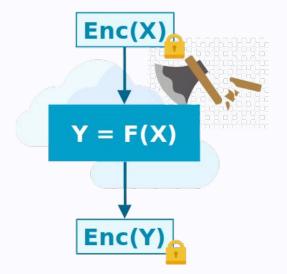
VIP-Bench

A Benchmark Suite for Evaluating Privacy-Enhanced Computation Frameworks

Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Galane Basha Namomsa, Plato Gebremedhin, Fitsum Assamnew Andargie, Brandon Reagen, Todd Austin


Group 10

Donayam Nega, Biniyam Tiruye

Privacy Enhanced Computation (PEC)

- Computing directly on encrypted data.
- A fast growing field.
- Holds a great promise for the future of computing.

PEC Frameworks

- Homomorphic Encryption (HE)
- Multi-Party Computation (MPC)
- Trusted Execution Environment (TEE)

VIP-Bench

- Computation capability comparison benchmark for PEC frameworks.
- Defines a central computation model to which all benchmarks adhere.
- Provides 18 benchmarks that were selected to be representative of applications that would benefit from enhanced privacy.

VIP Benchmark

	Has	18	workloads	organized	by	-
--	-----	----	-----------	-----------	----	---

- A. Operation Complexity
- B. Depth of Computation

Modes of Operation

- 1) Native (NA)
- 2) Data Oblivious (DO)
- 3) Encrypted (ENC)

VIP-Bench Variants	Low Operational Complexity	High Operational Complexity
/ Shallow Computation	X-Gradient Linear-Regression Roberts-Cross	Nonlinear-NN
Deep Computation	Hamming-Distance Dot-Product Poly-Regression Eulers-Approx Triangle-Count Mersenne	Bubble-Sort Edit-Distance FFT-Int NR-Solver LDA Kepler Parrondo MNIST-CNN

Unified PEC Programming Interface

VIP COMPUTATION MODEL

- Makes three assumptions about the PEC frameworks:
 - Sensitive data is **always encrypted**, including in registers and memory.
 - Encrypted variables cannot be used to resolve branches.
 - Encrypted variables cannot be used to compute memory addresses.

VIP COMPUTATION MODEL

Encrypted variable definitions

Operations on encrypted variables

Type Class	VIP Data Types	Operator Class	Example Semantics
Boolean Character	VIP_ENCBOOL VIP_ENCCHAR, VIP_ENCUCHAR	Linear Arithmetic e.g., +, -, *	x = enc(dec(y) + dec(z))
Integer	VIP_ENCINT, VIP_ENCUINT, VIP_ENCINT64, VIP_ENCUINT64	Nonlinear Arithmetic e.g., /, %	x = enc(dec(y) % dec(z))
Floating Point	VIP_ENCFLOAT, VIP_ENCDOUBLE	Nonlinear Relational $e.g., ==, >, >=, <, <=$	x = enc(dec(y) < dec(z))
		Nonlinear Boolean e.g., &, $, \land, \sim, \&\&, , !$	x = enc(dec(y) & dec(z))
		Type Cast Operators <i>e.g.</i> , (VIP_ENCINT)	<pre>x = enc((int)dec(y))</pre>
		Conditional <i>e.g.</i> , VIP_CMOV(p, x, z)	x = enc(dec(p) ? dec(x) : dec(y))
		Control Flow	n/a
		Memory Access	n/a

7

VIP COMPUTATIONAL MODEL

Transformation to use data oblivious operations

Transform

- a) Program control flow and
- b) Memory accesses

Program Control Flow Transformation

```
1 if ((x & 1) == 1) {
2    odd = odd + 1;
3 }
4
5 else {
6    even = even + 1;
7 }
```

(a) Unsafe Conditional Logic.

(b) Safe Conditional Logic.

Memory accesses Transformation

Prevents inferring of the encrypted variable

Idx -> encrypted

// Unsafe Memory Access
arr[idx]++;

Results	Benchmark	Mode	Insn. Count	Runtime (µs)		VSZ (kB)	
Computed on	Hamming-Distance	NA DO ENC-BFV	571,746 571,746 379,721,213	258 258 50,553	(196x)	14,160 14,160 135,692	
Native, Data Oblivious	Dot-Product	ENC-CKKS NA	203,778,393 589,272	30,038	(116x)	148,292	
and Encrypted (ENC)		DO ENC-BFV	589,272 213,441,935	167 30,089	(180x)	14,160 112,804	
Compared using	X-Gradient	ENC-CKKS	235,657,417 35,688	34,125	(204 <i>x</i>)	148,292 14,160	
Instruction count and		DO ENC-BFV ENC-CKKS	35,688 357,762,502 555,413,370	4 42,439 65,828	(10,427x) (16,174x)	14,160 112,292 148,032	
execution time	Linear-Regression	NA DO	556,518 556,518	149 149		14,160 14,160	
		ENC-BFV ENC-CKKS	255,475,787 132,301,587	36,883 21,769	(248x) (147x)	130,048 146,368	
	Parrondo	NA DO ENC-VIP	25,047,453 143,643,026 71,487,9%1,658	9,535 24,058 9,028,822	(947x)	14,012 14,012 14,036	

Commentary

- Best
 - First PEC benchmark/programming model

- Limitations
 - Small number of test programs
 - Doesn't evaluate security
 - Manual algorithm conversion to data oblivious mode

