EECS 583 – Class 2 Control Flow Analysis

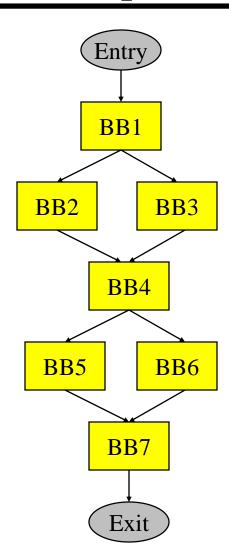
University of Michigan

September 1, 2021

https://web.eecs.umich.edu/~mahlke/courses/583f21

Announcements & Reading Material

- eecs583a,eecs583b.eecs.umich.edu servers are ready
 - » Everyone has home directory and login
- ♦ HW 0 Due next Wednes, but nothing to turn in
 - » Please get this done ASAP, talk to Yunjie/Ze if you have problems
 - » Needed for HW 1 which goes out next Wednes
 - » Go to http://llvm.org
 - » Detailed instructions on piazza

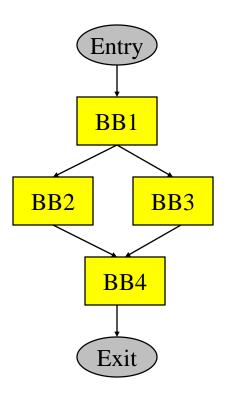

Reading

- » Today's class
 - Ch 9.4, 10.4 (6.6, 9.6) from Compilers: Principles, Techniques Tools Ed 1 (Ed 2)
- » Next class
 - "Trace Selection for Compiling Large C Applications to Microcode", Chang and Hwu, MICRO-21, 1988.
 - "The Superblock: An Effective Technique for VLIW and Superscalar Compilation", Hwu et al., Journal of Supercomputing, 1993

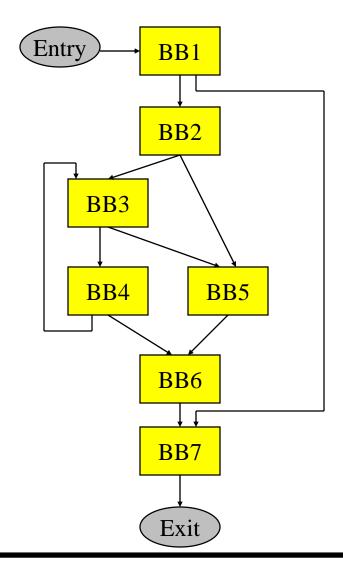
From Last Time: Identifying BBs - Answer

From Last Time: Control Flow Graph (CFG)

- Defn Control Flow Graph Directed graph, G = (V,E) where each vertex V is a basic block and there is an edge E, v1 (BB1) → v2 (BB2) if BB2 can immediately follow BB1 in some execution sequence
 - » A BB has an edge to all blocks it can branch to
 - » Standard representation used by many compilers
 - » Often have 2 pseudo vertices
 - entry node
 - exit node

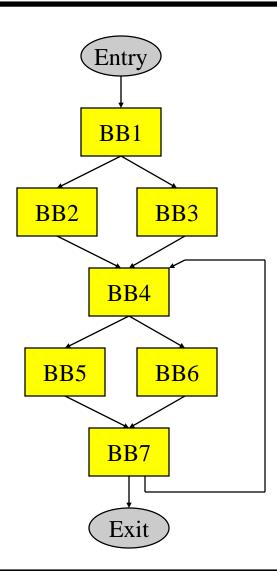

Property of CFGs: Dominator (DOM)

- ❖ <u>Defn: Dominator</u> Given a CFG(V, E, Entry, Exit), a node x dominates a node y, if every path from the Entry block to y contains x
- 3 properties of dominators
 - » Each BB dominates itself
 - » If x dominates y, and y dominates z, then x dominates z
 - » If x dominates z and y dominates z, then either x dominates y or y dominates x

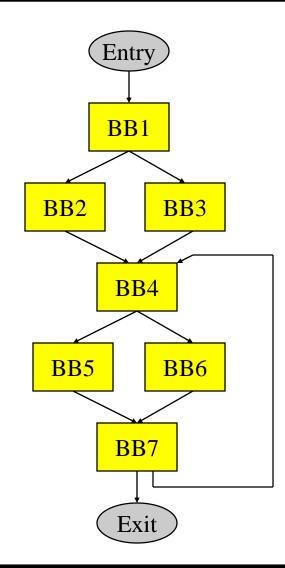

Intuition

» Given some BB, which blocks are guaranteed to have executed prior to executing the BB

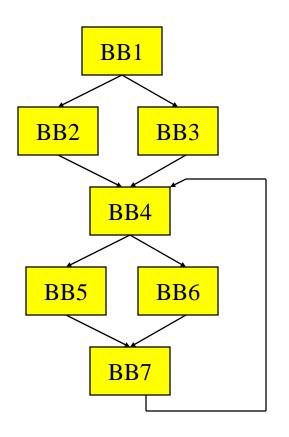
Dominator Example 1



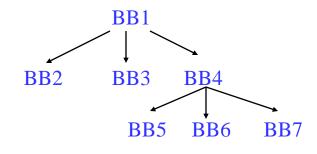
Dominator Example 2


Dominator Analysis

- Compute dom(BBi) = set of BBs that dominate BBi
- Initialization
 - » Dom(entry) = entry
 - » Dom(everything else) = all nodes
- Iterative computation
 - » while change, do
 - change = false
 - for each BB (except the entry BB)
 - tmp(BB) = BB + {intersect of Dom of all predecessor BB's}
 - if (tmp(BB) != dom(BB))dom(BB) = tmp(BB)change = true

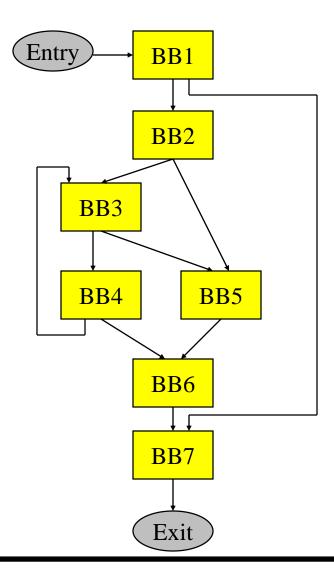

Immediate Dominator

- Defn: Immediate dominator (idom) – Each node n has a unique immediate dominator m that is the last dominator of n on any path from the initial node to n
 - » Closest node that dominates



Dominator Tree

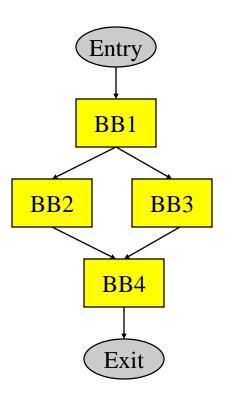
First BB is the root node, each node dominates all of its descendants


BB	DOM	BB	DOM
1	1	5	1,4,5
2	1,2	6	1,4,6
3	1,3	7	1,4,7
4	1,4		

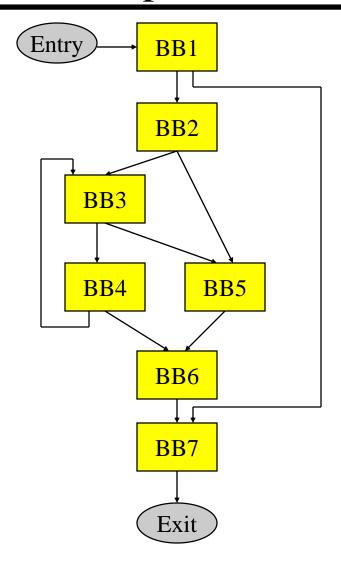
Dom tree

Dominator Tree Example

Draw the dominator tree

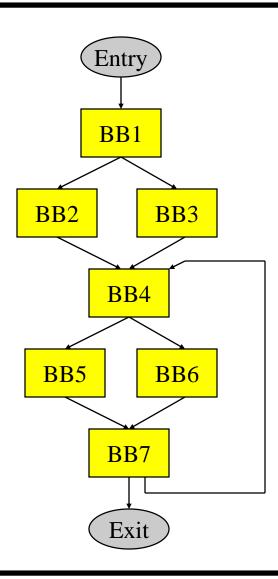


Post Dominator (PDOM)


- * Reverse of dominator
- Defn: Post Dominator Given a CFG(V, E, Entry, Exit), a node x post dominates a node y, if every path from y to the Exit contains x
- Intuition
 - » Given some BB, which blocks are guaranteed to have executed after executing the BB
- pdom(BBi) = set of BBs that post dominate BBi

- Initialization
 - » Pdom(exit) = exit
 - » Pdom(everything else) = all
 nodes
- Iterative computation
 - » while change, do
 - change = false
 - for each BB (except the exit BB)
 - tmp(BB) = BB + {intersect of pdom of all successor BB's}
 - if (tmp(BB) != pdom(BB))pdom(BB) = tmp(BB)change = true

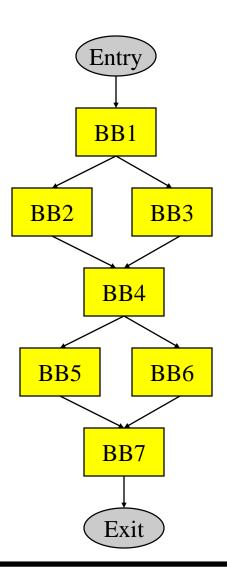
Post Dominator Example 1



Post Dominator Example 2

Immediate Post Dominator

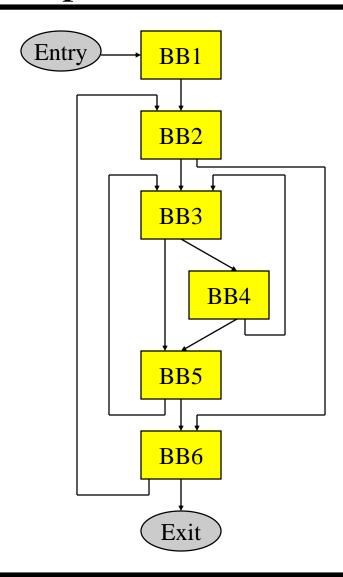
- Defn: Immediate post dominator (ipdom) Each node n has a unique immediate post dominator m that is the first post dominator of n on any path from n to the Exit
 - » Closest node that post dominates
 - » First breadth-first successor that post dominates a node



Why Do We Care About Dominators?

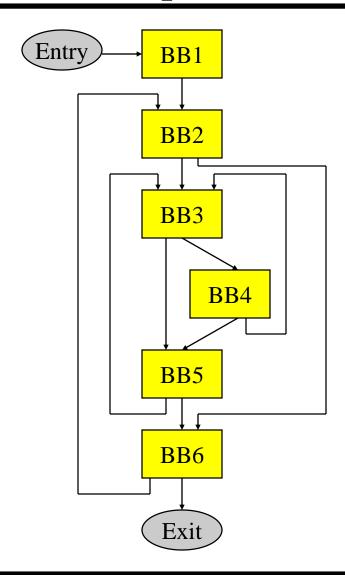
- ❖ Loop detection next subject
- Dominator
 - » Guaranteed to execute before
 - Redundant computation an op is redundant if it is computed in a dominating BB
 - » Most global optimizations use dominance info

Post dominator


- » Guaranteed to execute after
- » Make a guess (ie 2 pointers do not point to the same locn)
- » Check they really do not point to one another in the post dominating BB

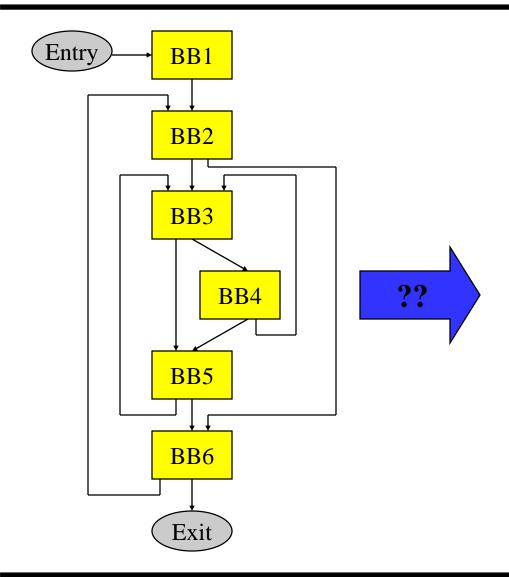
Natural Loops

- Cycle suitable for optimization
 - » Discuss optimizations later
- 2 properties
 - » Single entry point called the <u>header</u>
 - Header dominates all blocks in the loop
 - » Must be one way to iterate the loop (ie at least 1 path back to the header from within the loop) called a <u>backedge</u>
- Backedge detection
 - » Edge, $x \rightarrow y$ where the target (y) dominates the source (x)


Backedge Example

Loop Detection

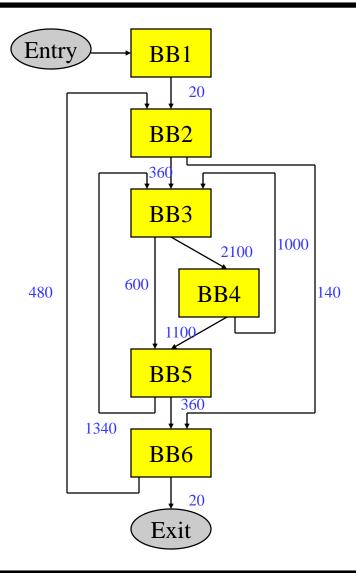
- Identify all backedges using Dom info
- \bullet Each backedge (x \rightarrow y) defines a loop
 - » Loop header is the backedge target (y)
 - » Loop BB basic blocks that comprise the loop
 - All predecessor blocks of x for which control can reach x without going through y are in the loop
- Merge loops with the same header
 - » I.e., a loop with 2 continues
 - » LoopBackedge = LoopBackedge1 + LoopBackedge2
 - » LoopBB = LoopBB1 + LoopBB2
- Important property
 - » Header dominates all LoopBB


Loop Detection Example

Important Parts of a Loop

- Header, LoopBB
- Backedges, BackedgeBB
- Exitedges, ExitBB
 - » For each LoopBB, examine each outgoing edge
 - » If the edge is to a BB not in LoopBB, then its an exit
- Preheader (Preloop)
 - » New block before the header (falls through to header)
 - » Whenever you invoke the loop, preheader executed
 - » Whenever you iterate the loop, preheader NOT executed
 - » All edges entering header
 - Backedges no change
 - All others, retarget to preheader
- Postheader (Postloop) analogous

Find the Preheaders for each Loop



Characteristics of a Loop

- Nesting (generally within a procedure scope)
 - » Inner loop Loop with no loops contained within it
 - » Outer loop Loop contained within no other loops
 - » Nesting depth
 - depth(outer loop) = 1
 - depth = depth(parent or containing loop) + 1
- Trip count (average trip count)
 - » How many times (on average) does the loop iterate
 - » for (I=0; I<100; I++) \rightarrow trip count = 100
 - » With profile info:
 - Ave trip count = weight(header) / weight(preheader)

Trip Count Calculation Example

Calculate the trip counts for all the loops in the graph

Reducible Flow Graphs

- * A flow graph is <u>reducible</u> if and only if we can partition the edges into 2 disjoint groups often called forward and back edges with the following properties
 - » The forward edges form an acyclic graph in which every node can be reached from the Entry
 - The back edges consist only of edges whose destinations dominate their sources
- More simply Take a CFG, remove all the backedges
 (x→ y where y dominates x), you should have a
 connected, acyclic graph