EECS 583 — Class 5
Finish Control Flow Analysis,
Dataflow Analysis Intro

University of Michigan

September 15, 2021

Reading Material + Announcements

<« Reminder — HW 1 due tonight at midnight
» Submit uniquename_hw1.tgz file to:
e eecsb83a.eecs.umich.edu:/hwl_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit
e Then, post question or talk to Yunjie/Ze if you are stuck

< Today’s class

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

<« Material for next Monday

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

From Last Time: Homework Problem

if(a>0){
r=t+s
if(b>0(c>0)
u=v+1
else if (d > 0)
X=y+1
else
z=z+1

a. Draw the CFG
b. Compute CD
c. If-convert the code

Homework Problem Answer

I BB CD
(a>0)1 BB1 1 -
r=t+s a>0 - 1
if(b>0(c>0) 3 2
BB2 4 3
u=v+1 c 23
else if (d > 0) o0 S ;14
Xx=y+1 BB3) 3)
else |
) z=z+1 BB4 BB5
<=0~ \d>0 p3=0
BB7 pl=CMPP.UN (a>0)if T
r=t+sifpl
\ / p2,p3 = CMPP.UC.ON (b > 0) if p1
p4,p3 = CMPP.UC.ON (c > 0) if p2
BB8 u=v+1ifp3
a. Draw the CFG 25_,p;5+: lCiI}/IFI;’g’.UC.UN (d>0) if p4
b. Compute CD z=z+1ifp5

c. If-convert the code

When to Apply If-conversion?

< Positives } 10
» Remove branch !
 No disruption to sequential fetch BB1
* No prediction or mispredict 90 30
* No draining of pipeline for /\20
mispredict BB?2 BB3
* No use of branch resource
» Increase potential for operation 8N A/ZO
overlap BB4
* Creates larger basic blocks
e Convert control dependences into 19/
data dependences BB5 90
» Enable more aggressive compiler
xforms 1N |
e Software pipelining BB6
* Height reduction

< What about the negatives?
10

Negative 1: Resource Usage

Instruction execution Is additive Be careful applying if-conversion too liberally
for all BBs that are if-converted, thus when processor resources constrained OR
require more processor resources blocks have large numbers of instructions
} 100
BB1 BB1

60
/\40 BB2 if p1

BB2 BB3 q
BB3 if p2
6N /10
BB4

100

BB4

Negative 2: Dependence Height

Dependence height is max of Be careful with if-converting blocks with

for all BBs that are if-converted ; :
tched d d height
(dep height = schedule length » mismatched dependence neignts

with infinite resources)

100
BB1 a51
60 40
BB2 if p1
BB2 BB3 q
BB3 if p2
GN /10
BB4
BB4
\ 100

Negative 3: Hazard Presence

Hazard = operation that forces

the compiler to be conservative,
so limited reordering or optimization,
e.g., subroutine call, pointer store, ...

100

BB1

60

BB1

BB2

BB3

BB2 if p1

60~ 40

BB4

\ 100

BB3 if p2

BB4

Hazards should be avoided except

» on the “main path”

Deciding When/What To If-convert

Resources

» Small resource usage ideal for less
important paths

Dependence height

» Matched heights are ideal

» Close to same heights is ok
Remember everything is relative for
resources and dependence height !
Hazards

» Avoid hazards unless on most
important path

Estimate of benefit
» Branches/Mispredicts removed
» Increased instruction overlap

} 100

BB1

60 40

B

BB1

B3

BB2 if p1

B2 B
60N, 4
BB4

\ 100

0

BB3 if p2

BB4

The Hyperblock

<« Hyperblock - Collection of basic
blocks in which control flow may
only enter at the first BB. All
internal control flow is eliminated
via if-conversion

» “Likely control flow paths”
» Acyclic (outer backedge ok)

» Multiple intersecting traces with
no side entrances

» Side exits still exist

< Hyperblock formation
» 1. Block selection
» 2. Tail duplication
» 3. If-conversion

90

}10

BB1

80 .20

BB2

BB3

80N~ 20

BB4

l(?/

BB5

90

BB6

10

Block Selection

90

}10

90

10

X/
0‘0

-10 -

Block selection

» Select subset of BBs for
inclusion in HB

» Difficult problem
» Weighted cost/benefit
function
e Height overhead
e Resource overhead
e Hazard overhead
e Branch elimination benefit
* Weighted by frequency

Example - Step 1 - Block Selection

} 10 main path = BB1,BB2,BB4,BB6

Consider adding BB3 and BB5

BB1-5

30 80_~_20

BB2 -8

80N 20

BB4 - 3

1(?/

BB5-10| | 9o

10\

BB6 - 2

10

-11 -

Example - Step 2 - Tail Duplication

Tail duplication same as with Superblock formation

} 10

| ho
BB1 I"BB .

89/\20 89/\20

BB B3

BB B3

2 B
2 B
éB\\‘///Eo éa\\‘///éo
BB4 BB4

10— — 10
BB5 90 0 i
1&) | 10
BB6 -
90 | 81
9

-12 -

Example - Step 3 — If-conversion

If-convert intra-HB branches only!!

bo
- 10
BB1 | |
80
)TN\ 20 BB1
BB2 BB3 01,p2 = CMPP
80N~ 20 BB2 if pl
B BB3 if p2
\10‘
BB4
90 BB5
BB6
" 0 | BB5
BB6 81 9
81
9 1 5
1 9

-13-

For More on Predicates/Hyperblocks

’0

» See

» "Effective Compiler Support for Predicated Execution using the
Hyperblock™, S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for
EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

-14 -

New Topic
Dataflow Analysis!

_ooking Inside the Basic Blocks:
Dataflow Analysis + Optimization

rit=r2+r3
re=r4—-rb

0.0

r6=r2+r3
r‘'=rd—-rb5

Control flow analysis

» Treat BB as black box

» Just care about branches
Now

» Start looking at ops in BBs

» What’s computed and where
Classical optimizations

» Want to make the
computation more efficient

Ex: Common Subexpression
Elimination (CSE)
» 1sr2 + r3 redundant?
» Is r4 —r5 redundant?
» What if there were 1000 BB’s
» Dataflow analysis !

Dataflow Analysis Introduction

Dataflow analysis — Collection of information
that summarizes the creation/destruction of
values in a program. Used to identify legal
optimization opportunities.

Pick an arbitrary point in the program

Which VRs contain useful
data values? (liveness or upward
exposed uses)

Which definitions may reach

rit=r2+r3
re=r4—-rb
r6=r2+r3
r‘'=rd—-rb5

_— this point? (reaching defns)

Which definitions are guaranteed
to reach this point? (available defns)

Which uses below are exposed?
(downward exposed uses)

-17 -

Live Variable (Liveness) Analysis

< Defn: For each point p in a program and each variable y,
determine whether y can be used before being redefined

starting at p

- Algorithm sketch

» Foreach BB, y is live if it is used before defined in the BB or it is
live leaving the block

» Backward dataflow analysis as propagation occurs from uses
upwards to defs

<+ 4 sets
» GEN = set of external variables consumed in the BB
» KILL = set of external variable uses killed by the BB
 equivalent to set of variables defined by the BB
» IN = set of variables that are live at the entry point of a BB
» OUT = set of variables that are live at the exit point of a BB
18-

&

D)

D)

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X) =0
for each operation in reverse sequential order in X, op, do
for each destination operand of op, dest, do
GEN(X) -= dest
KILL(X) += dest
endfor
for each source operand of op, src, do
GEN(X) +=src
KILL(X) -=src
endfor
endfor
endfor

-19 -

Example — GEN/KILL Liveness Computation

BBL11 r1=MEM[r2+0]

2.r2=MEM]rl + 1]
3.r8=r1>r2

S

4.rl=rl1l+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 r3=4

\/

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

BB2

-20 -

Compute IN/OUT Sets for all BBs

Initialize IN(X) to O for all basic blocks X
change =1
while (change) do
change =0
for each basic block in procedure, X, do
old_IN = IN(X)
OUT(X) = Union(IN(Y)) for all successors Y of X
IN(X) = GEN(X) + (OUT(X) — KILL(X))
if (old_IN '=IN(X)) then
change =1
endif
endfor
endfor

=21 -

Example — Liveness Computation

BB1

GEN =12
KILL =r1,r8 2.1

1. rl = MEM[r2+0]
.r2=MEMI[rl + 1]

3.r8=rl1*r2

S

BB2
4.r1=rl1+5 7.r2=0
CEN=rLr5 1 5 r3=r5-rl 8. r7 =rl+r2
KILL =r3,r7
6.r7=r3*2 r3=4

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

GEN =r1
KILL =r2,r3,r7

\/

GEN =12,r3,r7,r8
KILL =r1

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

-22.-

Class Problem

Compute liveness
Calculate GEN/KILL for each BB
Calculate IN/OUT for each BB

1.r1=3
2.r2=r3
3.r3=r4

4.rl=rl1+1
5.r7=rl1*r2

ZEN

6.r4=r4+1 [.r4=r3+1r2
8.r8=8
9.r9=r7+1r8

-23-

