
EECS 583 – Class 5

Finish Control Flow Analysis,

Dataflow Analysis Intro

University of Michigan

September 15, 2021

- 1 -

Reading Material + Announcements

 Reminder – HW 1 due tonight at midnight

» Submit uniquename_hw1.tgz file to:

 eecs583a.eecs.umich.edu:/hw1_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit

 Then, post question or talk to Yunjie/Ze if you are stuck

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

- 2 -

From Last Time: Homework Problem

if (a > 0) {

r = t + s

if (b > 0 || c > 0)

u = v + 1

else if (d > 0)

x = y + 1

else

z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

- 3 -

Homework Problem Answer

if (a > 0) {

r = t + s

if (b > 0 || c > 0)

u = v + 1

else if (d > 0)

x = y + 1

else

z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

BB2

BB3

BB1

BB5

BB6 BB7

BB4

BB8

a <= 0 a > 0

b > 0

b <= 0

c <= 0
c > 0

d > 0d <= 0

BB CD

1 -

2 1

3 -2

4 -3

5 2,3

6 -4

7 4

8 -

p3 = 0

p1 = CMPP.UN (a > 0) if T

r = t + s if p1

p2,p3 = CMPP.UC.ON (b > 0) if p1

p4,p3 = CMPP.UC.ON (c > 0) if p2

u = v + 1 if p3

p5,p6 = CMPP.UC.UN (d > 0) if p4

x = y + 1 if p6

z = z + 1 if p5

- 4 -

When to Apply If-conversion?

 Positives

» Remove branch

 No disruption to sequential fetch

 No prediction or mispredict

 No draining of pipeline for
mispredict

 No use of branch resource

» Increase potential for operation
overlap

 Creates larger basic blocks

 Convert control dependences into
data dependences

» Enable more aggressive compiler
xforms

 Software pipelining

 Height reduction

 What about the negatives?

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 5 -

Negative 1: Resource Usage

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Instruction execution is additive

for all BBs that are if-converted, thus

require more processor resources

BB1

BB2 if p1

BB3 if p2

BB4

Be careful applying if-conversion too liberally

when processor resources constrained OR

blocks have large numbers of instructions

- 6 -

Negative 2: Dependence Height

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Dependence height is max of

for all BBs that are if-converted

(dep height = schedule length

with infinite resources)

BB1

BB2 if p1

BB3 if p2

BB4

Be careful with if-converting blocks with

mismatched dependence heights

- 7 -

Negative 3: Hazard Presence

BB2

BB4

BB1

BB3

60 40

100

60 40

100

Hazard = operation that forces

the compiler to be conservative,

so limited reordering or optimization,

e.g., subroutine call, pointer store, …

BB1

BB2 if p1

BB3 if p2

BB4

Hazards should be avoided except

on the “main path”

- 8 -

Deciding When/What To If-convert
 Resources

» Small resource usage ideal for less

important paths

 Dependence height

» Matched heights are ideal

» Close to same heights is ok

 Remember everything is relative for

resources and dependence height !

 Hazards

» Avoid hazards unless on most

important path

 Estimate of benefit

» Branches/Mispredicts removed

» Increased instruction overlap

BB2

BB4

BB1

BB3

60 40

100

60 40

100

BB1

BB2 if p1

BB3 if p2

BB4

- 9 -

The Hyperblock

 Hyperblock - Collection of basic

blocks in which control flow may

only enter at the first BB. All

internal control flow is eliminated

via if-conversion

» “Likely control flow paths”

» Acyclic (outer backedge ok)

» Multiple intersecting traces with

no side entrances

» Side exits still exist

 Hyperblock formation

» 1. Block selection

» 2. Tail duplication

» 3. If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 10 -

Block Selection

 Block selection

» Select subset of BBs for

inclusion in HB

» Difficult problem

» Weighted cost/benefit

function

 Height overhead

 Resource overhead

 Hazard overhead

 Branch elimination benefit

 Weighted by frequency

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 11 -

Example - Step 1 - Block Selection

BB2 - 8

BB4 - 3

BB6 - 2

BB5 - 10

BB1 - 5

BB3 – 2

80 20

10

90

10

90

10

80 20

10

main path = BB1,BB2,BB4,BB6

Consider adding BB3 and BB5

- 12 -

Example - Step 2 - Tail Duplication

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

- 13 -

Example - Step 3 – If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1 9

10

If-convert intra-HB branches only!!

- 14 -

For More on Predicates/Hyperblocks

 See

» "Effective Compiler Support for Predicated Execution using the

Hyperblock", S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for

EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

New Topic

Dataflow Analysis!

- 16 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 17 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 18 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 19 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in reverse sequential order in X, op, do

for each destination operand of op, dest, do

GEN(X) -= dest

KILL(X) += dest

endfor

for each source operand of op, src, do

GEN(X) += src

KILL(X) -= src

endfor

endfor

endfor

- 20 -

Example – GEN/KILL Liveness Computation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 21 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_IN = IN(X)

OUT(X) = Union(IN(Y)) for all successors Y of X

IN(X) = GEN(X) + (OUT(X) – KILL(X))

if (old_IN != IN(X)) then

change = 1

endif

endfor

endfor

- 22 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

GEN = r2

KILL = r1,r8

GEN = r1,r5

KILL = r3,r7

GEN = r2,r3,r7,r8

KILL = r1

GEN = r1

KILL = r2,r3,r7

- 23 -

Class Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute liveness

Calculate GEN/KILL for each BB

Calculate IN/OUT for each BB

