

High-level software-pipelining in LLVM

Citation for published version (APA):
Jordans, R., & Corporaal, H. (2015). High-level software-pipelining in LLVM. In SCOPES '15 - 18th International
Workshop on Software and Compilers for Embedded Systems, 1-3 June 2015, St. Goar, Germany (pp. 97-100).
Association for Computing Machinery, Inc. https://doi.org/10.1145/2764967.2771935

DOI:
10.1145/2764967.2771935

Document status and date:
Published: 01/01/2015

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 21. 十月. 2021

https://doi.org/10.1145/2764967.2771935
https://doi.org/10.1145/2764967.2771935
https://research.tue.nl/en/publications/245af531-5937-48df-b4eb-1a8da45d7e6e

High-level software-pipelining in LLVM

Roel Jordans
Eindhoven University of Technology

Eindhoven, The Netherlands
r.jordans@tue.nl

Henk Corporaal
Eindhoven University of Technology

Eindhoven, The Netherlands
h.corporaal@tue.nl

ABSTRACT
Software-pipelining is an important technique for increasing
the instruction level parallelism of loops during compilation.
Currently, the LLVM compiler infrastructure does not offer
this optimization although some target specific implemen-
tations do exist. We have implemented a high-level method
for software-pipelining within the LLVM framework. By im-
plementing this within LLVM’s optimization layer we have
taken the first steps towards a target independent software-
pipelining method.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—mod-
eling of computer architecture; D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization

General Terms
Performance

Keywords
LLVM, software-pipelining

1. INTRODUCTION
Embedded systems are nowadays often used in situations

where both high-performance processing and low energy con-
sumption are critical. This has led to the design of highly
specialized processor hardware which often obtains a large
part of its efficiency from high instruction-level parallelism.
Very-long instruction-word (VLIW) processors are a prime
example of such processors and many DSP-like processors [1]
incorporate VLIW characteristics internally. It is the task
of the compiler to find and utilize this ILP as part of the
application compilation process. One key optimization in
the compilation process is software-pipelining [6]. Software-
pipelining is a scheduling technique which schedules loop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SCOPES ’15, June 1–3 2015, Sankt Goar, Germany
Copyright 2015 ACM. ISBN 978-1-4503-3593-5/15/06 ...$15.00
DOI: http://dx.doi.org/10.1145/2764967.2771935.

Figure 1: Compilation in three stages

code in such a way that independent operations from differ-
ent loop iterations can be scheduled in parallel.

The design of such an optimizing compiler is commonly
separated into three layers of increasing architectural detail
as is shown in figure 1. The frontend translates the input
language into an intermediate representation (IR). This IR
is then optimized by the target independent optimizer, and
finally translated into actual assembly or binary code by the
backend. Traditionally, implementing a software-pipelining
algorithm into a compiler is within the target specific back-
end code [3, 4, 5]. All details of the program’s instructions,
together with a detailed view of the processor architecture
are known at this stage. This allows for highly detailed
scheduling decisions and produces good optimized code in
general. However, such a backend implementation is usu-
ally highly target specific which makes it difficult to re-use
the software-pipelining implementation across different ar-
chitectures.

An alternative implementation was proposed by Ben-Asher
and Meisler [2]. They demonstrated the effects of imple-
menting source-level modulo-scheduling. Doing so places
the software-pipelining algorithm just before the frontend
stage of the compiler. No information about the hardware
resources of the processor is available yet at this level which
frequently makes the obtained schedules inefficient, as could
be observed in their experimental results. Their source-level
approach was able to find several significant improvements
but also presented equally large regressions in several cases.

In this paper we consider finding the middle ground be-
tween both options. By placing the software-pipelining al-
gorithm at the end of the optimizer stage we are able to use
the generic IR instructions, and combine them with some
basic information on the available resources from the target
backend, in order to achieve a more accurate but still target
independent solution.

The remainder of this paper is organized as follows, first
we introduce the basic concepts of software-pipelining in sec-
tion 2. Then we present our implementation considerations
in section 3 and finalize with a discussion on our initial ex-
periences with this approach in section 4.

2. SOFTWARE-PIPELINING
Software-pipelining is a loop scheduling technique aimed

at increasing the instruction level parallelism by schedul-
ing operations from different loop iterations in an overlap-
ping fashion. Most commonly, software-pipelining is imple-
mented through a technique called modulo scheduling [2, 4,
6, 9].

In a modulo-scheduled loop kernel, the operations of the
original loop body are overlapped such that there is a fixed
initiation interval between the start of consecutive loop iter-
ations which is smaller than the total length of the original
loop body. This initiation interval (II) is constrained by two
factors; the available resources in the processor, and loop
carried dependencies in the code.

Listing 1 and figure 2 illustrate the effect of a resource
constraint on the II, in this case the number of parallel load-
store operations that can be executed. Operations from dif-
ferent loop iterations are distinguished by their background
color and texture. Only the kernel operations are shown
in these example schedules, address calculation and control-
flow operations are hidden for brevity and it is assumed that
arrays A and B do not overlap. Figure 2b shows that the
minimal II is three cycles if only one load-store operation is
allowed in parallel, while figure 2c demonstrates an II of two
cycles if two load-store operations are allowed in parallel.

Listing 1: Example loop nest showing an initiation
interval constrained by the number of available load-
store unit(s).
for(int i = 0; i < N; i++) {

B[i] = (A[2*i] + A[2*i+1]) / 2;
}

ld

ld

+
/

st

(a) Original

ld

ld

ld

ld

st

+
/

+
/

st

II=3

(b) Single load-store

ld

ld

ld

ld

+
/

ld

ld

+
/

st

+
/

st

st

II=2

(c) Dual load-store

Figure 2: Simplified schedules of the loop shown
in listing 1 showing the original sequential schedule
and two software-pipelined versions demonstrating
the influence of a resource constraint.

The second constraint to the II comes from the semantics
of the application in the form of recurring values. Such
recurring values can occur in two forms; memory carried
dependencies and register carried dependencies. Listings 2
and 3, together with figure 3, illustrate their differences.
The original schedule shows the inter-iteration dependency
which constrains software-pipelining as the store needs to
have completed before the value can be loaded back. The
transformed schedule avoids this by storing a copy of the

value in a register, avoiding the II constraining load. As
a result, the transformed version could be pipelined with a
single-cycle II whereas this was impossible in the original
code.

Listing 2: Example loop nest showing an initiation
interval constrained by a loop caried dependency.
B[0] = A[0];
for(int i = 1; i < N; i++) {

B[i] = B[i-1] + A[i];
}

Listing 3: Restructured version of the code shown
in listing 2, breaking the loop caried dependency by
storing the intermediate result into a register.
register int r = A[0];
B[0] = r;
for(int i = 1; i < N; i++) {

r = r + A[i];
B[i] = r;

}

ld

ld

+

st

st

ld

dependency

(a) Original

ld

ld

ld

ld

+

+

+

st

st

st

st

II=1

(b) Transformed

Figure 3: Simplified schedules for the original (list-
ing 2) and transformed (listing 3) version of a loop
showing an inter-iteration dependency.

After determining the minimal II, a modulo scheduling
algorithm will usually attempt to schedule the loop kernel
with that II as an input. If it fails it will increment the II
and try again until either a schedule is found or the II grows
beyond the schedule length of the original non-pipelined loop
and no pipelined schedule exists.

3. IMPLEMENTATION
Although several implementations of software-pipelining

have been published before, none of these is available in the
most recent version of the LLVM framework. Either they
have been lost in previous restructuring of the schedulers [7],
or they are very target specific implementations [3, 5, 9].

In our implementation we have chosen to use the swing
modulo scheduling algorithm [8]. This algorithm is very
efficient at finding good software-pipelined schedules, and
was previously also used in e.g. LLVM [7] and GCC [4].

The swing modulo scheduling algorithm operates in five
steps; a) find cyclic (loop carried) dependencies and their
length; b) find resource pressure; c) compute minimal ini-
tiation interval (II); d) order nodes according to ‘critical-

ity’; and e) schedule nodes in this order, either as-soon-as-
possible or as-late-as-possible based on the status of their
dependencies. For full details on the swing modulo schedul-
ing algorithm please refer to [8] which has an excellent set
of examples to illustrate the approach.

The LLVM IR is a low-level abstract representation of the
program. It uses a basic set of operations that often trans-
late directly into processor operations, however, some more
complex operations also exist. One example of such a more
complex operation is the getelementpointer operation, or
GEP in short. These operations can perform complex ad-
dress calculations although they also frequently reduce to
only a single operation or even a constant value. LLVM of-
fers a TargetTransformInfo interface which provides infor-
mation about the cost of specific operations on the proces-
sor architecture, as well as, information about the available
features of the processor architecture. Using this cost infor-
mation through LLVM’s CostModelAnalysis allows us to
estimate scheduling information such as the length of loop
carried dependencies.

As shown in figure 3, loop carried dependencies can exist
in two forms. Memory carried dependencies can be recog-
nized in IR code by using LLVM’s DependencyAnalysis to
check if a pair of a store and load operation may address the
same memory location across subsequent loop iterations. If
this is the case, then a memory carried dependency exists.
Currently our implementation will not accept such loops and
these need to be transformed to the second form before ap-
plying software-pipelining. We assume that such dependen-
cies are translated into register carried dependencies by an
earlier optimization pass. Luckily, most of LLVM’s transfor-
mations, including loop vectorization, already produce loops
in the second form. The second form uses a register to ex-
plicitly represent loop carried dependencies.

Listing 4: Memory carried dependencies
define void @foo(i8* nocapture %in , i32 %width) #0
{
entry:

%cmp = icmp ugt i32 %width , 1
br i1 %cmp , label %for.body , label %for.end

for.body: ; preds = %entry , %for.body
%i.0 = phi i32 [%inc , %for.body], [1, %entry]
%sub = add i32 %i.0, -1
%idx = getelementptr inbounds i8* %in , i32 %sub
%0 = load i8* %idx , align 1, !tbaa !0
%idx1 = getelementptr inbounds i8* %in , i32 %i.0
%1 = load i8* %idx1 , align 1, !tbaa !0
%add = add i8 %1, %0
store i8 %add , i8* %idx1 , align 1, !tbaa !0
%inc = add i32 %i.0, 1
%exitcond = icmp eq i32 %inc , %width
br i1 %exitcond , label %for.end , label %for.body

for.end: ; preds = %for.body , %entry
ret void

}

The LLVM IR is a static single assignment (SSA) repre-
sentation of the program. Each operation in the IR creates
a new value in a unique virtual register which may only be
assigned once. Phi-nodes are used in order to cope with
merge-points in the control-flow graph (such as introduced
by if-statements and the back-edges of loops). Listing 4
shows an example loop with a memory carried dependency.

In this example we can observe that the address computa-
tion of both GEP operations addresses subsequent locations
which are then used by a store-load pair to create a mem-
ory dependency. To analyze this, we need to consider the
loop induction variable %i.0, its increment direction, and
the address computation of both %idx and %idx1, which is
all achieved using the existing DependenceAnalysis.

Once we have excluded loops with memory carried depen-
dencies we are only left with those loops that have either no
dependencies or only register carried ones. For these loops
we compute the length of the cyclic dependency using the
cost model. Listing 5 shows the same loop implemented
using a register carried dependency. Here we observe that
there is one less load operation in the loop, which has been
replaced by a new phi operation. The minimal recurrence
II is now computed by finding the cycle %i.0–%add–%i.0,
and computing its weight. All cycles in the operation graph
are enumerated and the longest cycle represents the minimal
recurrence II.

Listing 5: After promoting the memory dependency
to a register carried dependency
define void @foo(i8* nocapture %in , i32 %width) #0
{
entry:

%idx = getelementptr inbounds i8* %in , i32 0
%pre = load i8* %idx , align 1, !tbaa !0
%cmp = icmp ugt i32 %width , 1
br i1 %cmp , label %for.body , label %for.end

for.body: ; preds = %entry , %for.body
%i.0 = phi i32 [%inc , %for.body], [1, %entry]
%0 = phi i32 [%add , %for.body], [%pre , %entry]
%idx1 = getelementptr inbounds i8* %in , i32 %i.0
%1 = load i8* %idx1 , align 1, !tbaa !0
%add = add i8 %1, %0
store i8 %add , i8* %idx1 , align 1, !tbaa !0
%inc = add i32 %i.0, 1
%exitcond = icmp eq i32 %inc , %width
br i1 %exitcond , label %for.end , label %for.body

for.end: ; preds = %for.body , %entry
ret void

}

From this point, we compute the minimal resource II using
two new hooks in the TargetTransformInfo. These hooks
represent the number of available execution resources for
scalar and vector operations respectively. At this point we
assume that the processor architecture is capable of exe-
cuting either scalar or vector operations on each issue-slot,
as this was the case for our initial target architecture. This
model may be extended in the future when support for other
architectures is considered.

With both the minimal recurrence and resource based
II values, we can now start the actual node ordering and
scheduling steps. These steps again use the cost model
and the new TargetTransformInfo hooks to determine a
software-pipelined schedule.

From this schedule, we then generate a loop prologue,
kernel, and epilogue, in IR form and connect them to the
original code together with a conditional block that checks
if there are sufficient loop iterations to satisfy the require-
ments for the prologue. This results in the loop structure
shown in figure 4a. However, in many cases the loop bypass
from the (top) entry block checks the same, or a very similar,

condition as the newly inserted guard block does. In such
cases, running LLVM’s constant propagation, common sub-
expression elimination, and control-flow graph simplification
can help clean-up the new structure. Figure 4b illustrates
the effect on one of our example loops.

CFG for 'loop5b' function

entry

T F

for.body.lr.ph

T F

for.end

for.body

T F

for.body.lp.prologue

for.body.lp.kernel

T F

for.body.lp.epilogue

(a) Generated structure

CFG for 'loop10' function

entry

T F

for.end

for.body.lp.prologue

for.body.lp.kernel

T F

for.body.lp.epilogue

(b) After cleanup

Figure 4: The generated loop structure before (a)
and after (b) constant propagation and control-flow
graph simplification when sufficient iterations are
guaranteed

In order to make sure that we can optimally make use
of LLVM’s existing optimizations, while still making rea-
sonable cost estimates, we have scheduled our high-level
software-pipelining pass at the end of the optimization pipeline.
This puts it after the loop vectorization and leaves only the
above mentioned cleanup passes in between the pipelining
algorithm and the target backend.

4. CONCLUSIONS
In some of our initial experiments we have observed that

our high-level software-pipelining approach can indeed bring
good improvements(up to 1.5x speedup) to some of the TSVC
benchmarks when running on the Movidius SHAVE archi-
tecture [1]. However, we also found several large regressions
and there are still some bugs in our implementation which
currently prevent real experimentation.

Most of these regressions were found to be caused by
the software-pipelining algorithm breaking up operation se-
quences that would otherwise be recognized as complex DSP
operations. One way to avoid this is by incorporating more
of these operations as intrinsics in the IR before attempt-
ing software-pipelining. That would force the scheduler to
consider these operation patterns as single operations and
would help mitigate these regressions.

The remaining bugs in our code mainly have to do with
proper book-keeping of live values when operations from
three or more loop iterations are scheduled in parallel in
the loop kernel. This currently prevents the compiler from
correctly generating code for loops that are most likely to
benefit from software pipelining. We therefore expect that
the final performance improvement after fixing these bugs
will significantly exceed the currently observed benefits.

Further improvements of the approach may be found in
tuning or extending the set of TargetTransformInfo hooks
and possibly by adding heuristics that estimate register file
pressure. As such, these will be considered as part of our
future work.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge the HiPEAC net-

work for supporting this research through a collaboration
grant, as well as, Martin O’Riordan and David Moloney of
Movidius Ltd. for providing the opportunity for, and their
support while working on, this project.

6. REFERENCES
[1] B. Barry, C. Brick, F. Connor, D. Donohoe,

D. Moloney, R. Richmond, M. O’Riordan, and
V. Toma. Always-on vision processing unit for mobile
applications. IEEE Micro, 35(2):56–66, 2015.

[2] Y. Ben-Asher and D. Meisler. Towards a source level
compiler: Source level modulo scheduling. In Program
analysis and compilation, theory and practice, pages
328–360. Springer, 2007.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, T. Czajkowski, S. D. Brown, and J. H.
Anderson. Legup: An open-source high-level synthesis
tool for fpga-based processor/accelerator systems. ACM
Transactions on Embedded Computing Systems
(TECS), 13(2):24, 2013.

[4] M. Hagog and A. Zaks. Swing modulo scheduling for
gcc. In Proceedings of the 2004 GCC Developers’
Summit, pages 55–64, 2004.

[5] N. Kim and A. Krall. Integrated modulo scheduling and
cluster assignment for ti tms320c64x+ architecture. In
Proceedings of the 11th Workshop on Optimizations for
DSP and Embedded Systems, pages 25–32. ACM, 2014.

[6] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. ACM SIGPLAN
Notices, 23(7):318–328, 1988.

[7] T. M. Lattner. An implementation of swing modulo
scheduling with extensions for superblocks. Master’s
thesis, University of Illinois at Urbana-Champaign,
2005.

[8] J. Llosa, A. González, E. Ayguadé, and M. Valero.
Swing module scheduling: a lifetime-sensitive approach.
In Parallel Architectures and Compilation Techniques,
1996., Proceedings of the 1996 Conference on, pages
80–86. IEEE, 1996.

[9] Z. Zhang and B. Liu. Sdc-based modulo scheduling for
pipeline synthesis. In Proceedings of the International
Conference on Computer-Aided Design, pages 211–218.
IEEE Press, 2013.

