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Abstract

Superscalar and superpipelined processors utilize parallelism to achieve peak performance

that can be several times higher than that of conventional scalar processors. In order for this

potential to be translated into the speedup of real programs, the compiler must be able to sched-

ule instructions so that the parallel hardware is e�ectively utilized. Previous work has shown

that prepass code scheduling helps to produce a better schedule for scienti�c programs. But

the importance of prescheduling has never been demonstrated for control-intensive non-numeric

programs. These programs are signi�cantly di�erent from the scienti�c programs because they

contain frequent branches. The compiler must do global scheduling in order to �nd enough

independent instructions.

In this paper, the code optimizer and scheduler of the IMPACT-I C compiler is described.

Within this framework, we study the importance of prepass code scheduling for a set of produc-

tion C programs. It is shown that, in contrast to the results previously obtained for scienti�c

programs, prescheduling is not important for compiling control-intensive programs to the cur-

rent generation of superscalar and superpipelined processors. However, if some of the current

restrictions on upward code motion can be removed in future architectures, prescheduling would

substantially improve the execution time of this class of programs on both superscalar and su-

perpipelined processors.

Index terms - Code scheduling, control-intensive programs, optimizing compiler, register

allocation, superpipelined processors, superscalar processors.
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1 Introduction

Current high-performance processors use hardware techniques to exploit instruction-level paral-

lelism. Pipelining is common, and many designs are capable of executing nearly one instruction

per cycle. Performance can be boosted further either by executing more than one instruction

per cycle, or by reducing the length of the clock cycle. Superscalar processors fetch, decode, and

execute more than one instruction per cycle by duplicating decode/issue units, functional units,

and datapaths. Superpipelined processors divide the pipeline into smaller segments that have less

delay, allowing the clock cycle to be shortened. In order for the full performance to be extracted

from these parallel microarchitectures, techniques must be used to minimize the stalls caused by

the control and data dependences between instructions. As the pipelining depth or the instruction

issue rate increases, these stalls become more costly.

Code scheduling is a technique that tries to rearrange the instruction sequence to minimize

the execution time. Usually code scheduling is performed after register allocation (postpass or

postscheduling). However, the register allocator introduces extra dependences whenever it reuses

registers. These extra dependences restrict the ability of the code scheduler to move instructions

to their desired positions. On the other hand, if code scheduling is performed before register

allocation (prepass or prescheduling), the register lifetimes may be lengthened, which may increase

the amount of spill code added by the register allocator.

In previous work, Goodman and Hsu [1] showed that a prepass scheduler can keep track of the

number of available registers to avoid introducing excessive spill code. Hwu and Chang [2] showed

that a prescheduling, register allocation, postscheduling sequence extracts more performance from

scienti�c benchmarks than postscheduling alone. Both of these results apply to scienti�c programs
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with code scheduling and register allocation performed within large basic blocks. The importance

of prescheduling has never been demonstrated for control-intensive non-numeric programs.

For the study reported in this paper, code scheduling is performed before and after register

allocation. As it reorganizes the instructions, the prescheduler tries to control the increase in the

register lifetimes, helping the register allocator to minimize the number of registers used. We

compile a set of production C programs using the IMPACT-I C compiler in order to examine

the e�ectiveness of prescheduling for control-intensive non-numeric programs. It is important to

evaluate prescheduling on this class of codes for two reasons. First, compared to the scienti�c

applications studied earlier, these C programs have frequent branches, creating small basic blocks

in which there is limited parallelism. Code scheduling and register allocation are performed globally

in order to �nd more parallelism and to reduce the register save and restore overhead. It is not

clear that the results based on local scheduling and register allocation for scienti�c codes are

directly applicable here. Second, even with global scheduling and register allocation, these control-

intensive programs have less inherent parallelism than scienti�c applications. The advantage of

prescheduling for programs with limited parallelism needs to be demonstrated. If only a small

amount of parallelism can be extracted from these C programs, the restrictions imposed by the

register allocator may not be signi�cant.

This paper also empirically evaluates the advantages of prescheduling for the superscalar and

superpipelined implementations of current and future architectures. We compile the set of C bench-

marks to several di�erent parallel implementations of a base architecture and calculate the execution

time and the number of dynamic memory references from the schedule. For each case, we compile

once with both prescheduling and postscheduling turned on and once with only postscheduling

turned on in order to compare the two methods. In order for these parallel microarchitectures
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to speed up the execution of control-intensive programs, the compiler must be able to generate

e�cient code with su�cient parallelism to utilize them. The study done in this paper shows that

for architectures that relax the current restrictions on upward code motion, prescheduling helps to

achieve this goal.

In other related work, Hennessy and Gross [3] provided a good description of the code scheduling

problem and a scheduling algorithm. Fisher [4] and Ellis [5] described a very e�ective global

scheduling algorithm called trace scheduling. A paper by Chaitin [6] presented the graph-coloring-

based register allocation algorithm on which our global register allocator is based.

This paper is organized as follows. Section 2 gives the necessary background on prescheduling

and postscheduling, our C compiler, and its register allocator and scheduler. The experimental

methodology and the results are discussed in Section 3. The conclusion is presented in Section 4.

2 Background

2.1 Prepass vs. Postpass Code Scheduling

The code scheduler has one primary goal: to rearrange the instructions so that the code sequence

is executed in the smallest number of cycles. For example, to avoid stalls due to an instruction

with a long latency (such as a load or a multiply), the scheduler will try to move it upward in the

code so that its result is ready in time for use by a subsequent instruction. While reorganizing the

code, it must preserve the correctness of the original program with respect to the data and control

dependences. In this work, it is assumed that the instructions are statically scheduled. All of the

instruction latencies and the type and number of functional units are visible to the code scheduler.

The dependences are expressed in the form of a dependence graph. Prior to register allocation,
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the only data dependences expressed in the graph result from the operations necessary to implement

the computation speci�ed by the source program 1. Because temporary variables are written

only once, the only dependences related to them are ow (read-after-write) dependences. For

the user-level variables, there may be ow, anti- (write-after-read), and output (write-after-write)

dependences for both registers and memory locations.

During register allocation, dependences resulting from the reuse and spilling of registers are

added to the dependence graph. When a register is reused, anti- and output dependences are

created because the last read or write of the variable currently occupying the register is followed

by the write of the new variable. When a register is spilled, an anti-dependence is created because

the register spilled to memory will soon be reused. A ow dependence is created because the value

written to memory will eventually be read into a register again. When a register is re�lled, an

anti-dependence may created if the memory from which the value is read eventually gets written

again.

Code scheduling can be performed either before or after register allocation, or both. No matter

when scheduling is performed, the dependences in the initial code sequence constrain the reordering

of instructions. If code scheduling is performed after register allocation, the scheduler is additionally

restricted by the extra dependences resulting from the reuse and spilling of registers described

earlier. As a consequence, the instructions may not be moved around as e�ectively as they could

be.

One way around this is to perform prepass code scheduling. Then the scheduler can move the

1This assumes that the single assignment rule is used for compiler-generated temporaries. Depending on the

amount of optimization performed by the compiler before code scheduling, the number of instructions used and the

dependence pattern created may vary. In any case, there is some given dependence pattern that the code scheduler

must work with.
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instructions close to their desired positions without the hindrance of the dependences caused by

register recycling. However, if the prepass code scheduler is not careful about moving instructions,

it can greatly increase the register lifetimes. For example, in order to avoid delays due to a load

instruction the code scheduler tries to insert useful operations between the load and the instruction

which uses the value loaded. This increases the lifetime of the destination register of the load,

increasing the chance that the register will have to be spilled. If the scheduler inserts too many

instructions, then the value loaded will be available sooner than it needs to be and will take up space

in the register for a longer time than is necessary. The scheduler can also attempt to exploit more

parallelism than the register �le is capable of supporting by producing too many simultaneously

live values.

The above are some of the disadvantages of prescheduling. The �rst one can be minimized

by an intelligent scheduler. The prepass scheduler should insert no more instructions than are

necessary to avoid delays. Temporary values should be produced as late as possible and used

as early as possible. The second disadvantage can be reduced by increasing the register �le size

or more tightly integrating the code scheduler and register allocator as in [1]. We evaluate the

performance of prescheduling for various register �le sizes, but do not consider more integrated

schemes in this paper. It is shown in Section 3 that if the prescheduling is done intelligently, the

bene�ts of the increased code movement exibility outweigh the cost of the extra register spilling

for the control-intensive benchmarks that we studied. It is also shown that to take full advantage

of the parallel microarchitectures, enough registers must be provided to hold all the simultaneously

live values.

There is another disadvantage to prescheduling if postscheduling is not also done. During

register allocation, the optimized sequence of instructions is perturbed by the spill code added, and
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there is no code motion opportunity to reduce the e�ects of this. If code scheduling is performed

before and after register allocation, then the postpass scheduler can make the �nal adjustments to

account for the extra code and dependences added during register allocation. Because most of the

code motion is already completed, the postpass scheduler is less hindered by the extra dependences.

Figure 1 shows a code sequence (A) as it progresses through register allocation (B) and then

postscheduling (C). For each instruction, the �rst operand is the destination, and the next one or

two operands are the sources. ld is a load instruction and st is a store. The base-register-plus-

displacement addressing mode is similar to that of the MIPS R2000. For example, the memory

address for the instruction ld r1,x(r0) is generated by adding x to the contents of r0. The number

to the right of each instruction is the cycle in which the instruction is issued assuming that loads

have a latency of 2 cycles and all the other instructions shown have a latency of 1 cycle.

In Figure 1 (C), instruction 4 cannot be moved ahead of instruction 2 because of the reuse

of register 0 by the register allocator. This results in a stall when the operand for instruction 1

is not available in time because of the memory access delay 2. The corresponding sequence with

prescheduling (D) and then register allocation (E) is also shown. The postscheduled version takes

1 cycle longer to execute than the prescheduled version. Both use the same number of registers,

but the average register lifetime for the prescheduled sequence is slightly longer. This example is

extracted from the most frequently executed block of code generated by our compiler for the Unix

utility cmp.

The importance of prescheduling becomes more pronounced as the intermediate code becomes

more parallel. If the initial dependence graph has very few edges, then the majority of the con-

2For this example, we assume that the set of unused registers is managed as a stack. It is also assumed that the

register allocator tries to minimize the number of registers in order to reduce the procedure call overhead associated

with saving and restoring registers.
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Figure 1: Examples of postpass and prepass code scheduling.
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straints come from the edges added by the register allocator. This is why prescheduling is so

important for scienti�c programs. We show that, using global optimization techniques combined

with the proper architectural support, enough parallelism can be extracted from control-intensive

programs to make prescheduling necessary.

2.2 IMPACT-I C Compiler

The IMPACT-I C Compiler [7] is a retargetable, optimizing compiler designed to generate very

e�cient code for pipelined and multiple-instruction-issue processors. Code generators have been

built for the MIPS R2000 [8], the Sun SPARC [9], the AMD 29K [10], the Intel i860 [11], and

the HP PA [12] processors. IMPACT-I is used to study the e�ectiveness of new code optimization

techniques and to study alternative approaches in the design of processors that exploit instruction-

level parallelism. The compiler contains a pro�ler to identify the most frequently executed program

paths. This information is used to guide the global code optimization and scheduling.

IMPACT-I currently performs a wide variety of machine-independent and machine-dependent

code optimizations. The machine-independent optimizations include the classic local and global

code optimizations [13], inline expansion of frequently executed functions [14], instruction place-

ment optimization [15], pro�le-based classic code optimizations [16], and pro�le-based optimizations

to increase the available instruction-level parallelism [17]. The machine-dependent optimizations

include pro�le-based branch prediction [18], graph-coloring-based register allocation [6], and code

scheduling. The results in this paper are based on the IMPACT compiler implementation. The

task of evaluating the importance of the results for other compiler systems is left to the reader.

The following sections describe the global register allocator and scheduler.
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2.3 Register Allocation

The IMPACT-I global register allocator is based on the graph-coloring algorithm described in [6].

The algorithm constructs an interference graph in which each node represents a value. An arc

is added between two nodes if they are ever simultaneously live. Two adjacent nodes cannot be

allocated to the same register. The algorithm tries to color the graph using r colors, where r is the

number of available registers. If the graph cannot be colored in r colors, then a register must be

spilled, and the coloring attempted again.

A natural result of this algorithm is that two values which do not have overlapping live ranges

(i.e. are not adjacent in the interference graph) are often allocated the same register. This register

reuse introduces dependences that prevent the code scheduler from overlapping otherwise indepen-

dent instructions which read or write the two variables. Because the algorithm does not take into

account the cost of instructions that cannot be overlapped, it may allocate registers in a way that

handicaps the code scheduler.

2.4 Superblock Scheduling

This section describes the IMPACT-I code scheduler, which is based on a new variation of trace

scheduling [4, 5] that we call superblock scheduling. The idea is to select frequently executed

paths through the code and optimize them, perhaps at the expense of the less frequently executed

paths. Instead of inserting bookkeeping instructions where two traces join, we duplicate part of

the trace and optimize the original copy. This method is especially useful for the control-intensive

benchmarks studied in this paper because the parallelism within a basic block is very limited.

Superblock scheduling provides an easier way to �nd parallelism beyond the basic block boundaries.

We describe superblock scheduling here because the results presented in this paper are based on
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this kind of global optimization. Superblock scheduling is performed in the six-step process shown

below:

1. Trace selection

2. Superblock formation

3. Superblock optimization

4. Dependence graph construction

5. Dependence graph optimization

6. List scheduling

When a program is compiled with the prescheduling option turned o�, steps 1 through 3 are

completed, followed by register allocation. Then the dependence graph is constructed and opti-

mized, and the code is scheduled. When the prescheduling option is turned on, steps 4 through

6 are also performed just before register allocation. The next subsection describes the program

representation used and the modi�cations to the code prior to scheduling. Later subsections de-

scribe each step of the process. The �nal subsection comments on some concerns that have been

expressed about the e�ects of superblock scheduling on the code size and compile time.

2.4.1 Program Representation, Pro�ling, and Preparation

In our C compiler, a function is represented as a weighted ow graph [16]. Several steps are taken

to prepare the program for optimization and code scheduling. First, the ow graphs are generated

for each function. Probes are then inserted into all the basic blocks to collect the execution counts,

and the program is pro�led several times with di�erent inputs. The results from all the runs are

averaged and used to assign weights to the nodes and arcs of the graphs. Frequently executed

function calls are then inline expanded [14].
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2.4.2 Step 1: Trace Selection

The goal of trace selection is to divide the function into a set of traces such that for each block X,

if there is a block Y immediately following (preceding) X in a trace, Y is the block most likely to

be executed after (before) block X. The block most likely to be executed after (before) block X is

determined by examining the execution counts of all the arcs leaving (entering) block X. The trace

becomes the unit in which instructions are rearranged. As a result, code movement across basic

block boundaries is automatically done in such a way as to optimize the more frequently executed

paths. When the schedule along one path can be improved at the expense of the schedule along

another path, the decision is made in favor of the more frequently traveled path (i.e., the one in

the trace).

The algorithm and heuristics we use for trace selection were �rst proposed by Ellis [5] and

improved by Chang and Hwu [19]. An example of the result of trace selection on a weighted ow

graph can be seen in [16]. A node is not added to a trace unless its execution count is higher than a

minimum count and the probability of entering it from its predecessor or leaving it for its successor

in the trace is greater than a minimum probability 3. Once the traces have been selected, the basic

blocks of each trace are laid out sequentially in memory [15]. Then superblocks are formed and

optimized as described in the next subsections.

2.4.3 Step 2: Superblock Formation

We de�ne a side exit as a branch from any block X in the trace except the last one to a block Y

(Y can be in or out of the trace) where Y does not immediately follow X in the trace. A side

entrance is de�ned as a branch from a block X (X can be in or out of the trace) to any block Y in

3In the experiments done for this paper, the minimum count is 50 and the minimum probability is 60%.
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the trace except the �rst one, where X does not immediately precede Y in the trace. We de�ne a

superblock as a trace that has no side entrances and zero or more side exits. The goal of superblock

formation is to convert a trace that has side entrances and exits into a superblock. The motivation

and method for doing this is explained in the following paragraph.

In the traces formed in step 1, there may be many side exits and entrances. The side entrances

especially increase the di�culty of code scheduling because complex bookkeeping must be done

when code is moved above and below these entrances [4]. These complex repairs could be avoided

if side entrances could be removed from the trace. One way to do this would be not to add a block

to a trace if it produces a side entrance. However, for control-intensive programs, this would limit

the size of the traces and the e�ectiveness of trace scheduling. Instead we chose to remove the side

entrances using a technique called tail duplication. A copy is made of the tail portion of the trace

from the side entrance to the end and is appended to the end of the function. Each block copied

forms a new superblock. Only 1 copy of a block is ever made. All side entrances into the trace

are then moved to the corresponding duplicate basic blocks. At this point, the trace, with only a

single entrance remaining, becomes a superblock that can be optimized with special handling only

for the side exits.

An example of superblock formation can be seen in [16]. When a block is copied, its execution

count in the original trace is reduced by the weight of the side entrances removed. If the block has

multiple successors, the proportion of the weight that should be subtracted from each arc is not

known. As an approximation, we multiply the weight of each outgoing arc by a fraction equal to the

new weight of the block divided by the weight of the block before tail duplication. For the pro�le-

based optimizations, this approximate information is good enough. For accurate analysis of the

�nal schedule however, the transformed program must be repro�led after superblock optimization.
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An additional bene�t of tail duplication is that code optimizations can be more easily applied

to superblocks than to traces [16]. The IMPACT-I compiler uses the superblock as a common

foundation for both optimizations and code scheduling.

2.4.4 Step 3: Superblock Optimization

After superblock formation, many classic code optimizations are performed that take advantage

of the pro�le information encoded in the superblock structure4. These optimizations are designed

to decrease the number of instructions on the frequently executed paths, perhaps at the expense

of the infrequently executed ones [16]. They include: constant propagation, copy propagation,

constant combining, common subexpression elimination, redundant load and store elimination,

dead code removal, loop invariant code removal, loop induction variable elimination, and global

variable migration.

Next, several pro�le-based code transformations are performed that increase the available

instruction-level parallelism of the intermediate code [17] [20]. These optimizations increase the size

of superblocks and eliminate data dependences between instructions. They are applied only to the

most frequently executed superblocks to control code expansion and compile time. They include:

branch target expansion, loop peeling, loop unrolling, register renaming, induction variable expan-

sion, accumulator variable expansion, operation migration, operation combining, and tree height

reduction.

4Traditional local and global optimizations that do not utilize pro�le information are also performed at this
point [13].
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2.4.5 Step 4: Dependence Graph Construction

In this step, a conservative dependence graph is built for each superblock. The dependence graph

is a directed acyclic graph in which the nodes are instructions, and there is an arc from node x to

node y if instruction y depends on instruction x (i.e. nodes in the graph depend on their parents).

Data-dependence arcs are added as if the superblock were a basic block. However, unlike basic

blocks, superblocks may contain branches. For each conditional branch instruction I, we de�ne

live out(I) as the set of variables that may be used before they are de�ned when I is taken. A data-

dependence arc is added from an instruction to a conditional branch I below it if the instruction

writes a variable that is in live out(I) or if the instruction may cause an exception. A control-

dependence arc is added from a conditional branch I to an instruction below it in the superblock

if the destination variable of the instruction is in live out(I) or if the instruction may cause an

exception. Memory disambiguation is done and data-dependence arcs are added between pairs of

memory references that cannot be disambiguated.

Each ow-dependence arc has a length associated with it that is equal to the latency of the

instruction that is the source of the dependence. The anti- and output-dependence arcs have length

0. We assume that the hardware ensures that anti- and output-dependent instructions issued in

the same clock cycle are executed correctly 5. The side exits in the superblock are predicted to not

be taken, so there is no delay for a control dependence and the length of the arc is 0 6.

5There are several techniques for doing this. For example, the hardware can do register renaming for register

dependences and memory access sequence control for memory dependences.
6For the superscalar processors, multiple branches can be issued in a cycle and the architecture uses a squashing

branch scheme [18].
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2.4.6 Step 5: Dependence Graph Optimization

In this step, the dependence graph is optimized by removing some of the dependence arcs. During

the list scheduling step (described in the next subsection), the instructions are reordered to improve

the execution time within the constraints of the dependences. Instructions are moved upward and

downward across branches. Moving instructions upward across branches is called speculative code

motion. There are two major restrictions on moving an instruction upward across a branch I:

1. The instruction must not write a variable that is in live out(I).

2. The instruction must not cause an exception that terminates the program execution.

The �rst restriction can usually be eliminated with su�cient compiler variable renaming sup-

port. As an example of the second restriction, it is not safe to move a division or oating-point

instruction above a branch because of the possibilities of a division by zero or a oating-point ex-

ception, respectively. It is also not safe to move a memory load instruction above a branch because

of the possibility of a memory access violation. Page faults are not a problem, because they do

not cause the execution to terminate. However, moving loads from below to above branches may

increase the number of page faults.

We have implemented two di�erent code scheduling models for the purpose of experimentation.

The �rst model enforces both of the restrictions and is called restricted percolation. This model is

necessary for the current generation of commercial architectures where a subset of the instructions

can cause traps. When this model is used, no additional dependence arcs are removed after memory

disambiguation. The second model allows the second restriction to be avoided. This model is

called general percolation. In this model, the architecture provides non-trapping versions of the

instructions that can cause exceptions. Whenever an instruction is moved upward across a branch,
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the non-trapping version is used. A similar approach has been implemented in the Multiow Trace

computer [21] 7.

If an exception occurs during a non-trapping instruction, the exception is simply ignored (except

for page faults, which are handled normally). An invalid value is placed in the destination register

for loads and arithmetic operations. Instructions that use a (possibly invalid) value generated by

a non-trapping instruction can also be percolated.

For programs which would never have trapped when scheduled using conventional techniques,

this invalid value does not a�ect the correctness of the program because the results of the instruc-

tions moved above the branch are not used when the branch is taken (a result of restriction 1).

However, for all other programs (e.g. undebugged code, or programs which rely on traps during

normal operation), errors which would have caused a trap may now cause an exception at a later

trapping instruction, or may cause an incorrect result.

Smith, Lam, and Horowitz described a method called boosting which uses extra hardware to

remove both the �rst and second restriction without ignoring exceptions [22]. We have shown that

boosting and general percolation have similar performance [23]. Currently, we are investigating

sentinel scheduling, a very promising new technique which allows the code scheduling exibility of

general percolation without ignoring exceptions and without requiring much extra hardware [24].

The results achieved with general percolation in this paper con�rm the importance of speculative

code motion and show the potential of these new techniques.

Moving a load from below to above a branch increases the total number of memory accesses made

by the program because the load is now always executed regardless of which path is taken. Because

7The Multiow Trace eventually detects some oating-point exceptions by writing NaN to the destination register

of the instruction that would have generated an exception.
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the load is moved up from the most frequently executed path, the number of extra references should

be moderate. When the general percolation model is used, any control dependence arcs which result

only from the second restriction can be removed.

If an instruction is moved from above to below a conditional branch I and it writes a variable

that is in live out(I), the instruction must also be inserted between I and its target. In our compiler,

for ease of implementation, code motion of this type is done during the code optimization phases

described above. Therefore, the scheduler does not move an instruction below a branch if it writes

a variable that is in live out(I). It also does not move an instruction downward across branches if

it may cause an exception. In these cases, the exception is only detected when the branch is not

taken. The ability to move such instructions from above to below a branch does not improve the

schedule very much and we prefer not to lose the exception.

2.4.7 Step 6: List Scheduling

In this step, the dependence graph is scheduled. Because the code is scheduled before register

allocation as well as after, the scheduling algorithm is careful to keep the register lifetimes to a

minimum while trying to optimize the code for the pipeline. Temporary values are produced as

late as possible and used as soon as possible, shortening the register lifetimes and reducing the

amount of spilling. The algorithm also tries to control the number of simultaneously live registers

to reduce spilling. The various factors that the scheduler takes into account are summarized in a

priority which is computed for each node in the graph before scheduling begins.

The general idea of the list scheduling algorithm is to pick, from the set of nodes in the de-

pendence graph that are ready to be scheduled, the highest-priority combination of nodes to issue

in a cycle. A node is ready if all of its parents have been scheduled and the result produced by
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each parent is available (i.e. since the time that the parent node was scheduled, enough cycles have

passed to cover its latency). When a node is ready, it is placed in a set of nodes called the active set.

There are a set of instruction templates for the processor that specify the possible combinations of

instructions that can be issued in a cycle. For each cycle, the scheduler �nds the highest-priority

set of nodes from the active set to �ll each template. Then it issues the highest-priority instruction

template and marks the nodes in the template as scheduled. The priorities of all the nodes in a

template are added together to determine the highest-priority template. If there are no nodes in

the active set, the scheduler does not have to issue no-ops. In this case, the ow dependences are

enforced by the hardware interlocks. The scheduler simply advances the cycle count and checks to

see if nodes become ready to be scheduled.

The priority computed for each node is the weighted sum of the values returned by several

heuristic functions. Each heuristic function Fi(N) (where N is a node) returns a priority value

between 0 and 1. For a given node, one heuristic function may return a high value, and another a

low value. Each function is assigned a weight Wi to resolve these kinds of conicts. The function

priority(N) returns
P

n

i=1Fi(N)�Wi. Some of the heuristic functions used are described below

beginning with the highly weighted ones:

slackness(N) This heuristic function assumes that resources are unlimited and that the best

schedule length is equal to the depth of the dependence graph. It �nds the latest time that

node N can be issued without increasing the length of the best schedule and then assigns a

priority between 0 and 1 based on that. Nodes that can be postponed without increasing the

length of the schedule receive a lower priority.

exec count(N) Nodes above a branch (including the branch) are given higher priority than nodes
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below the branch. This is because the nodes above the branch are executed more times than

the nodes below the branch. We do not want to move an operation with a lower execution

count upward across a branch, if it will delay the issuing of the branch.

register use(N) This function gives a high priority to nodes that have many source registers,

because they may free registers. It gives a low priority to nodes that write a variable because

they require a new register. This reduces the number of simultaneously live registers.

uncover(N) High priority is given to nodes that have many children. Once a node like this is

issued, many nodes are added to the active set. Branches, loads, and stores are favored by

this heuristic.

orig order(N) If two nodes can be scheduled in any order, the node which appears �rst in the

original code sequence receives a higher priority.

The weight given to each of these heuristic functions can be tailored to the target architecture.

For example, if the architecture has a small number of registers, register use(N) might be given

more weight. The uncover(N) heuristic might be emphasized for a architecture with lots of

parallelism and a large register �le. In this paper, we use the same set of weights for all of the

experiments.

These heuristics were developed based on our experience with control-intensive programs and

the results in this paper are based upon them. The importance of prescheduling may vary with

di�erent heuristics. The evaluation of the importance of prescheduling for di�erent heuristics is

beyond the scope of this paper.
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2.4.8 The E�ect of Superblock Scheduling on Compile Time and Code Size

In [20], we have measured the code expansion and compile time increase due to trace selection,

superblock formation and optimization for the benchmarks used in this paper. The code size is

increased by an average of 100%. Cache simulation results in [20] show that despite the code size

increase, an instruction cache of 16K bytes or larger performs nearly as well as an ideal cache.

Since most future processors will have an instruction cache at least this large, we do not expect

code expansion to be a problem.

As with trace scheduling, superblock scheduling does increase the compilation time. The in-

crease is about 140% on average (including pro�ling for one input) in our prototype compiler.

However, this extra e�ort is worthwhile if it can signi�cantly reduce the execution time of impor-

tant frequently-executed programs such as the Unix programs that make up part of our benchmark

set. Currently, most microprocessor manufacturers are already producing superscalar processors

with issue rates between 2 and 5. In [20], it is shown that the superblock techniques do signi�cantly

improve the performance of important programs for these issue rates. The increased compile time

can be viewed as part of the overall workload on a machine. If the time saved by the faster execution

of important programs is greater than the increased compile time, then there is a net performance

gain for the whole workload. During program development, when the compile time may be more

critical than the run time, the compiler optimizations can be turned o�.
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3 Experiments

3.1 Methodology

This section presents an empirical evaluation of the importance of prescheduling for the superscalar

and superpipelined versions of existing and future architectures. Each experiment consists of com-

piling and optimizing a set of control-intensive, production C programs as described in Section 2.4.

In each experiment, the benchmarks are compiled for several di�erent implementations of a base

architecture. For each case, we compile once with both prescheduling and postscheduling turned

on and again with only postscheduling turned on. For each compilation, the program execution

time and the number of dynamic memory references are calculated using the schedule for each

superblock and the pro�le information. The number of dynamic references gives an indication of

the amount of register spilling. It is also a�ected by the number of loads moved from below to

above branches. We assume a 100% cache hit rate for these experiments.

The time for each execution of a superblock depends upon whether or not a side exit is taken.

The pro�le information indicates how many times each path is taken, and this quantity is multiplied

by the execution time of the path to get the total time spent executing that path during the

measured run of the program. The totals for all the paths are then added to get the total execution

time for the superblock. The number of dynamic memory references is calculated in a similar

manner.

As mentioned in Section 2.4.3, we repro�le the program prior to list scheduling and register

allocation. During the pro�ling process, code is generated by IMPACT for the MIPS R2000 pro-

cessor and the program is executed on a DECStation 3100. For every new compilation, we check

the program output during this execution to verify the correctness of our compiler optimizations.
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After list scheduling, we can again generate MIPS code, execute the scheduled code sequentially,

and produce an instruction trace. Using these traces, we have simulated the superscalar execution

of the benchmarks in a previous study and found that the simulated execution time matches the

time calculated as described above [25]. We also veri�ed that the program output during this

execution and trace generation was correct 8.

The execution time result for each compilation is reported as a speedup relative to the com-

pilation for the base microarchitecture. For the register spilling results, we de�ne a metric called

the memory reference ratio (MRR). The memory reference ratio is the number of dynamic memory

references issued for benchmark B running on implementation I divided by the number of dynamic

memory accesses for the benchmark on the base microarchitecture. Numbers greater than one

indicate that more memory accesses were made when the benchmark ran on implementation I than

when it ran on the base microarchitecture. The memory reference ratio is an indication of the

demands placed upon the memory system. In a real system where the cache hit rate is not 100%,

extra memory accesses that cause misses will cause the speedup reported here to be reduced. Even

if the extra memory references do not cause cache misses, the delays due to the original cache

misses will become relatively more signi�cant as the execution time is decreased. Delays due to

page faults will also become more signi�cant as the the execution time is reduced.

3.2 Processor Architecture

In addition to the benchmark, the scheduler takes as input a machine description �le that char-

acterizes the instruction set, the microarchitecture (including the issue rate and the instruction

8For the code scheduled using the general percolation model, we must mask the exceptions produced by the
trapping instructions of the R2000. However, because we also scheduled and executed the code with the restricted

percolation model, we know that the exceptions are due to general percolation rather than compiler optimization

bugs.
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Table 1: Instruction latencies.

Function Latency Function Latency

integer ALU 1 FP ALU 3

integer multiply 3 FP multiply 3

integer divide 10 FP divide 10

integer branch 1 / 1 slot FP branch 3 / 1 slot

load 2 FP conversion 3

store 1

latencies), and the code scheduling model and options (this is where prescheduling is turned on and

o�). The base microarchitecture is a pipelined, single-issue processor that supports the restricted

percolation model. Loads, stores, integer divides, and oating-point instructions can cause traps.

Its instruction set is similar to the MIPS R2000 instruction set. Table 1 shows the instruction

latencies. Instructions are issued in order (there is no dynamic code scheduling). The processor is

assumed to have interlocks for structural and read-after-write hazards. The microarchitecture uses

a squashing branch scheme [18] and pro�le-based branch prediction. One branch slot is allocated

by the compiler for each predicted-taken branch. The processor has 32 integer registers and 32

oating-point registers 9. Of the 32 integer registers, 8 are reserved as special registers (for the

stack pointer, frame pointer, parameter passing registers 10, etc.). Four registers in each register

�le are reserved as spill registers 11. These 12 reserved registers are not available for assignment

by the register allocator. All the speedups and memory reference ratios reported in Section 3.5 are

relative to this base microarchitecture.

The superscalar version of this processor fetches multiple instructions into an instruction bu�er

9The code for these benchmarks contains very few oating point instructions. In the experiments, whenever we

change the integer register �le size, we also change the oating-pont register �le size by the same amount. From this

point on, we will simply refer to the register �le size, meaning the integer register �le size.
10The parameter passing registers are used as temporary registers for leaf-level functions.
11The 4 spill registers are used in a round-robin fashion to reduce dependences.
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and decodes them in parallel. The issue rate is the maximum number of instructions that can

be fetched and issued per cycle. An instruction is held in the instruction unit if there is a ow

dependence between it and a previous instruction. All the subsequent instructions are also held.

All the instructions in the bu�er do not have to be issued before more instructions are fetched. We

assume that once the fetch address is known, the required number of instructions can be fetched

in a single cache access. The superscalar processor also contains multiple functional units. Each

functional unit can be a single unit such as an ALU, or a group of di�erent units such as a cache

interface, an ALU, and branch logic. The capabilities of the functional units determine how many

of a particular class of instructions can be executed in parallel. For the processors in this paper,

all the functional units are capable of executing any instruction. Thus, there are no restrictions

placed on the combinations of instructions that can be issued in the same cycle. When the issue

rate is increased, the number of cycles of delay due to mispredicted branches remains the same,

but the number of instructions squashed increases. Since the program execution time is decreased

by superscalar execution, the branch penalty becomes relatively larger.

The superpipelined version of this processor has deeper pipelining for each functional unit. If the

number of pipestages is increased by a factor P, the clock cycle is reduced by that same factor. The

latency in clock cycles is longer, but in real time it is the same as the base microarchitecture. The

throughput increases by up to the factor P. We refer to the factor P as the degree of superpipelining.

The instruction fetch and decode unit is also more heavily pipelined to keep the microarchitecture

balanced. Because of this and the more deeply pipelined compare-and-branch units, the number of

cycles of delay due to mispredicted branches and the number of instructions squashed increases [18].

For the superscalar processor, the additional datapaths, functional units, and instruction unit

logic may increase the cycle time. For the superpipelined processor, the cycle time is actually
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Table 2: The benchmarks.

Benchmark Size Benchmark Description Input Description

cccp 4787 GNU C preprocessor 20 C source �les (100 - 5000 lines)

cmp 141 compare �les 20 similar/dissimilar �les

compress 1514 compress �les 20 C source �les (100 - 5000 lines)

eqn 2569 typeset math formulas 20 ditro� �les (100 - 4000 lines)

eqntott 3461 boolean minimization 5 �les of boolean equations

espresso 6722 boolean minimization 20 original espresso benchmarks

grep 464 string search 20 C source �les with search strings

lex 3316 lexical analyzer generator 5 lexers for C, lisp, pascal, awk, pic

li 7747 lisp interpreter 5 gabriel benchmarks

qsort 136 quick sort Built-in input

tbl 2817 format tables for tro� 20 ditro� �les (100 - 4000 lines)

wc 120 word count 20 C source �les (100 - 5000 lines)

yacc 2303 parser generator 10 grammars for C, pascal, pic, eqn

reduced by less than the factor P because of the latch delays. This paper reports speedups based

on ideal cycle times and leaves the reader with the task of scaling the speedups to account for the

above e�ects.

3.3 Benchmarks

The benchmarks used are shown in Table 2 along with the inputs with which each one is pro�led

prior to optimization. We have attempted to use diverse input data for pro�ling in order to

optimize each program for a wide range of possible inputs. The Size column speci�es the size

of each program in number of lines of code. After superblock formation and optimization, each

benchmark is pro�led again with a single input that is not in the set shown in Table 2. Recall

that after superblock formation, the pro�le information is only approximate. The benchmarks

must be repro�led in order to accurately measure the execution time and the number of dynamic

memory references. In most cases, a compiled production program will not be run with exactly the
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same inputs that it is pro�led with. By using an input which is not in the set that was used for

optimization, we get a more realistic estimate of how well the benchmark was optimized for general

inputs.

Table 3 shows the dynamic frequencies of di�erent classes of control instructions before/after

superblock formation and optimization. For example, the Branches Taken column shows the

percentage of taken branches among all instructions. A - means that the program had less than

0.1% instructions of that type. Before superblock optimization, 1 out of every 3 or 4 instructions

is a control instruction. Superblock formation and optimization may decrease or increase the total

percentage of control instructions. The percentage of taken branches decreases and the percentage

not taken increases. The formation of superblocks places frequently executed blocks in a sequence

and adjusts the appropriate branch target addresses. As a result, the branches in a superblock

are usually not taken. One of the superblock optimizations reduces the number of indirect jumps.

If there is a favored target for the jump, a branch is added to test speci�cally for that target,

avoiding the indirect jump for most cases. Superblock optimizations do not change the number

of function calls. However, the total number of instructions executed may increase or decrease,

causing the percentage of function calls and returns to vary. As a whole, the programs are just

about as control-intensive after superblock formation as before.

3.4 Compiler Calibration

It is important to measure the e�ectiveness of prescheduling using a compiler that produces highly

optimized code prior to code scheduling. Code that is not well optimized can contain redundant

instructions that change the dependence pattern and allow the prescheduler to produce deceptively

parallel code. On the other hand, some dependences may not be removed by a poor optimizer,
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Table 3: Percentage of branches, jumps, and function calls+returns among all instructions. The
statistics are shown for before/after superblock formation and optimization.

Benchmark Branches Branches Uncond. Indirect function Total

Taken Not Taken Jumps Jumps Calls

cccp 9.2/5.2 18.3/24.2 3.1/1.7 4.2/0.2 0.3/0.3 35.1/31.5

cmp 4.0/1.3 15.1/22.5 0.1/- 0/0 -/- 19.3/23.7

compress 5.7/2.7 10.7/13.7 0.8/0.3 0/0 -/- 17.1/16.8

eqn 4.2/3.3 22.1/24.8 0.9/1.0 0.5/0.1 1.1/1.4 28.9/30.7

eqntott 14.6/9.3 23.1/19.5 0.2/0.2 -/- 0.8/0.7 38.7/29.8

espresso 9.7/4.1 9.2/14.2 1.1/0.6 0/0 0.7/0.6 20.6/19.6

grep 6.8/1.6 38.5/47.2 6.5/1.0 -/- -/- 51.7/49.8

lex 18.1/3.4 18.7/32.8 0.5/- -/- -/- 37.4/36.3

li 5.3/4.4 16.7/17.6 1.7/1.0 0/0 2.3/2.3 25.9/25.3

qsort 9.1/2.7 5.7/10.4 2.0/0.7 0/0 1.2/1.1 18.0/14.9

tbl 17.6/3.7 10.3/25.9 0.5/0.6 -/- 2.2/2.4 30.7/32.5

wc 5.5/2.4 24.9/31.2 2.6/2.0 0/0 -/- 33.0/35.6

yacc 15.9/4.1 16.7/27.2 0.4/0.5 -/- 0.3/0.3 33.3/32.1

restricting the ability of the prescheduler to move code. To calibrate the quality of the code

generated by IMPACT-I, the execution time of its output code has been compared to that of the

commercial MIPS C compiler12, which is well known for its excellent code optimization capabilities.

For the benchmarks described earlier, the performance of IMPACT-I is slightly better than that of

the MIPS C compiler [16]. Thus, the evaluation of prescheduling reported in this paper is based

on well optimized sequential code.

12MIPS Release 2.1 using the (-O4) option.
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3.5 Results

3.5.1 The Importance of Prescheduling for Existing Architectures

In this section, two experiments are performed to investigate the e�ect of prescheduling on the

performance of superscalar and superpipelined implementations of the current generation of com-

mercial architectures. The goal is to �nd out whether or not these processors require prescheduling

in order to exploit the instruction-level parallelism in the C benchmarks. Some instructions in

these architectures can cause traps, so all the compilations for these two experiments adhere to the

restricted percolation code scheduling model.

In the �rst experiment, the benchmarks are compiled for superscalar processors with issue

rates from 1 to 8 instructions per cycle. These processors all have 32 registers and the instruction

latencies given in Section 3.2. For each case, the benchmarks are compiled once with prescheduling

and once without it. The speedups and memory reference ratios are calculated with respect to the

single-issue base architecture described in Section 3.2. Prescheduling is turned o� for the 32-register

base architecture. The changes in the amount of memory references for this experiment are purely

due to spilling because loads cannot be moved above branches.

The individual results for each benchmark are shown in Figure 2. The gray bars in the charts

show the increased performance and number of memory references, without prescheduling, com-

pared to the base processor for issue rates 2, 4, and 8. The black bars in the speedup chart show the

additional speedup due to prescheduling. In the MRR chart, the black bars show the total MRR

with prescheduling. The separate bars are used because prescheduling does not always produce an

increase in the MRR.

Prescheduling extracts little or no extra performance for most of the benchmarks. compress is
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Figure 2: The performance of prescheduling for the superscalar versions of existing architectures.
The base architecture is the single-issue processor with no prescheduling. All the processors have
32 registers.
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the only benchmark that shows a really marked improvement. For issue rate 4, the average speedup

with prescheduling is less than 4% higher than without it. Performance for a single-issue processor

(not shown) is also improved very slightly for each benchmark. The performance increase is limited

by the restricted percolation code scheduling model. We have observed that loads are often in the

critical path. This was illustrated in the code segment that was shown in Figure 1. However, with

the restricted percolation model, loads cannot be moved from below to above branches, limiting

the ability of the prescheduler to optimize the critical path.

The memory reference ratio is always 1 without prescheduling. This means that there are no

more memory references than for the single-issue base architecture. The reason for this is that the

register allocation algorithm assigns registers in the same way regardless of the issue rate. For issue

rate 2, there are often less memory references with prescheduling than without it. Before code

scheduling, the instruction sequence is not optimized. Some temporaries are produced too early,

resulting in register lifetimes that are longer than they have to be. Prescheduling has the chance

to rearrange the code to shorten the register lifetimes and reduce spilling.

As the issue rate increases, the prescheduler tries to take advantage of the parallelism. More

values are simultaneously live, demanding more registers and increasing the amount of spilling.

For eqn and qsort there are 10 to 18% more memory references as a result of prescheduling and

little additional performance. In these cases, the improvements in the schedule made before register

allocation are are o�set by extra spills. For compress, the number of memory references is reduced

or only slightly increased even though there are large gains in performance. The average MRR is

only 2% higher with prescheduling.

In the second experiment, the benchmarks are compiled for superpipelined processors with the

degree of superpipelining varied from 2 to 3. We refer to these as 2X-, and 3X-superpipelined
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processors respectively. These processors have 32 registers. For each case, the benchmarks are

compiled once with prescheduling and once without it. The speedups and memory reference ratios

are calculated with respect to the same single-issue base architecture as for the �rst experiment.

The results are shown in Figure 3. Processors 2 and 3 are single-issue, 2X- and 3X-superpipelined
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Figure 3: The performance of prescheduling for the superpipelined versions of existing architectures.
The base architecture is the single-issue processor with no prescheduling. 2 and 3 are single-
issue, 2X- and 3X-superpipelined processors respectively. 4 and 6 are dual-issue, 2X- and 3X-
superpipelined processors respectively. All the processors have 32 registers.

microarchitectures respectively. Processors 4 and 6 are dual-issue, 2X- and 3X-superpipelined

microarchitectures. In the previous experiment, there was often a large gap in performance between
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the processors with issue rates 2 and 4. The single-issue 3X-superpipelined microarchitecture �lls

that gap. Again prescheduling has only a small advantage in speedup for most of the benchmarks

and only compress is improved dramatically. The MRR results are also similar to the previous

experiment.

The results of this section show that prescheduling is not important for compiling control-

intensive programs to today's architectures. For the restricted percolation model, the frequent

branches in the C benchmarks hinder the code scheduler so much that the extra dependences

added by register allocation don't have much e�ect. In order to exploit more instruction-level

parallelism in these benchmarks, some way must be found to eliminate the restrictions imposed by

trapping instructions. The next subsection presents the results obtained by doing just that. It is

shown that once this restriction is removed, prescheduling becomes critical to exploiting the newly

obtained code movement opportunities.

3.5.2 The Importance of Prescheduling for Future Architectures

In this section, two experiments are performed to study the e�ect of prescheduling on the per-

formance of the superscalar and superpipelined implementations of an architecture that supports

the general percolation code scheduling model. The goal is to demonstrate that these processors

require prescheduling in order to exploit the extra parallelism in the C benchmarks made available

by general percolation.

In the �rst experiment, the benchmarks are again compiled for superscalar processors with is-

sue rates from 1 to 8 instructions per cycle. These processors have 32 registers and the instruction

latencies given in Section 3.2. For each case, the benchmarks are compiled once with prescheduling

and once without it. This time the compiler makes use of the general percolation model. The
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speedups and memory reference ratios are calculated with respect to the single-issue base archi-

tecture described in Section 3.2. Prescheduling is turned o� and restricted percolation is used for

this 32-register base architecture. Therefore, the speedup and change in memory references due

to both prescheduling and the general code percolation model are shown. The change in memory

references is due to both spilling and to loads that are moved from below to above branches.

The results are shown in Figure 4. The performance advantage of prescheduling is now much

more pronounced. For issue rate 4, prescheduling improves the speedup by more than 10% for every

benchmark except eqntott and qsort. For issue rate 8, the speedups of cmp, lex, and tbl are

improved by more than 95%. The average speedup is increased by 26% for issue rate 4. Without

prescheduling, the register allocation algorithm provides the same number of registers for all issue

rates even though that may not be enough to support the parallelism available in the hardware.

Note that without prescheduling, the speedup with general percolation is not much better than for

restricted percolation (in section 3.5.1). The hardware that supports the general percolation model

provides richer opportunities for parallelism, but prescheduling is required to take advantage of

them.

The memory reference ratio is no longer constant without prescheduling. The increase over

the base microarchitecture is due only to loads that are moved from below to above branches.

Prescheduling now increases the number of memory references in almost every case as it exploits

the opportunities provided by the general percolation model. The increase in memory references is

usually small when the issue rate is low. The scheduler moves instructions only enough to satisfy

the pipeline constraints and exploit the available parallelism. This keeps the register lifetimes to

a minimum, reducing the spilling. As the issue rate increases, the scheduler takes advantage of

the opportunities to issue instructions in parallel and as a result is forced to increase the number
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Figure 4: The performance of prescheduling for the superscalar versions of architectures that sup-
port general percolation. The base architecture is a single-issue processor with no prescheduling
and restricted percolation. All the processors have 32 registers.
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of registers used. The speedup with prescheduling increases faster than without it in spite of the

MRR, which also increases faster with prescheduling. At the high issue rates, there are more unused

instruction slots to hide spill code, and the extra parallelism exploited overcomes any loss due to

spill code that cannot be hidden. Prescheduling increases the average MRR by 11%.

The speedups for compress and qsort are very slightly lower with prescheduling (which cannot

be seen in the �gure) for issue rate 2. There are more memory references for compress with

prescheduling. When the issue rate is 2 it is more di�cult to �nd empty instruction slots in which

to hide spill code. For qsort, the MRR is very slightly improved, indicating that some temporaries

may have been produced too early in the original optimized code. For issue rate 1 (not shown),

the speedup is slightly lower with prescheduling than without for about half of the benchmarks.

In these cases, the MRR is usually slightly higher. For some of the benchmarks, particularly cccp

and yacc, at issue rate 8, the increase in the MRR with prescheduling is quite a bit higher than

the increase in the speedup. The above results indicate that performance may be further improved

by more tightly integrating the code scheduler and register allocator.

In second experiment, the benchmarks are compiled for superpipelined processors with the

degree of superpipelining varied from 2 to 3. These processors have 32 registers. For each case,

the benchmarks are compiled once with prescheduling and once without it. Again, the compiler

uses the general percolation model. The speedups and memory reference ratios are calculated with

respect to the familiar single-issue base architecture with 32 registers. Prescheduling is turned o�

and the restricted percolation model is used for the base processor.

The results are shown in Figure 5. The increases in performance for prescheduling with the

general percolation model are similar to those described for the superscalar processors. The MRR

results are also similar. Prescheduling can exploit both the superscalar and superpipelined mi-
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croarchitectures very well. Note that for the 3X-superpipelined processors, the single-issue version

with prescheduling often outperforms the dual-issue version that does not have prescheduling. Also

note that the speedups for the dual-issue superscalar machine (in the previous experiment) and the

single-issue, 2X-superpipelined machine are similar. The same is true for the superscalar machine

with issue rate 4 and the dual-issue, 2X-superpipelined machine. This matches results that have

been reported in the literature before [26].
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Figure 5: The performance of prescheduling for the superpipelined versions of architectures that
support general percolation. The base architecture is a single-issue processor with no prescheduling
and restricted percolation. 2 and 3 are single-issue, 2X- and 3X-superpipelined processors respec-
tively. 4 and 6 are dual-issue, 2X- and 3X-superpipelined processors respectively. All the processors
have 32 registers.
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This section demonstrated that for control-intensive benchmarks, the general percolation code

scheduling model provides more code motion opportunities, but these opportunities have to be

taken advantage of before register allocation. Once the restrictions imposed by trapping instructions

are removed, the dependences added during register allocation become the major impediment to

reorganizing the code. Without prescheduling, the added dependences prevent the code scheduler

from taking advantage of the general percolation model to the point that there is little or no

advantage to providing non-trapping instructions. Both general percolation and prescheduling are

required to obtain good speedup from control-intensive programs.

Between the time that we submitted the �rst version of this paper for review and the time

of the �nal draft, we continued to add optimizations to our compiler that increased the available

instruction-level parallelism of the intermediate code. For this �nal draft, we repeated our exper-

iments and found that the advantage of prescheduling was greater for the more parallel code. We

predict the importance of prescheduling will continue to increase in the future as improved compiler

optimization techniques �nd more parallelism.

3.5.3 The E�ect of Register File Size on the Performance of Prescheduling

In this section, an experiment is performed to study how the advantage of prescheduling varies with

the register �le size. We also want to see the extent to which larger register �le sizes decrease the

extra memory referencing that results from prescheduling. For the experiment, we pick a middle-of-

the-road superscalar processor with issue rate 4, and vary its register �le size from 24 to 64 registers

(recall that 12 of these registers are reserved). We use the general percolation code scheduling model

since it represents the class of architectures for which prescheduling is important. For each case, the

benchmarks are compiled once with prescheduling and once without it. The speedups and memory
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reference ratios are calculated with respect to the single-issue base architecture with 32 registers.

Prescheduling is turned o� and the restricted percolation model is used for the base processor. The

speedup and memory reference ratio numbers show the combined e�ect of the 4-instruction issue

rate, the general percolation model, and the register �le size. For this experiment, the change in

the number of memory references between register �le sizes is due purely to register spilling.
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Figure 6: The performance of prescheduling for processors with various register �le sizes. Processors
a, b, c, and d have 24, 32, 48, and 64 registers respectively. All the processors except the base
architecture have issue rate 4 and support the general percolation model. The base architecture is
a single-issue processor with no prescheduling, restricted percolation, and 32 registers.
.

The results are shown in Figure 6. Machines a, b, c, and d have a register �le size of 24, 32,
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48, and 64 respectively. The execution time decreases as the number of registers increases, because

there is less spill code and fewer dependences due to the reuse of registers. When the register

�le size is 24, there is still an advantage to prescheduling. However, there is quite a bit of extra

spilling. cccp and qsort show very slight performance decreases with prescheduling because of

this. More registers are probably needed to fully exploit the parallelism. We also obtained results

for 16 registers (of which 12 are reserved). 4 allocatable registers is simply not enough. Many of

the benchmarks ran slower with prescheduling than without, and prescheduling greatly increased

the number of memory references. 32 registers is a reasonable number for these benchmarks. There

is only a small increase in performance when moving to 48 or 64 registers and the MRR increase is

fairly low. The processors with 48 and 64 registers perform equivalently.

Prescheduling's advantage does not diminish as the register �le size increases because the register

allocator reuses registers in a similar way regardless of the number of available registers. Note that

without prescheduling, little advantage is taken of the increasing register �le size. The small increase

in performance is due to a decrease in spills. The code scheduler cannot take advantage of the larger

register �le size to increase performance further. As the number of registers is increased, the register

allocator may still allocate the same register to two nodes that are not adjacent, when it might be

able to use a di�erent register to avoid adding a dependence. The average increase in performance

due to prescheduling is at least 26% for register �le sizes of 32 or greater. As the register �le size

increases, the di�erence in MRR with and without prescheduling diminishes, because the register

set has more space to support the longer register lifetimes. For register �le sizes 32 and larger, the

di�erence is less than 11%.
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3.5.4 The E�ect of Register Allocation on Code Scheduling

In this section, an experiment is performed to study how much the extra dependences added during

register allocation hinder the code scheduler given an ideal architecture. This gives an indication

of how much register allocation changes the dependence graph for control-intensive programs. The

e�ects of the hardware constraints are minimized as much as possible. We model a processor that

has an unlimited issue rate for all instructions, and unit instruction latencies. Unit instruction

latencies were chosen so that each dependence produces the same delay and has a similar e�ect on

the results. The processor supports the general percolation code scheduling model. We vary the

register �le size from 24 to 64 because this has a direct e�ect on the amount of register recycling and

the extra dependences added. For each case, the benchmarks are compiled once with prescheduling

and once without it. The speedups and memory reference ratios are calculated with respect to

the single-issue base architecture with 32 registers. The base architecture has the latencies shown

in Table 1. Prescheduling is turned o� and the restricted percolation model is used for the base

processor. The speedup and memory reference ratio numbers show the combined e�ect of the

unlimited issue rate, the unit latencies, the general percolation model, and the register �le size.

The results are shown in Figure 7 and are similar to the those for the previous experiment.

The speedup over the base single-issue processor is higher due to the unlimited issue rate and

unit latencies. Prescheduling's performance advantage for the larger register sizes increases to

approximately 43% on average because the hardware can exploit more parallelism. The di�erence

in the memory reference ratio is also larger because the scheduler moves instructions more to take

advantage of the unlimited issue rate. For register �le sizes of 32 and larger, the register allocator

clearly handicaps the code scheduler by adding dependences. The register allocator reuses registers
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without regard for the e�ect on the �nal schedule. There is now a more pronounced di�erence

in spilling between 32 and 48 registers. This is because exploiting more parallelism requires more

registers. For 48 or more registers, there is less than 11% more spilling with prescheduling.
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Figure 7: The performance of prescheduling for an ideal processor with various register �le sizes.
The ideal processor has an unlimited issue rate, unit instruction latencies and supports the general
percolation model. Processors a, b, c, and d have 24, 32, 48, and 64 registers respectively. The
base architecture is a single-issue processor with no prescheduling, restricted percolation, and 32
registers.
.
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4 Conclusion

This paper studied the interaction between register allocation and code scheduling and the impor-

tance of performing prepass as well as postpass code scheduling. The register allocator introduces

extra dependences between the instructions whenever it reuses registers and adds spill code. If

code scheduling is performed only after register allocation, these extra dependences restrict the

ability of the code scheduler to move instructions to their desired positions. On the other hand,

if code scheduling is done only before register allocation, the register lifetimes may be lengthened,

increasing the amount of spill code added by the register allocator. There is also no opportunity

to optimize the code added by the register allocator. If both prepass and postpass scheduling are

performed, and the prescheduler is careful to minimize the use of registers by moving code only

as much as necessary to minimize delays, better performance can be achieved and spilling can be

controlled.

The IMPACT-I C compiler's code scheduler was described in detail. It is used for both

prescheduling and postscheduling. It �nds the most frequently executed paths in the functions

and lays the basic blocks of the paths out sequentially in memory. Code movement and register

allocation is done across basic block boundaries in order to �nd more instruction-level parallelism.

This is especially useful for the non-numeric C programs studied in this paper because they have

frequent branches.

Experimental results showed that prescheduling is not important for compiling control-intensive

programs to today's architectures. Prescheduling extracts slightly more performance from each

processor studied, but the frequent branches in the C programs we used combined with the inability

to move loads above branches hinder the code scheduler so much that the extra dependences added
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by register allocation do not create too many additional problems. This is in contrast to the results

previously obtained for scienti�c codes. In those programs branches are less frequent, making the

restrictions on code percolation less problematic and increasing the importance of prescheduling.

If the restrictions imposed by trapping instructions are removed, but prescheduling is not used,

performance does not improve much for the benchmarks we looked at. The dependences added dur-

ing register allocation become the major hindrance when reorganizing the code. In order to obtain

more speedup from these benchmarks using processors that exploit instruction-level parallelism,

both general code percolation and prescheduling must be used. Using an intelligent scheduler,

we have shown experimentally that prescheduling, combined with the general percolation code

scheduling model, can substantially improve the execution time of control-intensive programs on

both superscalar and superpipelined processors.
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