
EECS 583 – Class 5

Finish Control Flow Analysis,

Dataflow Analysis Intro

University of Michigan

September 15, 2021

- 1 -

Reading Material + Announcements

 Reminder – HW 1 due tonight at midnight

» Submit uniquename_hw1.tgz file to:

 eecs583a.eecs.umich.edu:/hw1_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit

 Then, post question or talk to Yunjie/Ze if you are stuck

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

- 2 -

From Last Time: Homework Problem

if (a > 0) {

r = t + s

if (b > 0 || c > 0)

u = v + 1

else if (d > 0)

x = y + 1

else

z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

- 3 -

Homework Problem Answer

if (a > 0) {

r = t + s

if (b > 0 || c > 0)

u = v + 1

else if (d > 0)

x = y + 1

else

z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

BB2

BB3

BB1

BB5

BB6 BB7

BB4

BB8

a <= 0 a > 0

b > 0

b <= 0

c <= 0
c > 0

d > 0d <= 0

BB CD

1 -

2 1

3 -2

4 -3

5 2,3

6 -4

7 4

8 -

p3 = 0

p1 = CMPP.UN (a > 0) if T

r = t + s if p1

p2,p3 = CMPP.UC.ON (b > 0) if p1

p4,p3 = CMPP.UC.ON (c > 0) if p2

u = v + 1 if p3

p5,p6 = CMPP.UC.UN (d > 0) if p4

x = y + 1 if p6

z = z + 1 if p5

- 4 -

When to Apply If-conversion?

 Positives

» Remove branch

 No disruption to sequential fetch

 No prediction or mispredict

 No draining of pipeline for
mispredict

 No use of branch resource

» Increase potential for operation
overlap

 Creates larger basic blocks

 Convert control dependences into
data dependences

» Enable more aggressive compiler
xforms

 Software pipelining

 Height reduction

 What about the negatives?

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 5 -

Negative 1: Resource Usage

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Instruction execution is additive

for all BBs that are if-converted, thus

require more processor resources

BB1

BB2 if p1

BB3 if p2

BB4

Be careful applying if-conversion too liberally

when processor resources constrained OR

blocks have large numbers of instructions

- 6 -

Negative 2: Dependence Height

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Dependence height is max of

for all BBs that are if-converted

(dep height = schedule length

with infinite resources)

BB1

BB2 if p1

BB3 if p2

BB4

Be careful with if-converting blocks with

mismatched dependence heights

- 7 -

Negative 3: Hazard Presence

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Hazard = operation that forces

the compiler to be conservative,

so limited reordering or optimization,

e.g., subroutine call, pointer store, …

BB1

BB2 if p1

BB3 if p2

BB4

Hazards should be avoided except

on the “main path”

- 8 -

Deciding When/What To If-convert
 Resources

» Small resource usage ideal for less

important paths

 Dependence height

» Matched heights are ideal

» Close to same heights is ok

 Remember everything is relative for

resources and dependence height !

 Hazards

» Avoid hazards unless on most

important path

 Estimate of benefit

» Branches/Mispredicts removed

» Increased instruction overlap

BB2

BB4

BB1

BB3

60 40

100

60 40

100

BB1

BB2 if p1

BB3 if p2

BB4

- 9 -

The Hyperblock

 Hyperblock - Collection of basic

blocks in which control flow may

only enter at the first BB. All

internal control flow is eliminated

via if-conversion

» “Likely control flow paths”

» Acyclic (outer backedge ok)

» Multiple intersecting traces with

no side entrances

» Side exits still exist

 Hyperblock formation

» 1. Block selection

» 2. Tail duplication

» 3. If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 10 -

Block Selection

 Block selection

» Select subset of BBs for

inclusion in HB

» Difficult problem

» Weighted cost/benefit

function

 Height overhead

 Resource overhead

 Hazard overhead

 Branch elimination benefit

 Weighted by frequency

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 11 -

Example - Step 1 - Block Selection

BB2 - 8

BB4 - 3

BB6 - 2

BB5 - 10

BB1 - 5

BB3 – 2

80 20

10

90

10

90

10

80 20

10

main path = BB1,BB2,BB4,BB6

Consider adding BB3 and BB5

- 12 -

Example - Step 2 - Tail Duplication

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

- 13 -

Example - Step 3 – If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1 9

10

If-convert intra-HB branches only!!

- 14 -

For More on Predicates/Hyperblocks

 See

» "Effective Compiler Support for Predicated Execution using the

Hyperblock", S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for

EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

New Topic

Dataflow Analysis!

- 16 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 17 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 18 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 19 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in reverse sequential order in X, op, do

for each destination operand of op, dest, do

GEN(X) -= dest

KILL(X) += dest

endfor

for each source operand of op, src, do

GEN(X) += src

KILL(X) -= src

endfor

endfor

endfor

- 20 -

Example – GEN/KILL Liveness Computation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 21 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_IN = IN(X)

OUT(X) = Union(IN(Y)) for all successors Y of X

IN(X) = GEN(X) + (OUT(X) – KILL(X))

if (old_IN != IN(X)) then

change = 1

endif

endfor

endfor

- 22 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

GEN = r2

KILL = r1,r8

GEN = r1,r5

KILL = r3,r7

GEN = r2,r3,r7,r8

KILL = r1

GEN = r1

KILL = r2,r3,r7

- 23 -

Class Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute liveness

Calculate GEN/KILL for each BB

Calculate IN/OUT for each BB

