
Ithemal: Accurate, Portable 
and Fast Basic Block 
Throughput Estimation using 
Deep Neural Networks

Paper Authors: Charith Mendis, Alex Renda, Saman Amarasinghe, 
Michael Carbin

Presenters: Yongyu Deng, Ziqing Xu, Daniel Geng, Max Hamilton



Throughput of a Basic Block

● Throughput - number of cycles needed to execute a block in 
steady state

● Uses
○ Register Allocation
○ Instruction Scheduling

Basic block from Clang



Calculating Throughput

● Brute Force (Dynamic Analysis)
○ Just run the block in a loop until steady state

 

● Static Code Analyzers
○ LLVM-MCA

■ LLVM Machine Code Analyzer
■ Pushed in 2018 by Andrew Di Biagio (Sony) 

○ IACA (End of Life)
■ Intel Architecture Code Analyzer
■ Uses closed source info about Intel microprocessors

○ Both use analytical models to calculate throughput
○ (And to be fair, these tools do quite a bit more than just 

throughput analysis)

https://llvm.org/docs/CommandGuide/llvm-mca.html



Issues with Current Methods

● Dynamic Analysis
○ Slow and expensive (needs to run until steady state)
○ Requires sandboxing, which adds overhead

● Static Analysis
○ Relies heavily on the model
○ Writing a model takes time, can be error-prone, and requires knowledge of the 

processor
○ Tradeoffs between accuracy and portability/speed



Difficulties in Model Building

● Microarchitectures
○ ISAs (such as x86-64) are implemented with different 

microarchitectures
○ “Macro”-instructions are translated to 

“micro”-instructions
○ Micro-ops can then be optimized through:

■ Micro-op fusion
■ Out-of-order execution of micro-ops
■ Register renaming

○ This makes writing the model very complicated

High-level diagram



Difficulties in Model Building

● Portability
○ ISAs (x86-64) are relatively stable, but new microarchitectures 

are introduced frequently
■ 2012 - Ivy Bridge
■ 2013 - Haswell
■ 2015 - Skylake

○ Microarchitectures are not open-sourced, requiring guesswork
○ Incomplete and incorrect documentation 

■ Often produced through reverse engineering
Intel Skylake chips



This Skylake manual is 1292 pages long, and is only volume 2a out of 21!

https://01.org/linuxgraphics/documentation/hardware-specification-prms/2015-2016-intel-processors-based-skylake-platform


Ithemal: A Data Driven Approach



A Data Driven Approach

● Why model microprocessors by hand, when we can just learn it…

● High level idea: generate data, feed to deep learning model

● Only requires description of the Instruction Set Architecture (ISA)



Motivating Examples

Table of x86-64 assembly code, with the actual measured throughput (number of cycles 
to execute a basic block in steady-state), and estimate throughput by llvm-mca, IACA, 
and Ithemal



Motivating Examples

Table of x86-64 assembly code, with the actual measured throughput (number of cycles 
to execute a basic block in steady-state), and estimate throughput by llvm-mca, IACA, 
and Ithemal

x86-64 assembly



Motivating Examples

Table of x86-64 assembly code, with the actual measured throughput (number of cycles 
to execute a basic block in steady-state), and estimate throughput by llvm-mca, IACA, 
and Ithemal

x86-64 assembly

Throughputs



Motivating Examples

● Implementation Errors
○ (a) zeros out xmm0 by xor-ing
○ Zeroing is very very common, and is implemented with a faster, optimized data path
○ IACA is accurate, while llvm-mca is not



Motivating Examples

● Implementation Errors
○ (b) implements a pair of mov instructions
○ IACA identifies a micro-op fusion opportunity, and predicts a lower cycle count
○ This fusion opportunity is not actually used



Motivating Examples

● Documentation Errors
○ (c) left shifts rbx and then moves it to rdi, a data dependency
○ llvm-mca uses the documentation
○ But the documentation assumes no dependency



High Level Approach

1. Dataset creation: (x86-64 instructions -> clock cycles)

2. Tokenize

3. Train a hierarchical RNN



Dataset Generation

Common Libraries 
and Benchmarks



Dataset Generation

Common Libraries 
and Benchmarks GCC

Source Code



Dataset Generation

Common Libraries 
and Benchmarks GCC DynamoRIO

Source Code Machine Code

DynamoRIO extracts the 
byte representation of basic 
blocks



Dataset Generation

Common Libraries 
and Benchmarks GCC DynamoRIO

De-duplication

Source Code Machine Code

Basic Block 
Bytes

Duplicate basic blocks from 
shared header files, etc. are 
removed



Dataset Generation

Common Libraries 
and Benchmarks GCC DynamoRIO

De-duplicationTiming Script

Source Code Machine Code

Basic Block 
Bytes

Basic Block 
Bytes

The timing script tries to 
ensure L1 cache hits and runs 
a basic block for 100 
iterations (same as llvm-mca) 



Dataset Generation

Common Libraries 
and Benchmarks GCC DynamoRIO

De-duplicationTiming ScriptFiltering

Source Code Machine Code

Basic Block 
Bytes

Basic Block 
BytesThroughputs

Results that had too many L1 cache 
misses or were preempted are discarded



Dataset Generation



Tokenization

● We have (x86-64 instructions, throughput) pairs

● We need to transform the instructions into a form usable by a deep learning model

● Common format in NLP are tokens
○ Have a token for each register and instruction
○ Additional “semantic” tokens



Tokenization

mul ecx ( mul, <S>, eax, ecx, <D>, edx, eax, <E> )

Insert tokens for
● Sources - <S>
● Destinations - <D>
● End - <E>



Tokenization

mul ecx ( mul, <S>, eax, ecx, <D>, edx, eax, <E> )

add ecx, 0xc7 ( add, <S>, CONST, <D>, ecx, <E> )

All constant immediates get mapped to the CONST token



Tokenization

mul ecx ( mul, <S>, eax, ecx, <D>, edx, eax, <E> )

add ecx, 0xc7 ( add, <S>, CONST, <D>, ecx, <E> )

mov [rbp+0x70], rax ( mov, <S>, rax, <D>, <M>, rbp, </M>, <E> )

Address offsets are tokenized by wrapping in “<M> … </M>”



Hierarchical LSTM Model

First canonicalize (tokenize)



Hierarchical LSTM Model

Map tokens to token embeddings (vectors)



Hierarchical LSTM Model

Process each instruction into an instruction 
embedding



Hierarchical LSTM Model
Process instruction embeddings into a single 
block embedding



Hierarchical LSTM Model
Apply a linear layer to the block embedding 
to predict the throughput



Hierarchical LSTM Model
Apply a linear layer to the block embedding 
to predict the throughput

Training is standard, with the loss:



Results



Results



Strengths

● Ithemal provides state-of-the-art prediction performance

● Its results beat the baselines across the board

● Able to make prediction without knowing the underlying microarchitecture
○ Process is automated
○ Reduces time and manpower
○ Reduces errors
○ Can be applied to new microarchitectures



Limitations

● Ithemal does not currently handle UNK tokens (i.e. jump instructions at the end of 
each basic block)

● Assumptions
○ All memory accesses are assumed to be L1 hits
○ Assumes no preemption 

● Generalization
○ It’s unclear if the method simply memorizes throughputs

● Can only predict throughput for a single basic block
● Immediates and pointer offsets are mapped to a single token



Thank You!


