered

R={12}
0={12}



R: set of nodes to be ordered
O: set of nodes been ordered

R={11}
0={12, 11}



R: set of nodes to be ordered
O: set of nodes been ordered

R={10, 6}
0={12,11, 10}



R: set of nodes to be ordered
O: set of nodes been ordered

R={6, 8, 9}
0={12,11, 10, 8}



R: set of nodes to be ordered
O: set of nodes been ordered

R={6, 9, 5, 2}
0={12,11, 10, 8, 5}



R: set of nodes to be ordered
O: set of nodes been ordered

R={6,9, 2, 1}
0={12,11, 10, 8, 5, 6}



R: set of nodes to be ordered
O: set of nodes been ordered

R={9, 2,1}
0={12,11,10,8, 5,6, 1}



R: set of nodes to be ordered
O: set of nodes been ordered

R={}
0={12,11,10,8,5,6, 1,2, 9}



n12

R: set of nodes to be ordered
O: set of nodes been ordered

R={}
0={12,11,10,8,5,6,1,2,9,3,4,7}



Scheduling

Tries to schedule the operations as close as possible to the

neighbors that have already been scheduled.

If an operation u has:

e Only predecessors in the partial schedule, then u is
scheduled as soon as possible.

e Only successors in the partial schedule, then u is
scheduled as late as possible.

e Both predecessors and successors, rare case, only
occurs once for each recurrence.



Scheduling, 0={12, 11,10, 8,5,6,1,2,9, 3, 4, 7}

/s |/s add mul

0| n1
1
2| n2 n5

! 3

D < n3 | n8
5 n9
6 n4
7 n10 | n6
8 n7
9 n11

L 10
n12 11 n12 |




Experiments and Results



Benchmark

e C++ (LEDA libraries)

e Perfect Club benchmark suite without subroutine calls or
conditional exits.

e Compared with HRMS(Hypernode reduction modulo
scheduling) and Top-Down scheduling.



Compilation Speed

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

”MY CODE ’9 CONP“. ING.“ O Scheduling

@ Priority function

HEY' GET BA?K_ @ Find recurrences and compute MII
TO WORK! _ Top-Down 2
7 HRMS b::
SMS

Time (seconds)
(1258 Loops of the Perfect Club benchmark)

https://xked.com/303/



Register Usage

. — SMS
HRMS
--- Top-Down
100 —
95 +
w
=3
§ ]
c -
QQ
85 —
80 + : : : :
16 32 48 64 80

Number of registers



1011

<+
=
o
AN
[
=
Q
@)
=
<+

ison wi

Compar

(o]

on

11

w

ol

(o]

(o]

ol

28]

on

on

ol

17

ol

10

(o]

(@]

o

(]

ol

20

o

(]

17

o
ol

1

ol

(@]

fppp
Livermore

Linpack
Whetstone

on

(o]

15
15

18

SMS

SC | Regs.

(@

ol

(o}

(]

(g}

ol

18

II

11

ol

ol

on

o

on

(o}

Regs.
3

(@}

15
15

(g}

w

18

Optimal
SC

N

on

(@

ol

ol

(g}

ol

(o}

18

II

11

ol

(]

o

ol

Loop

(o]

10

Program

Spice

Doduc




Strength and Weakness



Strength

Weakness

Produced schedules are very
close to the optimal
scheduling

Low computational cost

Required a slight higher registers
and stages than optimal schedule
Missing opportunities for further
instruction level parallelism by
only handling simple basic block

loops



Conclusions



Conclusion

e SMS produces near optimal schedules while requiring a very low compilation
time.

e Outperforms other heuristics approaches, which is measured by the attained
initiation interval, register requirements and stage count.

e Compares against the optimal solution which was obtained using an integer
linear programming approach.

e SMS obtains the initiation interval in all the cases and its schedules requiring

only 5% more registers and a 1% higher stage count.



Q&A



