
EECS 583 – Homework 2

Fall 2021

Assigned: Mon, September 20, 2021

Due: Fri, October 8, 2021 (11:59:59 pm)

Frequent Path LICM
The goal of this homework is to extend the LLVM loop invariant code motion (LICM) optimization to

identify more opportunities for optimization using control flow profile information. You will go beyond

traditional LICM for instructions that are invariant along the most likely path through the loop even though

they are not invariant when considering the entire loop body. Such instructions cannot be hoisted because

traditional LICM must ensure that execution is correct regardless of the path taken through the loop body.

However, by considering just a single path, one can be more aggressive and hoist additional instructions.

This optimization is a form of compile time speculation in that you are guessing the frequent path is

followed. Whenever another path is taken, you must handle the mis-speculation and ensure correct

execution. With LICM, mis-speculation handling can be accomplished by simply redoing the code that

was speculatively hoisted.

Implementation (Correctness)
Extend LLVM’s LICM (see llvm-source-dir/lib/Transforms/Scalar/LICM.cpp) to perform speculative

hoisting of “almost invariant” instructions. Almost invariant is defined as having a single source operand

that is invariant along the most likely path through the loop but variant along 1 or more other, infrequent

paths (the other source operand is completely invariant). As a simplifying assumption, you do not need to

worry about pointers in this optimization. Rather, almost invariant instructions will be detected through

explicit modification of a source operand from an infrequent block but invariant in the frequent blocks of

the loop. Whenever the compiler speculates, it must have a repair mechanism to handle mis-speculations.

With LICM, the hoisted instruction can simply be re-executed whenever an infrequent path is taken. Your

implementation should consist of 3 parts:

1. Identify most likely path through a loop body. This can be accomplished by starting at the loop

header and repeatedly following the >=80% branch until a >=80% loop backedge is taken. Note

that this means that the cumulative probability of a BB might be lower than 80% i.e. if there's a

nested if and there are two >=80% branches, the innermost "if" is only executed .8*.8 = 64% of

the time but is still considered to be on the most frequent path. Anything not on the frequent path

is on an infrequent path.

2. Identify almost invariant instructions among the frequent blocks.

3. Create and insert the repair code in case of mis-speculation.

Bonus Implementation (Performance)
After performing the first hoist, e.g., a load, a number of dependent instructions may often become

invariant and can also be speculatively hoisted. As a bonus, extend your baseline LICM implementation to

hoist these dependent instructions and ensure that your repair code also properly handles these additional

hoisted instructions. You should create a heuristic to decide if hoisting the almost invariant instruction(s)

are profitable or not, and apply hoisting to profitable opportunities. Profit can be estimated by counting the

number of the estimated dynamic instructions with and without hoisting. The bonus implementation is not

required to complete and get full score on this homework, but those who successfully get this working will

receive up to an additional 20% bonus score and bragging rights for a job well done.

Example
The following example demonstrates the basic and bonus versions of frequent path LICM. The leftmost

column is the original code that contains a for loop with an infrequently taken if statement. Variable ‘j’ is

only modified on an infrequent path, thus the load of j is a good target for frequent path LICM. The middle

column shows the code after applying frequent path LICM to the load of j including the repair code to fix

up loop execution when the infrequent path is taken. Note the repair code only needs to be executed on

infrequent paths where j is modified. Finally, removing the load of j enables other dependent instructions

to be hoisted including the load of A[j] and the multiplication by 23. This optimization is the optional part

of this homework referred to as the Bonus Implementation. The final result in shown in the rightmost

column of the table below including the updated repair code.

Original Code First load hoisted First load and uses hoisted

int A[100], B[100], i, j = 99; int A[100], B[100], i, j = 99; int A[100], B[100], i, j = 99;

 int temp = A[j]; /* hoisted load */ int temp = A[j] * 23; /* hoisted load and uses */

for (i=0; i<100; i++) { for (i=0; i<100; i++) { for (i=0; i<100; i++) {

 /* Frequent path */

 B[i] = A[j] * 23 + i;

 /* Frequent path */

 B[i] = temp * 23 + i;

 /* Frequent path */

 B[i] = temp + i;

 if (i%32 == 0) if (i%32 == 0) { if (i%32 == 0) {

 j = i; j = i; j = i;

} temp = A[j]; /* repair code */ temp = A[j] * 23; /* repair code */

 } }

 } }

Contest
For the purposes of fun only, the person with the fastest average execution time across the benchmarks will

be crowned EECS 583 Fall 2021 Optimization Champ and be awarded a fabulous prize. Note: correct

execution results are required to qualify for the contest.

Submission
You should submit a single .tgz (gzipped tar) file into the directory /hw2_submissions on

eecs583a.eecs.umich.edu via scp. Please name your tar file uniquename_hw2.tgz. Your tar file should

contain:

1. Source code for your LLVM optimization pass. Please include all your code in the file

HW2PASS.cpp. This should include your implementation of the baseline optimization and

optionally your bonus implementation if you attempted this portion.

2. For each benchmark (both performance and correctness) provide bitcode files after performing

your frequent path LICM optimization. Provide the bitcode files with just the baseline

optimization (e.g., hw2correct1_base.bc) and optionally the bonus optimization (e.g.,

hw2correct1_bonus.bc) if you attempted the bonus portion of the assignment. Note you need to

rename the output files generated by run.sh, i.e., from hw2correct1.fplicm.bc (generated from

run.sh) to hw2correct1_base.bc for submission.

3. README that summarizes the status of your implementation, ie what works.

Use the following directory organization for your submitted tar file:
 uniquename_hw2/

 HW2PASS.cpp (assuming you use the template)

 benchmarks/

 hw2correct1_base.bc

 …

 hw2perf1_base.bc

 …

hw2correct1_bonus.bc

 …

 hw2perf1_bonus.bc

 …

 README

