KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler

Presented by Changfeng Liu, Jiachen Sun, and Shengtuo Hu

Problems

 Code complexity
* Non-obvious input parsing code
* Tricky boundary conditions
* Hard-to-follow control flow

* Environmental dependencies (e.g., OS, network)
 Complex interactions with environmental input (including malicious input)

What is KLEE?

* Symbolic execution
e Constraint solving

It can:

* Automatically generate high coverage test suites
* Find deep bugs in complex system programs

Example

int bad_abs(int x)
{

if (x<0)
return -x; return -x

if (x == 1234) |
return -x; @

testl.out
return Xx;

x =|1234 I X #1234
return -x return x
x= 1234 —

test2.out

test3.out

Example - Maze

Maze dimensions: 11x7
Player pos: 1x1
Iteration no. 0
Program the player moves with a sec
’ 'a' and 'd’
price(#)!

https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/

KLEE Architecture

L
D ¢ C0d37 = \l; |:>D II;I)—'\‘I{xodJ
M
ENVIRONMENT| == | KLEE | => | (k=124
g u =3
§i2234 X%3
4

Constraint Solver (STP)

Challenges

e State explosion

* Path selection

* Constraint solving

* Environment problem

State Explosion

Problem: the number of states grows very quickly and use tons of memory

Use compact state representation:

* Copy-on-write at the object level rather than page level
* Heap as an immutable map can be partially shared among states
 Heap can be cloned in constant time

Path Selection

Problem: selecting a path at random can easily get stuck

Use search heuristics:

 Random path selection
* Coverage-optimized search

Constraint Solving Optimization

Problem: the cost of constraint solving dominates runtime

Two types of optimizations:

* Eliminating irrelevant constraints
e Caching solutions

Eliminating Irrelevant Constraints

Each branch usually depends on a small number of variables

Example:

e Constraint set: {i<j, j <20, k >0}
* Query:i=20"7

Eliminating Irrelevant Constraints

Each branch usually depends on a small number of variables

Example:

e Constraint set: {i<j, j < 20, {6}
* Query:i=20"7

Caching Solutions

Example:
Cached entries New queries
{i<10,i=10} => no solution {i<10,i=10,j=12}=>no solution

{i < 10, j = 8} => satisfiable, withi=5,j=8 @ {i< 10} or {j = 8} => satisfiable, with i =5, j
=8

{i < 10, j = 8} => satisfiable, withi=5,j=8 @ {i<10,j=8, i !=3}=>satisfiable, with i =5,
Jj=8

v M

Optimization results

Optimizations || Queries | Time (s) | STP Time (s)
None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Average Time (s)

400

300 |

[\V)
o
o

100

— None
| ---- Cex. Cache
........ Independence

Num. Instructions (normalized)

Environment Modeling

Problem: interactions with the environment are complex

A hybrid solution:

* Forward concrete system calls to OS
* Handle function calls with symbolic arguments with models

Evaluation: In-depth Coverage Experiments

Methodology:

* Run KLEE one hour per utility in COREUTILS and BUSYBOX to
generate test cases

* Run test cases

 Measure line coverage using gcov

Evaluation: Coverage Results (COREUTILS)

100%
. X
100 S 9 I
* [wm Base + Fail i} _-—-"T""F‘]TI' r I LI] S 50%
| 3 Base T) ;
80% | -I' il =
&\ - = % O% M ,,,,,
3 el s U
< 60% % :
= S —50% |
0] €2}
?éo 40% 2
[
s 100% 5
© o9 P T10 25 50 75
0% Figure 6: Relative coverage difference between KLEE and
: - o e the COREUTILS manual test suite, computed by subtracting
_ _ o _ _ the executable lines of code covered by manual tests (Lman)
Figure 5: Line coverage for each application with and without from KLEE tests (Lxsec) and dividing by the total possible:
failing system calls. (Lkice — Lman)/Ltotar. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

Y.

Evaluation: Coverage Results (BUSYBOX)

COREUTILS BUSYBOX
Coverage KLEE | Devel. || KLEE | Devel.
(w/o lib) tests tests tests tests
100% 16 | 31 4
90-100% 40 6 24 .
80-90% 21 20 10 13
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - I - 1
10-20% - 3 - -
0-10% - i - 30
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App 90.9% | 68.4% || 93.5% | 43.7%

Overall: 91%, Average 94%, Median 98%

Coverage (ELOC %)

100% -

80% -

60% -

40% -

20% -

31 at 100%

0%

13

25 37 49 61 72
Apps sorted by KLEE coverage

Evaluation: Bug Finding (COREUTILS)

e 10 crash bugs

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr —e t2.txt
taw —r t3.ixt t3.txt

mKadlir -4 a b

mkfifo -Z a b

mknod -Z a b p

mdostm —¢ tl.CXC

ptx -F\\ abcdefghijklmnopgrstuvwxyz
pitx x t4.txtb

seq -f %0 1

tl.txt: "\t \tMD5 ("

2.txt: "\b\b\b\b\b\b\b\t"
£3.txt: "\n"

t4.txt: "a"

Evaluation: Bug Finding (BUSYBOX)

e 21 crash bugs

date -I

s ==o©
chown a.a -
kill -1 a

setuidgid a ""
printf "% x" B

agd tl.txt
od t2.txt
printf %
printf %Lo
Er |

tr [=

tr [a-z
tl.txt: a
2.txt: A

t3.txt: \t\n

cut -f t3.txt
install —=m

e e =

envdir

setuidgid
envuidgid

envdir -

arp —-Ainet

tar tf. /

top d

setarch "" ""
<full-path>/1linux32
<full-path>/linux64
hexdump -e ""

ping6 -

Evaluation: Cross-checking

KLEE can prove asserts on a per path basis

* Constraints have no approximations

 An assertis just a branch, and the constraint solver states
feasibility/infeasibility of each branch

* |f KLEE determines infeasibility of the false branch, then it proves
that no value exists on the current path that could violate the
assertion

Evaluation: Crosschecking

1 : unsigned mod_opt(unsigned x, unsigned y) {
Assume f(x) and f’(x) implement g iy & —y)&== y)1// power of two?
. : t —1);
the same interface: s e
o . . (o) .
1. Make input x symbolic g) SN B2, v 7
2. Run KLEE on assert(f(x) == f’(X)) 7 : unsigned mod(unsigned x, unsigned y) {
3. For each path: g WSt = Yo
a. Terminate w/o error: paths are 10- im sl 4
equivalent 11: unsigned xy;
b. Terminate w/ error: mismatch 12: make_symbolic(&x, sizeof(x));
found 13 make_symbolic(&y, sizeof(y));

14. assert(mod(x,y) == mod_opt(X,y));

15: return O;
16: }

Evaluation: Crosschecking

Input

BUSYBOX

COREUTILS

comm tl.txt t2,txt

[does not show difference]

[shows difference]

tee - [does not copy twice to stdout] [does]

tee "" <tl.txt [infinite loop] [terminates]

cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"

ok 5 [duplicates input on stdout] "missing operand"

[O \\<II l]
sum -s <tl.txt
tand =21
unexpand -f
SplLiE -

ls —icolor—blah

"97 1 ="
[rejects]
[accepts]
[rejects]
[accepts]

"binary operator expected"
DGy L™
[accepts]
[rejects]
[accepts]
[rejects]

tl.ixt: a 2.t b

Discussions

» Strengths / Weaknesses
e QOther solutions to handle environment interactions?

Discussions

e Other solutions to handle environment interactions?
* Executing calls to the environment directly
 Modeling the environment
* Forking the entire system state

Thanks!

Q&A

References

e https://www.doc.ic.ac.uk/~cristic/talks/klee-stanford-2009.ppsx
* https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-
SymExecPapers.pdf

e https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf

https://www.doc.ic.ac.uk/~cristic/talks/klee-stanford-2009.ppsx
https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-SymExecPapers.pdf
https://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec14-SymExecPapers.pdf
https://www.cs.umd.edu/~mwh/se-tutorial/symbolic-exec.pdf

