EECS 583 — Class 16
Register Allocation & Automatic
Parallelization Intro

University of Michigan

November 8, 2021

Announcements + Reading Material

< Research paper presentations
» Sign up for a slot i1f you haven’t done so yet

» Start today!! = Your are expected to evaluate everyone else in
the class

e See canvas quizzes to get link to evaluation form
< Midterm exam — It’s over
» Answer key and grades soon
» Regardless of grade, don’t panic, don’t celebrate

< Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G.

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler
Construction, 1982.

Register Allocation: Problem Definition

< Through optimization, assume an infinite number of
virtual registers

» Now, must allocate these infinite virtual registers to a limited
supply of hardware registers

» Want most frequently accessed variables in registers

e Speed, registers much faster than memory
* Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to
be spilled

< Questions to answer

» What is the minimum number of registers needed to avoid
spilling?

» Glven n registers, is spilling necessary
» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers
get spilled?

Live Range

< Value = definition of a register

< Live range = Set of operations
» 1 more or values connected by common uses
» A single VR may have several live ranges

< LIve ranges are constructed by taking the intersection of
reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in
a function in which that definition is live

Example — Constructing Live Ranges

{liveness}, {rdefs}----_ R

-
-
-

~~ -_—
~
~ <
~

Each definition is the

seed of a live range.

Ops are added to the LR
where both the defn reaches
and the variable is live

LR1 for def 1 = {1,3,4}
LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}
LR4 for def 6 = {6,7,8}

Merging Live Ranges

< If 2 live ranges for the same VR overlap, they must be
merged to ensure correctness
» LRs replaced by a new LR that is the union of the LRs
» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged
e Makes LRs larger than need be, but done for simplicity

* We will not assume this

rl1=

rl1=

~

=rl

Example — Merging Live Ranges

{liveness}, {rdefs}

1 x = LR1 for def 1 = {1,3,4}
S \ LR3 for def 5 = {5,7.8}
2: X = LR4 for def 6 = {6,7,8}

o {N /{x} {1}

4

Merge LR1 and LR2,
LR3 and LR4

i} 15,6}

LR5 = {1,2,3,4}
LR6 = {5,6,7,8}

Interference

< Two live ranges interfere if they share one or more ops in
common
» Thus, they cannot occupy the same physical register
» Or a live value would be lost

< Interference graph

» Undirected graph where

* Nodes are live ranges

* There is an edge between 2 nodes if the live ranges interfere
» What’s not represented by this graph

» Extent of interference between the LRs

e Where in the program is the interference

Example — Interference Graph

Ir(a) = {1,2,3,4,5,6,7,8}
Ir(b) = {2,3,4,6}

Ir(c) = {1,2,3,4,5,6,7,8,9}
1: a = load() Ir(d) = {4,5}
2: b =load() Ir(e) = {5,7,8}
Ir(f) = {6,7}
/ \ |r{g} = {8,9}
3: ¢ =load() Cf— o
4:d=b+c ?Q;?ﬁ
5:e=d-3 '

8:.g=a+e
9: store(Q)

Graph Coloring

< A graph is n-colorable if every node in the graph can be
colored with one of the n colors such that 2 adjacent
nodes do not have the same color
» Model register allocation as graph coloring
» Use the fewest colors (physical registers)
» Spilling is necessary if the graph is not n-colorable where n is the
number of physical registers
< Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers
e “Register Allocation Via Coloring”, G. Chaitin et al, 1981

* “Improvement to Graph Coloring Register Allocation”, P. Briggs et
al, 1989

» Observation — a node with degree < n in the interference can
always be successfully colored given its neighbors colors

-9-

Coloring Algorithm

< 1. While any node, X, has < n neighbors
» Remove X and its edges from the graph
» Push x onto a stack

< 2. If the remaining graph is non-empty
» Compute cost of spilling each node (live range)

* For each reference to the register in the live range
¢ Cost += (execution frequency * spill cost)

» Let NB(X) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)
e Push x onto a stack (mark as spilled)

» (o back to step 1
< While stack Is non-empty
» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x
any unsigned color, else leave x uncolored

-10 -

Example — Finding Number of Needed Colors

How many colors are needed to color this graph?

B
Try n=1, no, cannot remove any nodes
A E C _
Try n=2, no again, cannot remove any nodes
D Try n=3,
Remove B

Then can remove A, C
Then can remove D, E
Thus it is 3-colorable

-11 -

Example — Do a 3-Coloring

Ir(a) = {1,2,3,4,5,6,7,8}
refs(a) = {1,6,8}
Ir(b) = {2,3,4,6}
refs(b) = {2,4,6}
Ir(c) ={1,2,3,4,5,6,7,8,9}
refs(c) = {3,4,7}

Ir(d) = {4,5}
refs(d) = {4,5}
Ir(e) = {5,7,8}
refs(e) = {5,7,8}
Ir(f) = {6,7}
refs(f) = {6,7}
Ir{g} = {8.9}
refs(g) = {8,9}
a b C d e
cost 225 200 175 150 200
neighbors 6 4 5 4 3
cost/n 37.5 50 35 37.5 66.7

-12 -

Profile freqgs
1,2 =100
345=75
6,7 =25

8,9 =100

Assume each
spill requires
1 operation

f g
50 200
4 2

12.5 100

Example — Do a 3-Coloring (2)

Remove all nodes < 3 neighbors Stack

So, g can be removed

-13-

Example — Do a 3-Coloring (3)

Now must spill a node Stack
f (spilled)
Choose one with the smallest g

cost/NB - fis chosen

£
o

-14 -

Example — Do a 3-Coloring (4)

Remove all nodes < 3 neighbors Stack
e

So, e can be removed f (spilled)
g

N
&

-

-15 -

Example — Do a 3-Coloring (5)

Now must spill another node Stack
c (spilled)
Choose one with the smallest e
cost/NB - c is chosen f (spilled)
g

-16 -

Example — Do a 3-Coloring (6)

Remove all nodes < 3 neighbors Stack

d

So, a, b, d can be removed b
a
c (spilled)
e
f (spilled)
g

Null

-

-17 -

e*

Example — Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)
e

f (spilled)
g

Have 3 colors: red, green, blue, pop off the stack assigning colors
only consider conflicts with non-spilled nodes already popped off stack

d - red

b - green (cannot choose red)

a = blue (cannot choose red or green)
¢ = no color (spilled)

e - green (cannot choose red or blue)
f = no color (spilled)

g —> red (cannot choose blue)

-18 -

Example — Do a 3-Coloring (8)

1: blue = load()
2: green = load()

/\

3: spilll = load()

5:green=red -3

4: red = green + spilll

d - red

b - green

a =2 blue

c = no color
e > green

f = no color

\/

6: spill2 = blue * green
7: green = spill2 + spilll

g - red

8: red = blue + green
9: store(red)

-19 -

Notes: no spills in the blocks
executed 100 times. Most spills
In the block executed 25 times.
Longest lifetime (c) also spilled

Automatic Parallelization of
Single Threaded Applications

Reading Material

< Reading material if you are interested

»

»

“Revisiting the Sequential Programming Model for Multi-Core,” M. J.
Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc
40th IEEE/ACM International Symposium on Microarchitecture,

December 2007.

“Automatic Thread Extraction with Decoupled Software
Pipelining,” G. Ottoni, R. Rangan, A. Stoler, and D. I. August,
Proceedings of the 38th IEEE/ACM International Symposium on
Microarchitecture, Nov. 2005

-21 -

Moore’s Law

42 Years of Microprocessor Trend Data

107 B T T T Y s 1
Transistors
106 L : (thousands)
10° |] Single-Thread
Performance 3
104 | | (SpecINT x 107)
. Frequency (MHz)
10° . o :
Typical Power
10° | - :‘: g 4 (Watts)
, : . » | Number of
LI g s B . L Logical Cores
10" -" ¢ . : 0:0 - e orteen ¢+ -
] 1 | |
1970 1980 1990 2000 2010 2020

Year

Ongral data up 10 the year 2010 collected and plotied by M. Horowitz, F_ Labonte, O. Shacham, K. Ouskotun, L Hammond, and C. Baten
New plot and data colected for 2010-2017 by K. Rupp

What about Parallel Programming? —or-
What is Good About the Sequential Model?

’0

*

Sequential is easier
» People think about programs sequentially
» Simpler to write a sequential program

Deterministic execution
» Reproducing errors for debugging
» Testing for correctness
No concurrency bugs
» Deadlock, livelock, atomicity violations
» Locks are not composable
Performance extraction

» Sequential programs are portable
* Are parallel programs? Ask GPU developers ©

» Performance debugging of sequential programs straight-forward

*

’0

0.0

-23 -

Compilers are the Answer? - Proebsting’s Law

<+ “Comy

> Run yq
compi
ratio o
optimi
4X for
optimi
optimi

100000000
10000000 —
1000000 loptimizing
S 100000 bled. The
§ 10000 ompiler
o atio is about
N 1000 Lpiler
100 piler
10
1-1TTﬁ7TTTHTTT:TTT:TTTT:TTT:TTT
S O SR G
NN EEN AN N NN
Years

conc

usion — Compilers not about performance!

=24 -

Can We Automatically Convert Single-
threaded Programs into Multi-threaded?

LLoop Level Parallelization

N ! . ;;vLoop Chunk

Bad news: limited number of parallel
loops in general purpose applications

—1.3x speedup for SpecINT2000 on 4 cores

_——— - - - -

- 26 -

| abeione

== 29eA
M
_ X3
dalb

Utilities

_ oldaun
olpnepmel
olpneIMel
oua)Imbad
29pumbad
ouazbadw
J9pzbadw
ETRITENS)
9p029apwIsSh
9poauaTe.b
8podapTz/h
olda

badlp

badlo

n A

o

Mediabench

JJoM)'00€

g zdizq'96z
XalOA'GGZ
Jasied’ 6T
PW'T8T
Jdng)T

dizb 91
badlizeT
'0ET
SSaIdwod'6ZT
WISYg8W ¢t
== 00660

3s°2/0
$Sa1dwo09°920
110JUb3"€20
05S21ds9°800

=11

f=1

-27 -

SPEC INT

dwuweggt

axenba €8T
esow'//T
R —

pubwz/t
WIMS'T/T
183°950

UUIATR'Z50

DOALL Loop Coverage

@ N © v ¥ o
(@) o o o (@) (@) o
uoIN2axa [enuanbas Jo uonoe.d

0.1

o
o

SPEC FP

What’s the Problem?

1. Memory dependence analysis

for (1=0; 1<100; 1++) {

‘ Memory dependence profiling
and speculative parallelization

-28 -

0O Profiled DOALL
B Provable DOALL

— VS

J0eA
X3
doub

Utilities

d1daun
olpnepme.

olpneomel
ouaumbad

ouazbadw
Japgzbadw
apoouawsb
9podapuwshb
apoouatz/b
9podapt1e/b

o1da

bad(p

badb

JJOMY 00€E
zdizg'9se
losied /6T
PW 8T
S[e/ VA
dizb 971

badlirzeT

II'0ET
ssaadwod 67
WISY88W]
06'660
3s'c/0
ssa1dwod 97
1ojubs czo
0ssa.1dsa gQ
dwuwe’'ggr

— |

|
1 2°pumbad

]

]

|
|

| I—

|

—]

»enbarggr

He'6/LT

eSOW //T

Still not good enough!
-20-

pubwrz/t

WIMS'T/T

1e9°9G0

uuinle'¢so

DOALL Coverage — Provable and Profiled

SPEC

What’s the Next Problem?

2. Data dependences

while (ptr 1= NULL) {

Qm\:sum + foo;

‘ Compiler transformations

-30 -

We Know How to Break Some of These
Dependences — Recall ILP Optimizations

Apply accumulator variable expansion!

sum+=Xx

—

-31-

\Trfead 0\ /Thread 1

¥

sum = suml + sum?2

Data Dependences Inhibit Parallelization

< Accumulator, induction, and min/max expansion only
capture a small set of dependences

< 2 options
» 1) Break more dependences — New transformations

» 2) Parallelize in the presence of dependences — more than
DOALL parallelization

<« We will talk about both, but for now ignore this issue

-32 -

To Be Continued ...

