
EECS 583 – Class 16

Register Allocation & Automatic

Parallelization Intro

University of Michigan

November 8, 2021

- 1 -

Announcements + Reading Material

 Research paper presentations

» Sign up for a slot if you haven’t done so yet

» Start today!! Your are expected to evaluate everyone else in

the class

 See canvas quizzes to get link to evaluation form

 Midterm exam – It’s over

» Answer key and grades soon

» Regardless of grade, don’t panic, don’t celebrate

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G.

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler

Construction, 1982.

- 2 -

Register Allocation: Problem Definition

 Through optimization, assume an infinite number of
virtual registers

» Now, must allocate these infinite virtual registers to a limited
supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to
be spilled

 Questions to answer

» What is the minimum number of registers needed to avoid
spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers
get spilled?

- 3 -

Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

 Live ranges are constructed by taking the intersection of

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in

a function in which that definition is live

- 4 -

Example – Constructing Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live

- 5 -

Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 =

= r1

- 6 -

Example – Merging Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}

- 7 -

Interference

 Two live ranges interfere if they share one or more ops in

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference

- 8 -

Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}

- 9 -

Graph Coloring

 A graph is n-colorable if every node in the graph can be

colored with one of the n colors such that 2 adjacent

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et

al, 1989

» Observation – a node with degree < n in the interference can

always be successfully colored given its neighbors colors

- 10 -

Coloring Algorithm

 1. While any node, x, has < n neighbors

» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty

» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost += (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty

» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x
any unsigned color, else leave x uncolored

- 11 -

Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable

- 12 -

Example – Do a 3-Coloring

a

g

c

f

d

b

e

a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

refs(c) = {3,4,7}

lr(d) = {4,5}

refs(d) = {4,5}

lr(e) = {5,7,8}

refs(e) = {5,7,8}

lr(f) = {6,7}

refs(f) = {6,7}

lr{g} = {8,9}

refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation

- 13 -

Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g

- 14 -

Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e

- 15 -

Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed

- 16 -

Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB c is chosen

a

c d

b

- 17 -

Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null

- 18 -

Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d red

b green (cannot choose red)

a blue (cannot choose red or green)

c no color (spilled)

e green (cannot choose red or blue)

f no color (spilled)

g red (cannot choose blue)

- 19 -

Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d red

b green

a blue

c no color

e green

f no color

g red

Notes: no spills in the blocks

executed 100 times. Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled

Automatic Parallelization of

Single Threaded Applications

- 21 -

Reading Material

 Reading material if you are interested

» “Revisiting the Sequential Programming Model for Multi-Core,” M. J.

Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc

40th IEEE/ACM International Symposium on Microarchitecture,

December 2007.

» “Automatic Thread Extraction with Decoupled Software

Pipelining,” G. Ottoni, R. Rangan, A. Stoler, and D. I. August,

Proceedings of the 38th IEEE/ACM International Symposium on

Microarchitecture, Nov. 2005

- 22 -

Moore’s Law

Source: Intel/Wikipedia

- 23 -

What about Parallel Programming? –or-

What is Good About the Sequential Model?

 Sequential is easier

» People think about programs sequentially

» Simpler to write a sequential program

 Deterministic execution

» Reproducing errors for debugging

» Testing for correctness

 No concurrency bugs

» Deadlock, livelock, atomicity violations

» Locks are not composable

 Performance extraction

» Sequential programs are portable

 Are parallel programs? Ask GPU developers

» Performance debugging of sequential programs straight-forward

- 24 -

Compilers are the Answer? - Proebsting’s Law

 “Compiler Advances Double Computing Power Every 18 Years”

 Run your favorite set of benchmarks with your favorite state-of-the-art optimizing
compiler. Run the benchmarks both with and without optimizations enabled. The
ratio of of those numbers represents the entirety of the contribution of compiler
optimizations to speeding up those benchmarks. Let's assume that this ratio is about
4X for typical real-world applications, and let's further assume that compiler
optimization work has been going on for about 36 years. Therefore, compiler
optimization advances double computing power every 18 years. QED.

1

10

100

1000

10000

100000

1000000

10000000

100000000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

Years

S
p

e
e

d
u

p

Conclusion – Compilers not about performance!

Can We Automatically Convert Single-

threaded Programs into Multi-threaded?

- 26 -

Loop Level Parallelization

i = 0-39

i = 10-19

i = 30-39

i = 0-9

i = 20-29

Thread 1Thread 0

Loop Chunk

Bad news: limited number of parallel

loops in general purpose applications

–1.3x speedup for SpecINT2000 on 4 cores

- 27 -

DOALL Loop Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

05
2.

al
vi

nn
05

6.
ea

r
17

1.
sw

im
17

2.
m

gr
id

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
00

8.
es

pr
es

so
02

3.
eq

nt
ot

t
02

6.
co

m
pr

es
s

07
2.

sc
09

9.
go

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

19
7.

pa
rs

er
25

5.
vo

rt
ex

25
6.

bz
ip

2
30

0.
tw

ol
f

cj
pe

g
dj

pe
g

ep
ic

g7
21

de
co

de
g7

21
en

co
de

gs
m

de
co

de
gs

m
en

co
de

m
pe

g2
de

c
m

pe
g2

en
c

pe
gw

itd
ec

pe
gw

ite
nc

ra
w

ca
ud

io
ra

w
da

ud
io

un
ep

ic
gr

ep le
x

w
c

ya
cc

av
er

ag
e

SPEC FP SPEC INT Mediabench Utilities

Fr
ac

tio
n

of
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

- 28 -

What’s the Problem?

for (i=0; i<100; i++) {

. . . = *p;

*q = . . .

}

1. Memory dependence analysis

Memory dependence profiling

and speculative parallelization

- 29 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
5
2
.a

lv
in

n

0
5
6
.e

a
r

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

0
0
8
.e

s
p
re

s
s
o

0
2
3
.e

q
n
to

tt

0
2
6
.c

o
m

p
re

s
s

0
7
2
.s

c

0
9
9
.g

o

1
2
4
.m

8
8
k
s
im

1
2
9
.c

o
m

p
re

s
s

1
3
0
.l
i

1
3
2
.i
jp

e
g

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

c
jp

e
g

d
jp

e
g

e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
e
g
w

it
d
e
c

p
e
g
w

it
e
n
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

u
n
e
p
ic

g
re

p

le
x

y
a
c
c

a
v
e
ra

g
e

SPEC FP SPEC INT Mediabench Utilities

F
r
a
c
ti

o
n

 o
f

s
e
q
u

e
n

ti
a
l
e
x
e
c
u

ti
o
n Provable DOALL

DOALL Coverage – Provable and Profiled

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
5
2
.a

lv
in

n

0
5
6
.e

a
r

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

0
0
8
.e

s
p
re

s
s
o

0
2
3
.e

q
n
to

tt

0
2
6
.c

o
m

p
re

s
s

0
7
2
.s

c

0
9
9
.g

o

1
2
4
.m

8
8
k
s
im

1
2
9
.c

o
m

p
re

s
s

1
3
0
.l
i

1
3
2
.i
jp

e
g

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

c
jp

e
g

d
jp

e
g

e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
e
g
w

it
d
e
c

p
e
g
w

it
e
n
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

u
n
e
p
ic

g
re

p

le
x

y
a
c
c

a
v
e
ra

g
e

SPEC FP SPEC INT Mediabench Utilities

F
r
a
c
ti

o
n

 o
f

s
e
q
u

e
n

ti
a
l
e
x
e
c
u

ti
o
n

Profiled DOALL

Provable DOALL

Still not good enough!

- 30 -

What’s the Next Problem?

2. Data dependences

while (ptr != NULL) {

. . .

ptr = ptr->next;

sum = sum + foo;

}

Compiler transformations

- 31 -

sum2 += xsum1 += x

We Know How to Break Some of These

Dependences – Recall ILP Optimizations

sum+=x

sum = sum1 + sum2

Thread 1Thread 0

Apply accumulator variable expansion!

- 32 -

Data Dependences Inhibit Parallelization

 Accumulator, induction, and min/max expansion only

capture a small set of dependences

 2 options

» 1) Break more dependences – New transformations

» 2) Parallelize in the presence of dependences – more than

DOALL parallelization

 We will talk about both, but for now ignore this issue

To Be Continued …

