
Clairvoyance: Look- Ahead
Compile Time Scheduling

Parth Oak
Jiaqing Ni

Joseph Sorenson

Nov. 28, 2018

Agenda

● What Clairvoyance is
● Why it is used
● Utilization challenges and solutions
● When to not use it
● Experimental results
● Conclusion

Introduction/Problem

● Innovation of hardware comes at a cost
● Fast processors

○ Power hungry
● Efficient energy usage

○ Slow processing
● More memory-bound application

○ Requires more aggressive engine
● Clairvoyance

○ Uses simple out-of-order (OoO) core

Clairvoyance: Why Use It?

● Balances performance and energy efficiency
● Hides memory latency

○ Masks memory operation dependency

Major issue: Slow loads

● Some loads have high latency (i.e., cache misses)
● All instructions that depend on load are blocked
● Example:

○ Instruction 3 is blocked until Instruction 2 finishes
○ Instruction 5 is blocked until Instruction 1 finishes
○ Latter case is more ideal (more time for load to finish)

1. R4 = Load(R2)
2. R5 = Load(R3)
3. R6 = R5 + 7
4. R7 = R6 * 2
5. R8 = R4 - 3

Access and Execute Phases
● Unroll main loop 2^n times
● Split all instructions into 2 phases:

○ Access phase has all of the important loads
○ Execute phase has everything else

● Dependent instructions are far away from their loads

Challenges

● Simply hoisting loads doesn’t always work
● Challenges:

1. Critical loads
2. Unknown aliasing
3. Load chains
4. Instruction count overhead

Challenge #1: Critical Loads

● Some loads if hoisted, are not as beneficial as others
● Hoisting every load bloats the code
● The longer the dependency chain, the more work

needs to be done to hoist

1. R4 = Load(R2)
2. R5 = Load(R3)
3. If R5 == 0, jump to 8
4. R6 = Load(R5)

Hoisting instruction 4
introduces more code, and
it’s not always executed.

Challenge #1 Solution

•Indirection Count: # memory accesses to reach a load
• Example: x[y[z[i]]] has indirection count = 2
•Higher indirection counts are harder to prefetch
• Prefetch only loads with small indirection values

Challenge #2: Unknown aliasing

•Some memory operations alias to the same location
•If hoisted, changes program behavior
•Traditional RAW handling:

•Read-after-write dependencies
1. Store(R1, R2) # R1: addr

2. R4 = Load(R3)

(Possible alias: R3 = R1; DON’T HOIST)

•Not too much can be done

Challenge #2 Solution

• Prefetch in Access phase anyway
• Assume no aliasing

• If no alias, then use prefetched value
• If aliasing occurs, re-load to get correct value

Challenge #3: Load Chains

•Load Chain (similar to challenge #1):
1. R2 = Load(R1)

2. R3 = Load(R2)

•If both loads are hoisted to access, then the second load
still is blocked by the first.

•Need to separate dependent loads

Challenge #3 Solution

•Multiple access phases
• Each dependent load goes in a different access phase
• Separate dependencies as much as possible

Challenge #4: Instruction Count Overhead

•Branching instructions
are duplicated in Access
and Execute phases.

•Increases complexity of
control flow graph.

Challenge #4 Solution

• Check for situation
where all predicates
are true.

• Create special Access
and Execute phases
for this scenario.
• Merge control flow

• Default to normal
Access and Execute
otherwise.

Disabling Clairvoyance

• Even in the best case, may get worse performance
• Code bloat
• Branch Complexity

• Determine ahead of of time whether to use
Clairvoyance transformations.

• Works better with more loads and less branches
• Heuristic: if #loads / # branches < 0.7, then disable

transformations.

Experimental Results
• Clairvoyance has multiple different settings

• Experiments compare conservative optimization with more
speculative optimization

• Different settings perform better for different
workloads
• No clear best setting

Experimental Results
• Compare Clairvoyance runtime to state of the art systems:

• Clairvoyance (conservative settings)
• Clairvoyance (best settings for individual workload)
• DAE
• Optimal LLVM scheduler

• Clairvoyance has overall superior performance

Conclusion

• Addresses memory latency
• Unrolls main loop
• Lifts loads to separate access and execution phase

• A geomean execution time improvement for
memory-bound applications of 7% - 13%.

• Performance improvements of up to 43%

Thank You

Any Questions?

