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Abstract—Privacy-enhanced computation enables the process-
ing of encrypted data without exposing underlying sensitive
information. Such technologies are extremely promising for the
advancement of data privacy, as they remove plaintexts from
the attackers’ reach. However, each privacy technology provides
varying degrees of computational capabilities and performance
overheads, creating challenges for adoption. For example, some
publicly available homomorphic encryption schemes are limited
in expressiveness or cannot support deep computation without
incurring significant overheads. This diversity warrants a bench-
mark suite that can adequately assess capability and performance
while supporting a variety of privacy-enhanced software archi-
tectures. We propose VIP-Bench, a benchmark suite designed
with varying operational complexity and computational depth to
evaluate competing privacy frameworks fairly and directly. VIP-
Bench defines a forward-looking privacy-enhanced computation
model and then develops under that model an array of privacy-
focused benchmarks. The benchmark set is designed to flexibly
cover the whole range of expected computational power and
capability, enabling VIP-Bench to evaluate the privacy-enhanced
computation capabilities of both today and tomorrow.

I. INTRODUCTION

Recently, there has been a concerted effort to improve users’
rights for privacy on digital platforms. The combination of
increased user concern and privacy legislation threaten the
computational practices that the computing industry is built
around: high-quality, personalized services that require access
to intimate data (e.g., deep learning). Privacy-enhanced com-
putation (PEC) is a new computational paradigm that lever-
ages advanced oblivious-computing cryptosystems to break the
privacy-quality of service tradeoff. With PEC, computation can
occur on encrypted data directly while producing the same
results as the classic plaintext equivalent. Thus, PEC enables
the processing of sensitive data values without exposing any
underlying information to software. Currently, this form of
execution is best embodied in the work of homomorphic en-
cryption [1], where advanced cryptography is used to operate
directly on encrypted ciphertext without a key.

Privacy-enhanced computation wrestles trust away from
software, as software can no longer discern the sensitive data it
is computing on. All software-accessible values are rendered
as ciphertexts. As such, hacking into software provides no

leverage in exposing always-encrypted sensitive data, stopping
data breaches in their tracks. Moreover, any programs oper-
ating on sensitive data have no ability to expose that data,
making it possible for software to operate on third-party data
without the possibility of information exposure. Thus, PEC
holds great promise for the future of computing, as it can
provide users the same high-quality services integrated in our
daily lives while ensuring strong privacy guarantees.

PEC’s property of maintaining data confidentiality in the
presence of zero software trust has the potential to create
online services that cannot violate privacy. This potential, cou-
pled with impending privacy legislation, has sparked signifi-
cant research excitement in the field. Researchers are rushing
to propose new solutions and optimizations that overcome the
performance and usability challenges impeding the wide-scale
deployment of existing PEC technologies. Specifically, many
PEC technologies, like homomorphic encryption (HE) [1],
remain too slow and complex for general use. Research on
high-performance software libraries [2], [3], highly-optimized
algorithms [4], accelerators [5], [6], and compilers [7] contin-
ues to lessen the burden of adoption. In some sense, this work
to show that PECs can be made practical can be seen as the
first wave of PEC research.

The successes of the first wave researchers and demands for
increased privacy have established PEC systems research as a
fast-growing field. However, during the first wave of research,
robust experimental infrastructure was largely overlooked in
favor of advancing as fast as possible. This is a natural course
of action, since PEC is (still) new, and papers that explain
what can and cannot be done are essential. We argue that, for
many technologies, the field has now matured to a point where
a common set of benchmarks is needed for commensurability.
Additionally, we argue that forward-looking benchmarks are
needed to sustain the current rate of innovation. Such a set of
common and challenging benchmarks will not only improve
PEC research today but also push the limits of PEC capabilities
tomorrow.

In this paper we propose VIP-BENCH—a benchmark suite
to enable the commensurate evaluation of PEC research and
challenge the status-quo of what today’s technologies are



capable of computing. To support benchmark development,
VIP-BENCH defines a central computation model to which
all benchmarks adhere. The VIP computation model supports
always-encrypted computation, as done by HE computation
models, and also integrates the tenets of data-oblivious com-
puting [8], [9]. This model assumes that sensitive data is
always encrypted, including in registers and memory, and
that these encrypted variables cannot be used to resolve
branches or compute memory addresses. Data-oblivious com-
puting permits the expression of non-linear functions, if-
conditions, and a range of other computational patterns that
have been traditionally difficult for early PEC frameworks to
express. Thus, this computation model is forward-looking and
challenging for most of today’s PEC frameworks. To provide
a suitable framework for specifying existing and future PEC
applications for use with VIP-BENCH, we include a software-
based implementation of our computation model within our
distribution, as detailed in Section III.

Using our PEC computation model, VIP-BENCH provides
18 benchmarks that were selected to be representative of
existing and emerging applications that would benefit from
enhanced privacy. VIP-BENCH also provides a unified inter-
face for different PEC capabilities, enabling all benchmarks
to run from a single-sourced implementation. Thus, VIP-
BENCH facilitates comparisons within and across PEC tech-
nologies, making it straightforward to measure and compare
performance differences between solutions as well as against
native, non-protected versions of the benchmarks. While VIP-
BENCH provides a unified interface, it is not expected that
every PEC framework supports all VIP workloads, as some
PEC technologies have limited computational capabilities.
Consequently, we have included benchmarks that run the
gamut from simplistic and approachable workloads supported
by all existing PEC frameworks to computationally complex
and deep workloads that will challenge even the most capable
of today’s PEC technologies.

A. Contributions of This Work

VIP-BENCH aims to define a forward-looking PEC com-
putation model and deliver a range of meaningful, privacy-
enhanced benchmarks under that model. In this paper, we
make the following contributions toward this overarching goal:

• We detail the development and release of the VIP-
BENCH benchmark suite, which is accessible at https:
//bitbucket.org/vip-benchmarks/vip-bench.

• We describe our forward-looking VIP computation model
based on existing HE computation frameworks and the
tenets of data-oblivious computing.

• We detail a novel, unified programming interface for
PEC that allows VIP-BENCH workloads to be built from
a single-sourced implementation for a variety of PEC
frameworks.

• We present an initial demonstrational study of the VIP-
BENCH benchmarks, showing their performance over-
head and memory requirements.

1 VIP_ENCDOUBLE
2 LeakyReLU(VIP_ENCDOUBLE x_enc)
3 {
4 VIP_ENCBOOL cond_enc = x_enc > 0;
5 VIP_ENCDOUBLE trueval_enc = x_enc;
6 VIP_ENCDOUBLE falseval_enc = x_enc*0.01;
7
8 // Compute LeakyReLU Function using CMOV
9 VIP_ENCDOUBLE result_enc = VIP_CMOV(cond_enc,
10 trueval_enc,
11 falseval_enc);
12 return result_enc;
13 }

Fig. 1: Encrypted Computation of Leaky ReLU. This pro-
gram computes a popular neural network nonlinear activation
function, Leaky ReLU. To adhere to the VIP computational
model, the program was modified to use encrypted data types
and a conditional move in place of an if-statement. These
types are provided by the VIP unified programming interface
(Section III-C).

The remainder of this paper is organized as follows. Sec-
tion II details our VIP privacy-enhanced computation model,
under which all of the VIP-BENCH benchmarks are built.
Section III presents the VIP workloads available in the current
distribution. Section IV presents a demonstrational evaluation
of the VIP-BENCH benchmarks, showing their performance
and memory characteristics on native, non-protected platforms
and on a few existing PEC frameworks. Finally, Section V
presents background material and related work, and Section VI
concludes the paper.

II. VIP COMPUTATIONAL MODEL

The VIP-BENCH framework assumes that the host system
supports a privacy-enhanced computation (PEC) model that
allows software to directly operate on always-encrypted data
without having access to or exposing their plaintext values.
Specifically, the VIP computation model assumes that the
underlying PEC capability allows software to define encrypted
variables and perform some subset of scalar or vector opera-
tions directly on encrypted variables. Additionally, this compu-
tation model requires data-oblivious programming as programs
cannot make visible decisions on always-encrypted values. We
assume that the host system preserves the secrecy of encrypted
variables by restricting the operations on encrypted data to
execute data-obliviously. We discuss these three requirements
that constitute our computation model further in the following
subsections.

VIP-BENCH integrates this computation model in a unified
C++ interface used by each workload to define and operate
on encrypted variables. This organization enables all VIP
workloads to run off of a single-sourced implementation,
streamlining the porting efforts required to make comparisons
across different PEC technologies. This unified interface is
described in Section III-C.



A. Defining Encrypted Variables

Always-encrypted computation frameworks enable pro-
grammers to define always-encrypted variables. Across PEC
technologies, programmers typically have access to encrypted
integers, encrypted floating point numbers, and encrypted
Booleans. VIP-BENCH implements these type classes, as well
as encrypted characters, in its programming interface. These
data types are enumerated in Table I. The format and size of
these types are dependent on the underlying PEC capability.

It is expected that some PEC frameworks will not support
all of the encrypted data types included in VIP-BENCH. As
a result, these frameworks will not be able to execute all of
the workloads contained in VIP-BENCH. To maximize utility
of the VIP-BENCH workloads, we have included a number of
benchmarks that only use encrypted integer types, which all
PEC platforms support in some form.

Figure 1 shows a privacy-enhanced implementation of the
Leaky ReLU (Rectified Linear Unit) function in VIP-BENCH.
Leaky ReLU is commonly used as an activation function
in artificial neural networks. This code example uses both
encrypted Boolean and encrypted double-sized floating point
variables within its computation. The VIP_ENCBOOL and
VIP_ENCDOUBLE symbols are defined in VIP-BENCH’s uni-
fied C++ interface (Section III-C). During compilation, these
symbols are replaced with the host system’s encrypted Boolean
and encrypted floating point types, respectively.

Type Class VIP Data Types

Boolean VIP_ENCBOOL
Character VIP_ENCCHAR, VIP_ENCUCHAR

Integer VIP_ENCINT, VIP_ENCUINT, VIP_ENCINT64,
VIP_ENCUINT64

Floating Point VIP_ENCFLOAT, VIP_ENCDOUBLE

TABLE I: Encrypted Data Types. VIP-BENCH implements
the above type classes in its programming model.

B. Computation on Encrypted Variables

VIP-BENCH’s computational model assumes that C++ op-
erators can operate directly on encrypted variables in the
same way that they operate on plaintext variables. Table II
lists the operator support expected by VIP-BENCH, ordered
by increasing computational complexity. Linear arithmetic
operators are supported by all existing PEC frameworks, while
nonlinear and conditional operators are only supported by a
few frameworks. Some VIP-BENCH workloads only require
linear arithmetic operators to accommodate this range of
capabilities.

While encrypted variable operators are intended to operate
on encrypted data types, they can also operate on plaintext
variables and constants. The result of any operation utilizing
an encrypted operator will always produce an encrypted result.
For example, Line 6 of Figure 1 computes the operation
xenc ∗ 0.01, which will execute as a multiply operator with
one encrypted operand (xenc) and one constant (0.01) that
produces an encrypted result.

Operator Class Example Semantics

Linear Arithmetic x = enc(dec(y) + dec(z))
e.g., +, -, *

Nonlinear Arithmetic x = enc(dec(y) % dec(z))
e.g., /, %

Nonlinear Relational x = enc(dec(y) < dec(z))
e.g., ==, >, >=, <, <=

Nonlinear Boolean x = enc(dec(y) & dec(z))
e.g., &, |, ∧, ∼, &&, ||, !

Type Cast Operators x = enc((int)dec(y))
e.g., (VIP_ENCINT)

Conditional x = enc(dec(p) ? dec(x) : dec(y))
e.g., VIP_CMOV(p, x, z)

Control Flow n/a

Memory Access n/a

TABLE II: Operator Classes for Encrypted Data Types.
VIP-BENCH assumes that each C++ operator listed in this
table operates correctly on encrypted data types, as they
operate on plaintext data types. Control flow and memory
operations are not permitted on encrypted data types, as these
operations could be used to discover their plaintext values.

Type cast operators enable the conversion from one en-
crypted data format (e.g., integer, floating point, and Boolean)
to any of the other encrypted types. The inputs to the cast
operator can be either encrypted or plaintext. When the inputs
are plaintext, this is a convenient mechanism to encrypt a
plaintext value, e.g., xenc = 42. It is not possible to assign an
encrypted cast operator to a plaintext result since this would
require decrypting the encrypted value, which is not permitted.

Conditional operators, termed VIP_CMOV, enable pro-
grams to implement conditional logic in accordance with
our assumption that computation is data oblivious (Sec-
tion II-D). The VIP_CMOV operator returns one of two source
operands depending on some encrypted Boolean condition.
Both source operands are computed in their entirety prior
to execution of the conditional move. In Figure 1, Line
10 will return trueval_enc when cond_enc is true, or
falseval_enc when cond_enc is false.

C. Vector Computation on Encrypted Variables

Some privacy-enhanced computation frameworks, in par-
ticular homomorphic encryption frameworks, support vector-
ized execution directly on encrypted variables. Thus, these
operations are assumed to be available in the underlying
privacy-enhanced computation framework. If the underlying
framework only supports scalar computation, the VIP-BENCH
run-time will convert the vector accesses to comparable scalar
computation sequences.

D. Encrypted Computation Must be Data Oblivious

Always-encrypted computation frameworks must operate
data obliviously to preserve the secrecy of encrypted variables.
Specifically, program execution must be completely oblivious
of encrypted variables. Conditional branches and if-statements
cannot utilize encrypted variables (e.g., if (xenc > 0)).



Such usage would create trivial avenues for an untrusted entity
to discover plaintext values by simply observing program
traces. Similarly, an encrypted variable cannot be used to
compute a memory address. An encrypted value cannot be
combined with a memory pointer (e.g., added or subtracted)
or used as an array index (e.g., a[xenc]). If such logic
were permitted, the encrypted variable could be inferred by
monitoring how the secret computation accesses memory.

VIP-BENCH assumes that the underlying PEC capability
ensures data-oblivious computation by restricting the use of
encrypted variables to influence program control flow and
memory accesses. VIP-BENCH’s computation model supports
this assumption by not allowing encrypted data to influence
if-statements or memory address computations.

Despite these restrictions, conditional logic and memory
indexing can still be expressed using the available operators
in VIP-BENCH. Conditionals must be expressed the encrypted
ternary operator VIP_CMOV. This programming requirement
results in the conversion of all if-statements to correspond-
ing predication statements. Using this conditional execution
pattern, the resulting code path is always invariant, and any
decisions made are resolved in secret by the underlying
implementation of VIP_CMOV. For example, consider the
code in Figure 2a which counts the number of odd and even
numbers. While this code is unsafe and reveals properties of
encrypted variable x, it can be implemented in a safe manner
using conditional operators, as shown in Figure 2b. By using
two VIP_CMOV assignments with inverse conditions, the code
only performs one increment of odd or even, depending
on the value of cond. We assume that the underlying PEC
framework utilizes high-entropy ciphers. Otherwise, it would
be trivial to determine the value of cond by simply seeing
whether odd or even changed. With high-entropy ciphers,
the assignment of either variable to itself will result in re-
encryption and a new unrecognizable ciphertext value.

1 if ((x & 1) == 1) {
2 odd = odd + 1;
3 }
4
5 else {
6 even = even + 1;
7 }

(a) Unsafe Conditional Logic.

1 VIP_ENCBOOL cond =
2 (x & 1) == 1;
3 odd = VIP_CMOV(cond,
4 odd+1,
5 odd);
6 even = VIP_CMOV(!cond,
7 even+1,
8 even);

(b) Safe Conditional Logic.

Fig. 2: Data Oblivious Program Transformations. The VIP
computational model requires programs to be data oblivious. To
adhere to this requirement, if-conditions (2a) must be transformed to
use the conditional move operators provided by VIP-BENCH (2b).

Furthermore, it is still possible to index an array with an
encrypted variable by comparing each index to the encrypted
variable, and then returning the value that has the matching
index. Using this private information retrieval [10] approach,
each entry of the array will be touched and the correct
entry will be returned without revealing the secret index. The
resulting code sequence that is executed remains invariant, and

1 // Return a_enc[idx_enc] in a safe manner, or
2 // return -1 if not found
3 VIP_ENCINT
4 PrivateArrRead(VIP_ENCINT a_enc[], VIP_ENCINT idx_enc)
5 {
6 VIP_ENCINT result_enc = -1;
7 for (int i=0; i < MAX_INDEX; i++)
8 {
9 VIP_ENCBOOL pred_enc = (idx_enc == i);
10 result_enc = VIP_CMOV(pred_enc,
11 a_enc[i],
12 result_enc);
13 }
14 return result_enc;
15 }

Fig. 3: Data Oblivious Array Indexing. While data-oblivious
programming forbids memory accesses based on encrypted variables,
programs can still use encrypted array indices by leveraging a private
information retrieval approach [10], as demonstrated in the above
pseudo-code.

the VIP_CMOV operations will secretly select the correct array
value. The pseudo-code in Figure 3 demonstrates privately
accessing an array.

The requirement of not utilizing encrypted variables in if-
conditions or pointer computations incurs performance over-
heads during the execution of privacy-enhanced programs
since data-oblivious execution generally results in more code
executing. Currently, this requirement is unavoidable if con-
fidentiality is to be maintained, as the program could be
analyzed to infer the value of encrypted variables otherwise.
A further implication of data-oblivious execution is that algo-
rithms cannot build heuristics that utilize decisions made upon
encrypted variables. A clear example of this can be seen in the
VIP-BENCH benchmark Bubble-Sort. With native execution,
Bubble-Sort can exit early when the array is detected to
be fully sorted. But, when sorting encrypted variables, the
algorithm must perform a worst-case execution of N2 swaps
(for N elements). VIP-BENCH includes native and data-
oblivious variants of all workloads (see Section III-B) to
enable developers to analyze the impact of these programming
requirements on runtimes.

III. VIP-BENCH BENCHMARKS

Our approach to building the set of VIP-BENCH bench-
marks was to: i) Identify existing programs or algorithms
that could benefit from performing privacy-enhanced compu-
tation, ii) Locate the appropriate sensitive variable in these
benchmarks, iii) Rewrite the code to utilize the VIP data
types and PEC computational model, and iv) Integrate the
benchmark with the VIP-BENCH unified programming and
build interface.

Currently, VIP-BENCH includes 18 benchmarks that were
selected to be representative of existing and emerging privacy-
sensitive applications. These workloads are enumerated in Ta-
ble III, alongside the operator classes required to execute each
workload. The benchmarks are roughly listed from the easiest
to execute to the most challenging to execute benchmarks,
where more challenging benchmarks require more classes of
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Benchmark Description

Hamming-Distance Computes distance between two equal length Boolean vectors by taking
the logical AND and running a popcount on the result.

Dot-Product Computes the distance between two integer vectors, the computation involves
element-wise multiplication and a reduction across vector elements.

X-Gradient Calculates the X-gradient of an image using a 3×3 filter of constants.

Linear-Regression Computes the forward pass and loss for provided input and label pairs.

Poly-Regression Similar to Linear Regression but fits a quadratic rather than a line.

Roberts-Cross An edge detection kernel computed by sliding two 2×2 filters over an image, estimating X/Y-gradients.
The gradients are each squared and summed using PEC, square root is left to post processing.

Eulers-Approx Iterative approximation of Euler’s constant (e)

Triangle-Count Counts the number of triangles found in a graph, represented by an adjacency matrix

Mersenne Implementation of Mersenne Twister (MT19937) to generate pseudorandom integers

Bubble-Sort Sorts an array of 256 integers using bubble sort

Nonlinear-NN Computation of ReLU and LeakyReLU activation functions for neural networks

Edit-Distance Wagner–Fischer algorithm for computing Levenshtein edit distance for 8-character
genomic sequences

FFT-Int Performs a fixed-point fast Fourier transform (regular and inverse)

NR-Solver Approximates roots of a real-valued function using the Newton-Raphson method

LDA Performs a linear discriminant analysis

Kepler Computes Kepler’s equation for orbital bodies using different methods (i.e., simple iteration,
Newton’s method, binary search, power series, and Fourier Bessel series)

Parrondo Simulates trials of chance-based Parrondo’s game and reports statistics on their outcomes

MNIST-CNN 7-layer CNN doing MNIST image recognition

TABLE III: Enumeration of VIP-Bench Workloads. VIP-BENCH constitutes 18 benchmarks that were selected to be representative of
existing and emerging applications that would benefit from advanced privacy protections. The benchmarks are sorted roughly by increasing
operational complexity, with the benchmark’s required operator classes listed on the right-hand side. Some PEC technologies only provide
support for linear arithmetic. For this reason, eight of our included workloads only use operators from this class (i.e., +, -, *).

operators to enable their execution. In Table III, the first
eight benchmarks only require linear arithmetic operations
on integer variables. Thus, these benchmarks are appropriate
for execution on any PEC framework, including existing HE
frameworks. Benchmarks further down the table require more
complex operators and support for deeper computation. Thus,
these benchmarks may not be capable of executing on more
limited PEC frameworks.

In developing VIP-BENCH, we drew upon existing open
source applications wherever possible, and we ported them
into the VIP framework (e.g., MNIST-CNN). The first six

benchmarks in Table III are implemented using the optimized
schedules from Porcupine [7]. In other cases, we built the
benchmarks from scratch, implementing both a native and
protected version of the benchmarks (e.g., Triangle-Count).
To learn more about the provenance of individual benchmarks,
please consult the VIP-BENCH source distribution, at https:
//bitbucket.org/vip-benchmarks/vip-bench

A. Workload Organization

As shown in Table IV, we organize our benchmarks across
two axes: operation complexity and depth of computation.
Such an organization is relevant to researchers and developers,



as some PEC technologies support limited operation classes
and have restrained computation depth. Specifically, many
software HE libraries only include support for linear arithmetic
and nonlinear Boolean operations. Additionally, some HE
libraries do not include support for bootstrapping [3]. Thus,
computation depth is restricted by the scheme’s allotted noise
budget. By organizing our workloads across these two axes,
we enable developers to easily determine which workloads are
relevant to their PEC technology while challenging researchers
to develop innovative ways to support the full VIP-BENCH
benchmark suite.

1) Organization by Operation Complexity: We categorize
workloads as having low operational complexity if they only
use linear arithmetic or nonlinear Boolean operators when
computing on encrypted data types. These operators are
supported by a majority of existing PEC technologies. We
categorize workloads as having high operational complexity
if they utilize any other operator classes, as enumerated in
Table II, including nonlinear arithmetic or nonlinear relational
operators, like equality (==), greater than (>), or less than
(<). Workloads with high operational complexity may use
conditional operators (VIP_CMOV) to perform conditional
arithmetic or to perform data-oblivious memory accesses, as
illustrated in Section II-D.

2) Organization by Depth of Computation: Additionally,
we characterize workloads by their computational depth or
logic depth. We regard workloads as having shallow com-
putational depth if their logical depth is no more than five
operations (i.e., there are five or fewer operations between
source inputs and results). Similarly, we categorize workloads
as having deep computation if they perform five or more op-
erations on any encrypted variable. Some benchmarks exhibit
especially deep computation, such as Eulers-Approx, which
estimates Euler’s constant (e) over a large number of trials.

B. Workload Modes of Operation

To enable commensurability and fine-grained analysis of
overheads, VIP-BENCH provides three modes of operation:
native (NA), data-oblivious (DO), and encrypted (ENC). The
former two modes (NA, DO) use native C++ types and can be
used as baselines for performance benchmarking. The latter
mode (ENC) takes advantage of the VIP-BENCH unified
interface to substitute native types with the PEC capability’s
encrypted types when appropriate.

1) Native (NA): Native mode is the original version of
the benchmark where the algorithm is free to base execution
off of any program state and does not need to adhere to data-
oblivious restrictions. This mode uses native C++ types. Native
mode provides the performance of the unsecured workload
in its original, non-privatized form. PEC technologies should
compare against this baseline to fully assess their overheads.

2) Data-Oblivious (DO): Data-oblivious mode similarly
uses native C++ types but modifies the algorithm to adhere to
data-oblivious restrictions. Specifically, benchmarks are reor-
ganized to never use privatized variables for control decisions
or memory accesses. Like native mode, data-oblivious mode

Low Operational High Operational
Complexity Complexity

Shallow X-Gradient Nonlinear-NN
Computation Linear-Regression

Roberts-Cross

Deep Hamming-Distance Bubble-Sort
Computation Dot-Product Edit-Distance

Poly-Regression FFT-Int
Eulers-Approx NR-Solver
Triangle-Count LDA

Mersenne Kepler
Porrondo

MNIST-CNN

TABLE IV: Workload Classification Matrix. We classify
the VIP-BENCH workloads by operational complexity and
computation depth. Benchmarks of low operational complexity
only use linear arithmetic and nonlinear Boolean operators
to compute on encrypted variables, whereas benchmarks with
high operational complexity use any of the operators listed in
Table II. Benchmarks exhibiting shallow computation have a
logic depth of no more than five operations, whereas bench-
marks with deep computation have unrestricted depth.

does not utilize any encryption support from the underlying
PEC capability. Data-oblivious mode can be used to assess
the performance impact of the algorithmic changes that are
necessary to accommodate data-oblivious execution.

3) Encrypted (ENC): Encrypted mode runs the bench-
marks in its privatized mode with encrypted data types and
data-oblivious execution supported by the underlying PEC
capability. In this version of the benchmark, the software is
not allowed to make decisions on secret values because they
are always encrypted. This version represents the full extent
of the performance impact of always-encrypted execution.

C. Unified PEC Programming Interface

VIP-BENCH provides a single unified programming inter-
face between the benchmark implementations and the PEC
capability. This interface allows a single-source version of the
benchmark to support all three modes of execution (i.e., NA,
DO, and ENC) for a range of underlying PEC capabilities.
When a researcher or developers wants to evaluate a new
PEC execution capability, they simply need to “hook” their
PEC variable and operator definitions into the unified PEC
programming interfaces. The resulting build process will uti-
lize their specific PEC capability without any changes to the
benchmark source code.

Figure 4 shows the VIP unified programming interface for
the data-oblivious (DO) mode of execution. In this mode,
all VIP data types are native C++ types and the VIP_CMOV
operator is implemented with the C++ ternary operator.

When running in encrypted (ENC) mode, the VIP uni-
fied programming interface should specify how to declare
each of the encrypted variables. In addition, it is assumed
that the underlying PEC capability will utilize C++ operator
overloading to implement the necessary operator classes for
encrypted scalar and vector variables. The VIP_DEC interface



1 #if defined(VIP_DO_MODE)
2
3 #define VIP_INIT
4 #define VIP_ENCBOOL bool
5 #define VIP_ENCCHAR char
6 #define VIP_ENCINT int
7 #define VIP_ENCUINT unsigned int
8 #define VIP_ENCUINT64 uint64_t
9 #define VIP_ENCFLOAT float

10 #define VIP_ENCDOUBLE double
11 #define VIP_DEC(X) (X)
12 #define VIP_CMOV(P,A,B) ((P) ? (A) : (B))
13 ...

Fig. 4: VIP-Bench Unified Programming Interface. This
code snippet shows the VIP unified programming interface
for data-oblivious (DO) mode. Benchmarks are implemented
as a single source version using VIP’s data types (e.g.,
VIP_ENCINT). These types are then replaced by the types
specified by the unified interface at compile time (e.g., int).

is provided for benchmark validation purposes, and it must
be able to decrypt values so that the program outputs can
be displayed and checked. Typically, the underlying PEC
capability will be configured with a known secret key, so that
this decryption process is straightforward.

To aid in the VIP-BENCH workload development and ver-
ification, the distribution includes a reference PEC capability
called the VIP Functional Library. The VIP Functional
Library implements the VIP PEC computation model fully,
using a software-based implementation based on x86 AES-
NI [11]. The x86 AES-NI instruction set extension is used to
encrypt variables and accelerate crypto processing. While the
VIP Functional Library does not fully achieve zero software
trust, it does have some interesting security features. Namely,
keys and plaintext for the always-encrypted variables never
exist in memory. We consider the VIP Functional Library in
our benchmark analysis.

IV. EXPERIMENTAL EVALUATION

In this section, we perform a demonstrational analysis of
the VIP workloads, examining their performance and memory
requirements. To demonstrate running VIP-BENCH with an
underlying PEC capability, we evaluate a subset of the bench-
marks using the Microsoft SEAL homomorphic encryption
library [12] and the remainder using the VIP Functional
Library due to the computational constraints of SEAL. We
reserve the evaluation of competing homomorphic encryption
libraries for future work.

A. Experimental Framework

All VIP workloads were compiled with GCC version 7.5.0
with compile-time options ‘-O2’. Experiments were run on
a Intel Xeon Gold based system with a 2.60GHz clock and
252 GB of DRAM, running Ubuntu 18.04.5 LTS. All reported
metrics were averaged over 100 runs of each benchmark.

For the HE experiments, denoted ENC-BFV and ENC-
CKKS, we built the VIP benchmarks with the Microsoft

SEAL library version 3.4 [12] using both the BFV and CKKS
homomorphic encryption schemes. Currently, we only support
6 of the VIP-BENCH benchmarks with our SEAL interface.
The remainder are run on the VIP Functional Library.

For the remaining workloads, we built the VIP benchmarks
with the VIP Functional Library included in the VIP-BENCH
distribution, denoted ENC-VIP. This library is packaged with
the VIP benchmark suite and serves as a functional imple-
mentation of VIP’s expected computation model, detailed in
Section II. The VIP Functional Library uses x86 AES-NI [11]
to perform “almost” always-encrypted computation. Encrypted
variables are expressed as 128-bit values consisting of the
native data type (e.g., integer) padded to 64-bits, appended
by a 64-bit true random salt value, and encrypted using the
x86 AES-NI extensions [11]. When an encrypted variable is
processed, it is loaded into a register, decrypted, operated
on, and then re-encrypted. While the VIP Functional Library
is primarily meant to be a reference implementation of the
VIP computational model, it also has some useful security
properties. The VIP Functional Library only exposes sensitive
variables in the register file. Thus, when using this library, a
program would not be subject to memory side channels (e.g.,
Spectre or Meltdown). In addition, the library implements
high-entropy ciphers by packing all data types with 64-bits
of true random salt values, sufficiently diversifying sensitive
variables in memory to thwart cryptanalysis attacks.

B. Performance and Memory Analyses

To measure performance, the VIP benchmarks were instru-
mented to measure their core computation times and instruc-
tion count, excluding the preparation of input/output data and
the comparison of results against ground-truth outputs. Timing
analyses is performed using the StopWatch class library [13],
which performs timing measurements on a microsecond reso-
lution. Instruction count was recorded using the Linux perfor-
mance monitoring utility perf_event [14]. Memory usage
was analyzed by reading each process’s peak memory usage
via the Linux process table status variable VmPeak. To reduce
the effects of system noise in our performance measurements
each experiment was performed 100 times, and the average
run-time is reported.

Table V shows the measured performance for each of the
VIP benchmarks, running in native (NA), data-oblivious (DO),
and encrypted (ENC) mode when built with the Microsoft
SEAL or VIP Functional Library. All run times are reported
in microseconds (µs). Homomorphic encryption libraries, in-
cluding SEAL, have limited support for complex operators and
deep computations. Thus, some of the benchmarks could not
be run with these frameworks. However, the VIP Functional
Library is able to run all of the benchmarks, including the
HE-friendly benchmarks.

Comparing the native (NA) executions to the data-oblivious
(DO) executions, it is possible to see the cost of restricting
software from seeing its secret data. These overheads range
of negligible (e.g., FFT-Int) to sizeable (e.g., Bubble-Sort,
Kepler, and Parrondo). These inefficiencies arise because the



Benchmark Mode Insn. Count Runtime (µs) VSZ (kB)

Hamming-Distance NA 571,746 258 14,160
DO 571,746 258 14,160
ENC-BFV 379,721,213 50,553 (196x) 135,692
ENC-CKKS 203,778,393 30,038 (116x) 148,292

Dot-Product NA 589,272 167 14,160
DO 589,272 167 14,160
ENC-BFV 213,441,935 30,089 (180x) 112,804
ENC-CKKS 235,657,417 34,125 (204x) 148,292

X-Gradient NA 35,688 4 14,160
DO 35,688 4 14,160
ENC-BFV 357,762,502 42,439 (10,427x) 112,292
ENC-CKKS 555,413,370 65,828 (16,174x) 148,032

Linear-Regression NA 556,518 149 14,160
DO 556,518 149 14,160
ENC-BFV 255,475,787 36,883 (248x) 130,048
ENC-CKKS 132,301,587 21,769 (147x) 146,368

Poly-Regression NA 1,269,371 354 14,296
DO 1,269,371 354 14,296
ENC-BFV 509,721,588 63,544 (179x) 132,676
ENC-CKKS 212,743,858 31,197 (88x) 151,816

Roberts-Cross NA 37,270 4 14,160
DO 37,270 4 14,160
ENC-BFV 705,305,953 81,173 (18,490x) 122,300
ENC-CKKS 717,004,004 80,650 (18,371x) 154,828

Eulers-Approx NA 40,027,740 21,347 14,012
DO 40,027,740 21,439 14,012
ENC-VIP 7,743,956,899 1,282,983 (60x) 14,028

Triangle-Count NA 65,856 11 14,016
DO 65,863 11 14,016
ENC-VIP 8,648,695 4,360 (411x) 14,048

Mersenne NA 902,318 806 14,016
DO 902,316 784 14,016
ENC-VIP 20,659,263 9,551 (12x) 14,044

Bubble-Sort NA 532,805 241 14,016
DO 548,660 264 14,016
ENC-VIP 309,979,528 66,329 (276x) 14,032

Nonlinear-NN NA 10,508,736 9,834 14,020
DO 10,506,651 9,745 14,020
ENC-VIP 18,810,869 11,834 (1.2x) 14,036

Edit-Distance NA 145,459,282 72,033 14,350
DO 145,459,283 72,156 14,349
ENC-VIP 33,022,300,601 4,477,836 (62x) 14,365

FFT-Int NA 163,633 46 14,020
DO 163,651 46 14,020
ENC-VIP 74,916,460 20,408 (447x) 14,060

NR-Solver NA 341,605 233 14,012
DO 346,015 247 14,012
ENC-VIP 10,668,773 4,710 (20x) 14,028

LDA NA 206,709 85 14,076
DO 207,966 88 14,076
ENC-VIP 73,534,227 20,159 (236x) 14,184

Kepler NA 76,200 54 14,079
DO 93,881 65 14,079
ENC-VIP 18,895,701 8,108 (150x) 14,123

Parrondo NA 25,047,453 9,535 14,012
DO 143,643,026 24,058 14,012
ENC-VIP 71,487,961,658 9,028,822 (947x) 14,036

MNIST-CNN NA 205,331,153 48,438 21,132
DO 205,521,747 48,383 21,136
ENC-VIP 44,887,346,878 7,454,505 (154x) 36,552

TABLE V: Performance and Memory Analyses. NA and DO
report the results for the native and data-oblivious variants of each
workload running with native C++ data types. ENC-BFV and ENC-
CKKS report the results for the benchmark running in encrypted
mode with the support from the Microsoft SEAL libraries in BFV
and CKKS mode, respectively. ENC-VIP reports the results for the
benchmark running in encrypted mode with the VIP Functional
library PEC capability. Timing analysis was amortized over 100
trials and reported in microseconds (µs). For encrypted modes, the
performance overhead compared to native execution is also shown.
Memory usage is presented as peak virtual memory size (VSZ)
reported in kilobytes (kB).

algorithms in data-oblivious mode cannot utilize heuristics
to improve their overall run times. For instance, in the case
of Bubble-Sort, the algorithm cannot terminate early when it
detects that all the elements are sorted (as it does for the native
execution). This restriction forces the algorithm to complete a
worst-case (N2) number of compare-and-swap operations to
ensure that any input set is properly sorted.

Comparing the data-oblivious (DO) and encrypted (ENC)
executions highlights the cost of i) Operating directly on
encrypted data and ii) Processing relatively larger ciphertext
variables. These overheads are generally very high, ranging
to over 18,000× for Roberts-Cross. It is interesting to com-
pare the ENC-mode executions utilizing the VIP Functional
Library to the HE-based executions. With the VIP Functional
framework, slowdowns are on the order of 1-1,000×, while the
HE frameworks have slowdowns in the range of 200-20,000×.
While it isn’t entirely fair to compare these two frameworks
given that the security assurances of HE far outstrip the
protections of the VIP Functional framework (which utilizes
register-based AES operations), these results clearly show that
HE homomorphisms are significantly more expensive than
AES bulk cipher operations.

Table V also lists the memory overheads associated with
each benchmark, reported as the peak virtual memory size
in kilobytes (kB). Memory overheads vary from moderate
(e.g., Mersenne) to large (e.g., MNIST-CNN) to massive (e.g.,
Linear-Regression and Roberts-Cross). These overheads are
reflective of the increase in data sizes due to added encryption
protections. In general, a high-entropy ciphertext values will
increase the size of the data type by at least as much as the
true random salt added to all values before encryption. In the
case of the VIP Functional Library, all data values are paired
with a 64-bit true random salt value. For HE frameworks, it
is expected for these overheads to grow acutely, since HE
ciphertexts can become very large.

V. BACKGROUND AND RELATED WORK

A. Background

VIP-BENCH is interested in evaluating PEC technologies
that enable oblivious computing. The programming interface
currently supports data-oblivious computing and homomorphic
encryption. We briefly introduce these technologies below and
conclude by listing alternative PECs we plan to support in the
future.

1) Data-Oblivious Computing: Prior work has demon-
strated that data-oblivious computing provides programs sig-
nificant immunity from side channels [8], [9], [15]–[18]. For
example, Kocher’s classic timing attack [19] exploits condi-
tionals that branch on sensitive key data. Such conditionals
are not permitted in data-oblivious programming frameworks.
Similarly, data-oblivious computing prohibits sensitive data
from being used in the creation of memory addresses. Re-
moving data-dependent conditionals makes the system much
more challenging to program, as in the case of HE. Thus,
these systems often introduce conditional move predication, as
in VIP-BENCH, to permit control decisions on sensitive data



without introducing side channels. Furthermore, to alleviate
restrictions on memory addressing, approaches have proposed
using ORAM to sufficiently diffuse memory accesses [9].
Recent work has took to integrating encryption alongside data-
oblivious computing [20], which moves towards supporting
always-encrypted computation on top of the data-oblivious
programming model.

2) Homomorphic Encryption: Homomorphic encryption
(HE) is a form of encryption that enables computation directly
on encrypted data. Since Gentry’s initial construction [1],
improvements have been made to significantly reduce com-
putational overheads. There are two general classes of HE
used to compute on integer/fixed-point or boolean data types.
BFV [21] and CKKS [22] are (arguably) the most commonly
used integer schemes. They have slight differences but provide
the same set of operators, support vectors as native data
types, and use noise-based encryption. Boolean HE schemes
are still rapidly developing and gaining lots of traction (e.g.,
TFHE). Although VIP-BENCH currently supports only inte-
ger schemes, we plan to explore integration with Boolean
frameworks in future work. Thus, whenever we say HE, it is
assumed to be integer HE. Below, we provide an HE primer to
help readers understand this paper. See the above referenced
papers for complete details on individual schemes.

Modern HE schemes all use large vectors of modular
integers as the fundamental data type. Vectors typically range
in size from 1024 to 128k elements and each element uses
an encrypted data type of a dozens to thousands of bits.
Vector length and data type parameter selection has complex
impacts on security and performance, and prior work has
proposed methods for automatically tuning them [2], [5]. A
practical benefit of vector ciphertexts is it enables users to pack
(roughly) one plaintext data into each HE vector element, or
slot. Therefore, even though the vectors are large and slow to
compute on, vector packing can offer significant throughput
improvement without affecting latency. Both BFV and CKKS
support element-wise vector addition and multiplication as
well as vector slot rotation, which can be used to re-align
vector elements within a vector.

In HE, encryption involves adding noise to plaintext data.
Each time an operation is applied to a ciphertext the added
noise compounds. Therefore, each freshly encrypted ciphertext
has a noise budget that limits the computational depth of a
function a ciphertext can compute before exceeding the budget.
When the noise budget is exceeded, decryption fails, returning
random results and rendering the computation ineffectual.
Noise is commonly dealt with be either allocating a sufficiently
large budget by increasing the ciphertext data type length, or
by bootstrapping, where the noise is reset using a form of
homomorphic decrypt/re-encrypt. Bootstrapping is generally
considered prohibitively expensive, and most solutions try to
limit computation depth and allocate sufficient noise budget
for the full computation.

3) Additional PEC technologies: Data-oblivious computing
and HE were selected as examplar PEC technologies for
designing VIP-BENCH, but there exist many more.

Secure Multiparty Computation (MPC) is a way for
multiple parties to jointly compute a function without either
party learning the others’ input values. There are generally
two classes of MPC: secret sharing and garbled circuits.

Secret sharing can work over integer (called arithmetic
secret sharing) or Boolean data types. It works by dividing
private inputs into shares and blinding raw values by adding
random numbers. Blinded secrets can then be shared with
involved parties to compute functions obliviously. Once each
party finishes computing, the results can be re-shared and
summed to produce the output result.

Garbled circuits [23] support arbitrary computation by ex-
pressing all inputs as binary and all functions as logic gates.
It is a two party protocol where one party (garbler) generates
a representation of the function to be computed as a series
of Boolean tables and the other (evaluator) executes the tables
using encrypted representations of both inputs, which are often
called labels. Each gate in the circuit represents one Boolean
gate and requires several decryptions to evaluate. In the future,
we hope to support both secret sharing and garbled circuits in
VIP-BENCH.

Trusted Execution Environments (TEE) reduce the risk
of a program getting hacked by walling off the execution of
trusted software from the rest of the system (including the
operating system and drivers) through encryption and selec-
tive isolation. Examples of these technologies include Intel
SGX [24] and ARM TrustZone [25]. Using TEEs, developers
should only have to worry about the security and integrity
of software running inside the TEE, ignoring the rest of the
system’s vulnerabilities. In practice, the approach falls short
in two important ways: i) Software remains inside of the
TEE, which can be hacked, and ii) Trusted data resides in the
same resources utilized by the main core’s software, leading to
resource sharing that enables side-channel attacks to exfiltrate
secrets out of TEEs. As such, TEEs provide better security
guarantees than native systems, but fall short of solving data
security challenges, as they are plagued by a wide variety
of effective attack scenarios. While it would be possible to
implement a VIP computational model using a TEE, it would
not be possible to achieve zero software trust using such an
approach.

B. Related Work

1) Homomorphic Encryption: Software frameworks: The
major frameworks implementing HE include SEAL [3],
HEAAN [26], Palisade [2], and HElib [27]. Each of these
PEC frameworks should be capable of executing a sizeable
fraction of the VIP-BENCH benchmarks. Currently, we pro-
vide support for SEAL, and we look forward to expanding
this pallete in the future.

Compilers: A major challenge when using HE is handling
noise growth, packing the large vectors, and reasoning about
rotations. Prior work has employed compilers as an effective
way to alleviate these challenges. EVA [28] and Alchemy [29]
automate the selection of HE parameters for a given com-
putation, tailoring a noise budget to the needs of specific



applications. Porcupine [7] and RAMPARTS [30] are com-
pilers for generating HE programs from a more user-friendly
representation. RAMPARTS uses Julian as a native language
and directly translates the encoded program. Porcupine pro-
poses a domain-specific language and uses program synthesis
to generate noise-latency optimal HE programs. Significantly
more attention has been given to compiling programs for
Boolean HE schemes, including Cingulata [31], E3 [32], and
Google’s transpiler [33]. Another avenue of research has been
application-specific support, which has primarily focused on
neural networks [34], [35].

Hardware: While compiler support paves the way for HE’s
mainstream adoption, the primary reason for its limited use
are its extreme performance overheads. This has lead to the
proposal of many novel hardware accelerators to speed up
HE. HEAX [6] proposes using FPGAs to speed up ciphertext-
ciphertext multiplication, achieving nearly two orders of mag-
nitude improvement over a CPU. In [36], authors also speed
up HE operators using FPGAs and report 13× speedup.
GPUs have also been a popular platform for accelerating
HE computation. Many have ported the core HE kernels,
namely number theoretic transform (NTT), to run on GPUs
and typically report speedups ranging from one to two orders
of magnitude compared to CPU implementations [37]–[39].

While FPGAs and GPUs provide significant speedup, even
100× speedup is insufficient as HE can be as much as six
orders of magnitude slower than plaintext execution. Under-
standing these performance needs, another line of research
has developed ASICs tailored to HE. Cheetah [5] proposes
a large, GPU-scale ASIC to speedup CNN inference with HE.
The authors focus on CNNs as a case study to understand
whether HE can be processed in near real time using large
custom hardware. They conclude that the extreme degrees of
parallelism found in HE and deep learning can be leveraged
in custom logic to bring CNN inference within a small
constant factor of real-time inference. Sapphire [40] devel-
ops an accelerator for client-side encryption, proposing low-
level hardware design optimizations for highly-efficient lattice-
based encryption. CHOCO-TACO [41] also focuses on the
client-side costs of HE. The authors develop communication
optimizations to alleviate data exchange and custom hardware
for substantial energy and performance improvements.

VI. CONCLUSION

In this paper, we presented the VIP-BENCH benchmark
suite, a collection of 18 privacy-enhanced benchmarks suitable
for evaluating the capabilities and overheads of a wide range of
privacy-enhanced computation (PEC) frameworks. The bench-
mark set is built on the VIP computational model, which
defines a forward-looking and challenging PEC model that
implements zero software trust. VIP-BENCH utilizes a unified
programming interface and single-sourced implementation to
facilitate the porting of workloads to the benchmark suite and
the porting of the suite to new PEC capabilities. Furthermore,
VIP-BENCH includes the VIP Functional Library, a software

implementation of the VIP computational model, to assist in
the development and validation of new benchmarks.

VIP-BENCH aims to define a forward-looking computa-
tional model and deliver a range of meaningful benchmarks
under that model. We did not set out to create a benchmark
suite that all existing PEC capabilities could support—quite
the contrary. The limited capabilities of existing PEC frame-
works, which often limit computation complexity and depth,
create an often too-large barrier to entry for applications
that could truly benefit from these groundbreaking privacy
technologies. Rather, our goal was to create a benchmark suite
that would become a stretch goal for many existing PEC capa-
bilities. It is our true hope that the VIP-BENCH will facilitate
the development of future PEC frameworks with improved
computation capabilities and performance characteristics.

To learn more about VIP-BENCH and to access the
latest distribution, please go to: https://bitbucket.org/vip-
benchmarks/vip-bench
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