Operation and Data
apping for CGRAs with
ultibank Memory

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava,
Yunheung Park

Presented by James Connolly, Jielun Tan, Pranav Srinivasan



Agenda

What is CGRA/What can it do?

CGRA Memory System

Overview of Memory Aware Scheduling (MAS)
Performance Analysis + Discussion of Paper



Dataflow Architectures

©ORISCV |
Rocket Core
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
. RISC-V
e Semantically: no PC Rocket Core  (Of LT
o Dataisprocessed asitis IHHHI
streamed in riscv || MLLLLLHD | |2
. N Rocket Core K “l“""
e Not useful for generalized compute i
e Powerful near the end of Moore’s | HAAT AL
RISC-V 1
Law 5 Rocket Core ¢ “l""l
. .. 1
o Datadriven applications \

- ] wsev | MR T
require data driven Rocket Core | SR CEEFRT T LTI,
DA RREARARD

architectures QAR AR NN RARARAE
o TPU, Brainwave =




Coarse Grain Reconfigurable Architecture

e Agrid of Processing Elements (PEs)

o Functional Unit (ALU, Multiplier,
Load/Store Unit)
o Asmall local Register File
o Ability to send info to neighboring PEs
e Share Access to a single Local Memory
e Configurable (like FPGA) via Config Memory
e Flexibility of FPGA, Speed of an ASIC (Ideally)

PE Array

-
[*}
(]
ol
<
(]
3
o
=

<
o
c
-
=
(]
=




Local Memory (Scratchpad)

e Low Latency RAM that is typically populated with the arrays necessary to run loop
Load/Store PEs access Local Memory for info
Usual solution for multiple PEs - banking
o  MBA (multi-bank with arbitration): Hardware logic that allows any PE to access any bank
e Banking gives rise to Bank Conflicts
o  Two PEscan’t access same bank on the same cycle

Configuration Memory CGRA -
LD/ST unit
i B

N Memory
ogic ,
® "%

Bank3

(TS
{ X ':. ‘.‘_' DMA
l:l |:|, =. E"l---. o Bank4 Controller

PE array Local Memory




Why CGRA
\ Forbes

e Excellent Balance of Performance vs

o VLW (0000 Al Pioneer Wave
Computing

e Off-loading parallelizable loops to a CGRA
component is a common use case

e Linesblurring between CGRA and
many-core systems

‘:—iili\con is cheap, PEs are cores AC qUi res MI P S
CTIVIB ED o
Technologies




CGRA Scheduling: Previous Work

e Hardwareis relatively simple -- onus is on the compiler
o  Analogous to VLIW
e Loop Level Parallelism is exploited

e Modulo schedulingis a clear choice
o  Added constraint: routing between PEs
o  Howdowedo this?
o  Two trains of thought
m  Node centric
m  Edge centric
o  Moreon this later...



Traditional MBA CGRA scheduling

Memory Unaware Scheduling (MUS)
o Deal with bank conflicts in hardware
Regular MBA
o In case of conflict, stall a PE
Dynamic Multi Queue (DMQ)
o) Have a queue system of requests per
bank
o  Nostalls, but increase load/store
latency
Sequential vs Interleaving:
o  Should we leave an array contiguous in
one bank?

o  Spread it so the following accessisin a
different bank?

Configuration Memory CGRA
Queue -
LD/ST unit
_ S

RN e
tion Memory

ve
g Logic 3
< o ' ‘-,.. DMA
D D, = E - « Bank4 Controller

Local Memory

PE array



Memory Aware Scheduling (MAS)

e Compiler scheduling technique, used in conjunction with modulo scheduling to issue
loads and stores to PEs to avoid bank conflicts
High level idea: cluster arrays with distinct access patterns into groups

e Put groups in same bank to eliminate conflict

e Biggest Problem: both instruction scheduling and memory instruction scheduling are
Hard problems
e Needtobe done together so as to avoid conflicting schedules



Memory Aware Scheduling

Array | #Access
name | (per iter)

e Step 1: Array Clustering into banks
o  Compute priority for each array accessed in loop,
based on several factors
o  (Size of Array / Size of Bank) + Sum over all loops

((Num accesses in loop) / |l of Loop) pnew,

m Intuition: Bigger Arrays have higher eld pold,
Priority, so do arrays that are accessed wold 3:1?
more p Old - vn'ew
o  Withthis information, we cluster arrays based unew
on cost of assigning to a bank vnew <swim loop2>
o  Givesrise to MemMII - related to number of pnew

accesses to a bank in one cycle
o  Combined with RecMII and ResMlI to find Ml
for scheduling

<swim loop2>




Flashback to the past

MARTY, WE IIIUE T0 GO BACK TO BUY

BI OINS
’ ~1




Scott’s Approach : Edge-centric

1

o O

T4

7

O {0

| ?404)*{)/

DO DI

10

2

‘ \\x

Node-centric

Start routing without placing the operation
Placement occurs during routing

Edge-centric

Credit: [2]




Benefit 1 : Less Routing Calls

N 1
R 41
) 7z .
Q .m 3 .A
Node-centric Edge-centric
11 routing calls for P1 = C 1 routing call for P1 = C

Reduce compile time with less number of routing calls
Credit: [2]



Benefit 2 : Global View

node-centric

edge-centric

 Assume slot 0 is a precious resource (better to save it for later use)

* Node-centric greedily picks slot 1

* Edge-centric can avoid slot 0 by simply assigning a high cost

Credit: [2]



Edge-centric Modulo Scheduling

* |t's all about edges
— Scheduling is constructed by routing ‘edges’
— Placement is integrated into routing process

* Global perspective for EMS
— Scheduling order of edges
* Prioritize edges to determine scheduling order
— Routing optimization
* Develop contention model for routing resources ~ Credit: [2]



Memory Aware Scheduling

Step 2: Edge-Centric Modulo Scheduling with
memory bank awareness

e Treat each PE and bank as a separate resource

e Factor inlatency of sending information
across PEs for dependent instructions in
routing (done by EMS)

Clusterl | Cluster2
Alil, C[i] B[i]

Coeire __ ..... — cL2

(d) Scheduling table, with resources horizontally
(CL1 means Cluster1) and time vertically.




Performance Analysis

e Three Approaches to compare e Benchmarks: Multimedia
o  MUSwith stalls Programs
o  MUSwith queues
o MAS

17.3% improvement
on average over MUS

8.5% improvement
over MUS + DMQ

stall time
® non-stall time

loop2 1 lospl loop2* | loopi*

loopd loopl loop2 loapl loop2 loopl loop2 loopl

Copylmg CopyFrames SetRef Init_mbaff SOR lowpazs




MAS + Queues

Can adding the Queue to prevent stalling help in a Memory Aware Schedule?

““llhul ““lll

swim InvResidual Copylmg CopyFrame SetRef Init_mbaff laplace SOR lowpass

1#

m MAS 7.5 8.5 48 2 2 21 2 3:2 47 46 4 4 42 3.6 7
MAS+DMQ' 79 85 : ¢ 5 2 2 3 2 4 51 5 4 4 4 3.6 7

Intuition: Queue effectively increases latency of loads/stores - doesn’t help if conflicts are rare




Strengths & Weaknesses

e Strengths:
o Novel idea to reduce memory access overhead in CGRA mappings by being aware of access
conflicts introduced by the Architecture of CGRA
o  Effective extension to pre-existing work in CGRA modulo scheduling
e Weaknesses:
o  Strongassumptions for scheduler to simplify problem
m  Assuming unlimited local memory
m  Assuming loop count is provided before mapping occurs during runtime
m  Array clustering is based on a greedy heuristic

e Yallshould read Scott’s paper though, for real



Food for thought

e Canthe scheduler provide both an optimal performance vs optimal resource usage
solution?
o l.e.accomplish the same amount of work while using a subsection of the PEs
e How often does the optimal performance solution lead to optimal usage?

e Canthisscheduler be replaced with better banking mechanics in hardware?



Thanks!

Any Questions?



References

[1] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Yunheung Park. Operation and Data
Mapping for CGRAs with Multibank Memory

[2] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim. Edge-centric modulo
scheduling for coarse-grained reconfigurable architectures.



