
KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs

1

Cristian Cadar, Daniel Dunbar, Dawson Engler

Presented by Changfeng Liu, Jiachen Sun, and Shengtuo Hu

Problems

• Code complexity
• Non-obvious input parsing code
• Tricky boundary conditions
• Hard-to-follow control flow

• Environmental dependencies (e.g., OS, network)
• Complex interactions with environmental input (including malicious input)

2

What is KLEE?

• Symbolic execution
• Constraint solving

It can:
• Automatically generate high coverage test suites
• Find deep bugs in complex system programs

3

Example

4

Example - Maze

5

https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/

KLEE Architecture

6

Challenges

• State explosion
• Path selection
• Constraint solving
• Environment problem

7

State Explosion

Problem: the number of states grows very quickly and use tons of memory

Use compact state representation:

• Copy-on-write at the object level rather than page level
• Heap as an immutable map can be partially shared among states
• Heap can be cloned in constant time

8

Path Selection

Problem: selecting a path at random can easily get stuck

Use search heuristics:

• Random path selection
• Coverage-optimized search

9

Constraint Solving Optimization

Problem: the cost of constraint solving dominates runtime

Two types of optimizations:

• Eliminating irrelevant constraints
• Caching solutions

10

Eliminating Irrelevant Constraints

Each branch usually depends on a small number of variables

Example:

• Constraint set: {i < j, j < 20, k > 0}
• Query: i = 20 ?

11

Eliminating Irrelevant Constraints

Each branch usually depends on a small number of variables

Example:

• Constraint set: {i < j, j < 20, k > 0}
• Query: i = 20 ?

12

Caching Solutions

14

 Cached entries New queries

 {i < 10, i = 10} => no solution {i < 10, i = 10, j = 12} => no solution

 {i < 10, j = 8} => satisfiable, with i = 5, j = 8 {i < 10} or {j = 8} => satisfiable, with i = 5, j
= 8

 {i < 10, j = 8} => satisfiable, with i = 5, j = 8 {i < 10, j = 8, i != 3} => satisfiable, with i = 5,
j = 8

Example:

Optimization results

15

Environment Modeling

Problem: interactions with the environment are complex

A hybrid solution:

• Forward concrete system calls to OS
• Handle function calls with symbolic arguments with models

16

Evaluation: In-depth Coverage Experiments

Methodology:

• Run KLEE one hour per utility in COREUTILS and BUSYBOX to
generate test cases

• Run test cases
• Measure line coverage using gcov

17

Evaluation: Coverage Results (COREUTILS)

18

Evaluation: Coverage Results (BUSYBOX)

19

Evaluation: Bug Finding (COREUTILS)

• 10 crash bugs

20

Evaluation: Bug Finding (BUSYBOX)

• 21 crash bugs

21

Evaluation: Cross-checking

KLEE can prove asserts on a per path basis

• Constraints have no approximations
• An assert is just a branch, and the constraint solver states

feasibility/infeasibility of each branch
• If KLEE determines infeasibility of the false branch, then it proves

that no value exists on the current path that could violate the
assertion

22

Evaluation: Crosschecking

Assume f(x) and f’(x) implement
the same interface:

1. Make input x symbolic
2. Run KLEE on assert(f(x) == f’(x))
3. For each path:

a. Terminate w/o error: paths are
equivalent

b. Terminate w/ error: mismatch
found

23

Evaluation: Crosschecking

24

Discussions

• Strengths / Weaknesses
• Other solutions to handle environment interactions?

25

Discussions

• Other solutions to handle environment interactions?
• Executing calls to the environment directly
• Modeling the environment
• Forking the entire system state

26

Thanks!

Q & A

27

References

• https://www.doc.ic.ac.uk/~cristic/talks/klee-stanford-2009.ppsx
• https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-

SymExecPapers.pdf
• https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf

28

https://www.doc.ic.ac.uk/~cristic/talks/klee-stanford-2009.ppsx
https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-SymExecPapers.pdf
https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-SymExecPapers.pdf
https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf

