
EECS 583 – Class 7

Static Single Assignment Form

University of Michigan

September 22, 2021

- 1 -

Announcements & Reading Material

 HW2 out this past Monday

» Spec and starting code are available on course webpage

» Also check out piazza

 Today’s class

» “Practical Improvements to the Construction and Destruction of

Static Single Assignment Form,” P. Briggs, K. Cooper, T.

Harvey, and L. Simpson, Software--Practice and Experience,

28(8), July 1998, pp. 859-891.

 Next class – Optimization, Yay!

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988,

9.9, 10.2, 10.3, 10.7 Edition 1; 8.5, 8.7, 9.1, 9.4, 9.5 Edition 2

- 2 -

From Last Time: What About All Path Problems?

 Up to this point

» Any path problems (maybe relations)

 Definition reaches along some path

 Some sequence of branches in which def reaches

 Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

 All-path: Definition guaranteed to reach

» Regardless of sequence of branches taken, def reaches

» Can always count on this

» Only 1 def can be guaranteed to reach

» Availability (as opposed to reaching)

 Available definitions

 Available expressions (could also have reaching expressions, but not

that useful)

- 3 -

Available Definition Analysis (Adefs)

 A definition d is available at a point p if along all paths

from d to p, d is not killed

 Remember, a definition of a variable is killed between 2

points when there is another definition of that variable

along the path

» r1 = r2 + r3 kills previous definitions of r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs

downwards

» Use the Intersect function as the meet operator to guarantee the

all-path requirement

» GEN/KILL/IN/OUT similar to reaching defs

 Initialization of IN/OUT is the tricky part

- 4 -

Compute GEN/KILL Sets for each BB (Adefs)

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

for each destination operand of op, dest, do

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

endwhile

Exactly the same as reaching defs !!!

- 5 -

Compute IN/OUT Sets for all BBs (Adefs)

U = universal set of all operations in the Procedure

IN(0) = 0

OUT(0) = GEN(0)

for each basic block in procedure, W, (W != 0), do

IN(W) = 0

OUT(W) = U – KILL(W)

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_OUT = OUT(X)

IN(X) = Intersect(OUT(Y)) for all predecessors Y of X

OUT(X) = GEN(X) + (IN(X) – KILL(X))

if (old_OUT != OUT(X)) then

change = 1

endif

endfor

endwhile

- 6 -

Example Adef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

GEN = 7, 8, 9

KILL = 2, 5, 6, 10, 12

IN = 0  1,2,3

OUT = 1,3,4,7,8,9,11  1,3,7,8,9

GEN = 4, 5, 6

KILL = 1, 8, 9, 10, 11, 12

GEN = 1, 2, 3

KILL = 4, 7, 11

GEN = 11, 12

KILL = 1,4,5,9,10

OUT = 2,3,6,7,8,11,12  3,11,12

OUT = 2,3,4,5,6,7  2,3,4,5,6

OUT = 1,2,3  1,2,3

IN = 0  0

IN = 0  1,2,3

IN = 0  3

- 7 -

Available Expression Analysis (Aexprs)

 An expression is a RHS of an operation

» r2 = r3 + r4, r3+r4 is an expression

 An expression e is available at a point p if along all paths
from e to p, e is not killed

 An expression is killed between 2 points when one of its
source operands are redefined

» r1 = r2 + r3 kills all expressions involving r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs
downwards

» Use the Intersect function as the meet operator to guarantee the
all-path requirement

» Looks exactly like adefs, except GEN/KILL/IN/OUT are the
RHS’s of operations rather than the LHS’s

- 8 -

Computation of Aexpr GEN/KILL Sets

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

K = 0

for each destination operand of op, dest, do

K += {all ops which use dest}

endfor

if (op not in K)

G = op

else

G = 0

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

We can also formulate the GEN/KILL slightly differently so you do not

need to break up instructions like “r2 = r2 + 1”.

- 9 -

Homework Problem - Aexprs Calculation

Answer on the Next Slide

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

- 10 -

Homework Problem - Answer

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

GEN = 1,3 (remember {1, 3} means {“r6*r9”, “r3*r4”})

KILL = 2, 4, 8, 9, 10

GEN = 7, 9

KILL = 8

GEN = 10, 12

KILL = 3, 5, 6, 7, 8, 9, 11

GEN = 4, 6

KILL = 3, 5, 7, 8, 9, 11

IN = -  -

OUT = 1,3,5,6,7,11,12  1,3

IN = -  1,3

OUT = 1,2,3,4,5,6,7,9,10,11,12  1,3,7,9

IN = -  1

OUT = 1,2,4,10,12  1,10,12

IN = -  1,3

OUT = 1,2,4,6,10,12  1,4,6

IN/OUT sets

A  B

A = initial state

B = after first iteration

- 11 -

Dataflow Summary Analyses in 1 Slide

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

Liveness Reaching Definitions/DU/UD

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers

Uses of variables  GEN

Defs of variables  KILL

Top-down dataflow

Any path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Definitions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Expressions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Expressions of variables  GEN

Defs of variables  KILL

- 12 -

Static Single Assignment (SSA) Form

 Difficulty with optimization

» Multiple definitions of the

same register

» Which definition reaches

» Is expression available?

 Static single assignment

» Each assignment to a variable is given a unique name

» All of the uses reached by that assignment are renamed

» DU chains become obvious based on the register name!

r1 = r2 + r3

r6 = r4 – r5

r4 = r6

r6 = 8

r7 = r4 – r5

r8 = r2 + r3

- 13 -

Converting to SSA Form

 Trivial for straight line code

 More complex with control flow – Must use Phi nodes

x = -1

y = x

x = 5

z = x

x0 = -1

y = x0

x1 = 5

z = x1

if (...)

x = -1

else

x = 5

y = x

if (...)

x0 = -1

else

x1 = 5

x2 = Phi(x0,x1)

y = x2

- 14 -

Converting to SSA Form (2)

 What about loops?

» No problem!, use Phi nodes again

i = 0

do {

i = i + 1

}

while (i < 50)

i0 = 0

do {

i1 = Phi(i0, i2)

i2 = i1 + 1

}

while (i2 < 50)

- 15 -

SSA Plusses and Minuses

 Advantages of SSA

» Explicit DU chains – Trivial to figure out what defs reach a use

 Each use has exactly 1 definition!!!

» Explicit merging of values

» Makes optimizations easier

 Disadvantages

» When transform the code, must either recompute (slow) or

incrementally update (tedious)

- 16 -

Phi Nodes (aka Phi Functions)

 Special kind of copy that selects one of its inputs

 Choice of input is governed by the CFG edge along which

control flow reached the Phi node

 Phi nodes are required when 2 non-null paths XZ and

YZ converge at node Z, and nodes X and Y contain

assignments to V

x0 = x1 =

x2 = Phi(x0,x1)

- 17 -

SSA Construction

 High-level algorithm

1. Insert Phi nodes

2. Rename variables

 A dumb algorithm

» Insert Phi functions at every join for every variable

» Solve reaching definitions

» Rename each use to the def that reaches it (will be unique)

 Problems with the dumb algorithm

» Too many Phi functions (precision)

» Too many Phi functions (space)

» Too many Phi functions (time)

- 18 -

Need Better Phi Node Insertion Algorithm

 A definition at n forces a Phi node at m iff n not in DOM(m), but n in DOM(p)

for some predecessors p of m

BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

def in BB4 forces Phi in BB6

def in BB6 forces Phi in BB7

def in BB7 forces Phi in BB1

Dominance frontier

The dominance frontier of node X is the

set of nodes Y such that

* X dominates a predecessor of Y, but

* X does not strictly dominate Y

Phi is placed in the block that

is just outside the dominated region

of the definition BB

- 19 -

Recall: Dominator Tree

BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

BB DOM

0 0

1 0,1

2 0,1,2

3 0,1,3

BB DOM

4 0,1,3,4

5 0,1,3,5

6 0,1,3,6

7 0,1,7

Dom tree

First BB is the root node, each node

dominates all of its descendants

- 20 -

Computing Dominance Frontiers

BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

For each join point X in the CFG

For each predecessor, Y, of X in the CFG

Run up to the IDOM(X) in the dominator tree,

adding X to DF(N) for each N between Y and

IDOM(X) (or X, whichever is encountered first)

BB DF

0

1

2

3

4

5

6

7

- 21 -

Homework Problem – Compute DF for each BB

Answer on Slide 24

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

Dominator Tree

BB0

BB1

BB2 BB3 BB4 BB5

For each join point X in the CFG

For each predecessor, Y, of X in the CFG

Run up to the IDOM(X) in the dominator tree,

adding X to DF(N) for each N between Y and

IDOM(X) (or X, whichever is encountered first)

- 22 -

SSA Step 1 - Phi Node Insertion

 Compute dominance frontiers

 Find global names (aka virtual registers)

» Global if name live on entry to some block

» For each name, build a list of blocks that define it

 Insert Phi nodes

» For each global name n

 For each BB b in which n is defined

 For each BB d in b’s dominance frontier

o Insert a Phi node for n in d

o Add d to n’s list of defining BBs

- 23 -

Phi Node Insertion - Example

a =

c =

b =

c =

d =

a =

d =

c =d =

b =

i =

a =

b =

c =

i =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB DF

0 -

1 -

2 7

3 7

4 6

5 6

6 7

7 1

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

i = Phi(i,i)

a is defined in 0,1,3

need Phi in 7

then a is defined in 7

need Phi in 1

b is defined in 0, 2, 6

need Phi in 7

then b is defined in 7

need Phi in 1

c is defined in 0,1,2,5

need Phi in 6,7

then c is defined in 7

need Phi in 1

d is defined in 2,3,4

need Phi in 6,7

then d is defined in 7

need Phi in 1

i is defined in BB7

need Phi in BB1

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

- 24 -

Homework Problem – Insert Phi Nodes

Answer on Slide 36

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

BB0

BB1

BB2 BB3 BB4 BB5

BB DF

0 -

1 -

2 4

3 4, 5

4 5

5 1

Dominator tree

Dominance frontier

- 25 -

SSA Step 2 – Renaming Variables

 Use an array of stacks, one stack per global variable (VR)

 Algorithm sketch

» For each BB b in a preorder traversal of the dominator tree

 Generate unique names for each Phi node

 Rewrite each operation in the BB

 Uses of global name: current name from stack

 Defs of global name: create and push new name

 Fill in Phi node parameters of successor blocks

 Recurse on b’s children in the dominator tree

 <on exit from b> pop names generated in b from stacks

- 26 -

Renaming – Example (Initial State)

a =

c =

b =

c =

d =

a =

d =

c =d =

b =

i =

a =

b =

c =

i =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

i = Phi(i,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

var: a b c d i

ctr: 0 0 0 0 0

stk: a0 b0 c0 d0 i0

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 27 -

Renaming – Example (After BB0)

a =

c =

b =

c =

d =

a =

d =

c =d =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a = Phi(a0,a)

b = Phi(b0,b)

c = Phi(c0,c)

d = Phi(d0,d)

i = Phi(i0,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

var: a b c d i

ctr: 1 1 1 1 1

stk: a0 b0 c0 d0 i0

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 28 -

Renaming – Example (After BB1)

a2 =

c2 =

b =

c =

d =

a =

d =

c =d =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

d = Phi(d,d)

var: a b c d i

ctr: 3 2 3 2 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 c2

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 29 -

Renaming – Example (After BB2)

a2 =

c2 =

b2 =

c3 =

d2 =

a =

d =

c =d =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a2,a)

b = Phi(b2,b)

c = Phi(c3,c)

d = Phi(d2,d)

var: a b c d i

ctr: 3 3 4 3 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 b2 c2 d2

c3

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 30 -

Renaming – Example (Before BB3)

a2 =

c2 =

b2 =

c3 =

d2 =

a =

d =

c =d =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a2,a)

b = Phi(b2,b)

c = Phi(c3,c)

d = Phi(d2,d)

var: a b c d i

ctr: 3 3 4 3 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 c2

This just updates

the stack to remove the

stuff from the left path

out of BB1

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 31 -

Renaming – Example (After BB3)

a2 =

c2 =

b2 =

c3 =

d2 =

a3 =

d3 =

c =d =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c,c)

d = Phi(d,d)

a = Phi(a2,a)

b = Phi(b2,b)

c = Phi(c3,c)

d = Phi(d2,d)

var: a b c d i

ctr: 4 3 4 4 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 c2 d3

a3

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 32 -

Renaming – Example (After BB4)

a2 =

c2 =

b2 =

c3 =

d2 =

a3 =

d3 =

c =d4 =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c2,c)

d = Phi(d4,d)

a = Phi(a2,a)

b = Phi(b2,b)

c = Phi(c3,c)

d = Phi(d2,d)

var: a b c d i

ctr: 4 3 4 5 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 c2 d3

a3 d4

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 33 -

Renaming – Example (After BB5)

a2 =

c2 =

b2 =

c3 =

d2 =

a3 =

d3 =

c4 =d4 =

b =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c = Phi(c2,c4)

d = Phi(d4,d3)

a = Phi(a2,a)

b = Phi(b2,b)

c = Phi(c3,c)

d = Phi(d2,d)

var: a b c d i

ctr: 4 3 5 5 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 c2 d3

a3 c4

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 34 -

Renaming – Example (After BB6)

a2 =

c2 =

b2 =

c3 =

d2 =

a3 =

d3 =

c4 =d4 =

b3 =

i =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)

b1 = Phi(b0,b)

c1 = Phi(c0,c)

d1 = Phi(d0,d)

i1 = Phi(i0,i)

c5 = Phi(c2,c4)

d5 = Phi(d4,d3)

a = Phi(a2,a3)

b = Phi(b2,b3)

c = Phi(c3,c5)

d = Phi(d2,d5)

var: a b c d i

ctr: 4 4 6 6 2

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 b3 c2 d3

a3 c5 d5

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 35 -

Renaming – Example (After BB7)

a2 =

c2 =

b2 =

c3 =

d2 =

a3 =

d3 =

c4 =d4 =

b3 =

i2 =

a0 =

b0 =

c0 =

i0 =
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a4)

b1 = Phi(b0,b4)

c1 = Phi(c0,c6)

d1 = Phi(d0,d6)

i1 = Phi(i0,i2)

c5 = Phi(c2,c4)

d5 = Phi(d4,d3)

a4 = Phi(a2,a3)

b4 = Phi(b2,b3)

c6 = Phi(c3,c5)

d6 = Phi(d2,d5)

var: a b c d i

ctr: 5 5 7 7 3

stk: a0 b0 c0 d0 i0

a1 b1 c1 d1 i1

a2 b4 c2 d6 i2

a4 c6
Fin!

BB0

BB1

BB2 BB3

BB4

BB6

BB5

BB7

- 36 -

Homework Problem – Rename the Variables

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

BB0

BB1

BB2 BB3 BB4 BB5

Dominator tree

- 37 -

Homework Problem – Final Answer

c2 = b1 + a1
b2 = a1 + 1

a2 = b2 * c1

b4 = c3 – a3

a5 = a4 – c4

c5 = b5 * c4

a0 =

b0 =

c0 =
BB0

BB1

BB2

BB3

BB4

BB5

BB DF

0 -

1 -

2 4

3 4, 5

4 5

5 1

Rename the variables

a4 = Phi(a2,a3)

b5 = Phi(b2,b4)

c4 = Phi(c1,c3)

a1 = Phi(a0,a5)

b1 = Phi(b0,b5)

c1 = Phi(c0,c5)

a3 = Phi(a1,a2)

b3 = Phi(b1,b2)

c3= Phi(c2,c1)

Dominance frontier

BB0

BB1

BB2 BB3 BB4 BB5

Dominator tree

