
Operation and Data
Mapping for CGRAs with
Multibank Memory

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava,
Yunheung Park

Presented by James Connolly, Jielun Tan, Pranav Srinivasan

Agenda

● What is CGRA/What can it do?

● CGRA Memory System

● Overview of Memory Aware Scheduling (MAS)

● Performance Analysis + Discussion of Paper

Dataflow Architectures

● Semantically: no PC

○ Data is processed as it is

streamed in

● Not useful for generalized compute

● Powerful near the end of Moore’s

Law

○ Data driven applications

require data driven

architectures

○ TPU, Brainwave

Coarse Grain Reconfigurable Architecture

● A grid of Processing Elements (PEs)

○ Functional Unit (ALU, Multiplier,

Load/Store Unit)

○ A small local Register File

○ Ability to send info to neighboring PEs

● Share Access to a single Local Memory

● Configurable (like FPGA) via Config Memory

● Flexibility of FPGA, Speed of an ASIC (Ideally)

Local Memory (Scratchpad)

● Low Latency RAM that is typically populated with the arrays necessary to run loop

● Load/Store PEs access Local Memory for info

● Usual solution for multiple PEs - banking
○ MBA (multi-bank with arbitration): Hardware logic that allows any PE to access any bank

● Banking gives rise to Bank Conflicts
○ Two PEs can’t access same bank on the same cycle

Why CGRA

● Excellent Balance of Performance vs

Power vs Flexibility
○ Similar tradeoffs of VLIW to OoO

● Off-loading parallelizable loops to a CGRA

component is a common use case

● Lines blurring between CGRA and

many-core systems
○ Silicon is cheap, PEs are cores

CGRA Scheduling: Previous Work

● Hardware is relatively simple -- onus is on the compiler
○ Analogous to VLIW

● Loop Level Parallelism is exploited

● Modulo scheduling is a clear choice
○ Added constraint: routing between PEs
○ How do we do this?
○ Two trains of thought

■ Node centric
■ Edge centric

○ More on this later...

Traditional MBA CGRA scheduling

● Memory Unaware Scheduling (MUS)
○ Deal with bank conflicts in hardware

● Regular MBA
○ In case of conflict, stall a PE

● Dynamic Multi Queue (DMQ)
○ Have a queue system of requests per

bank
○ No stalls, but increase load/store

latency

● Sequential vs Interleaving:
○ Should we leave an array contiguous in

one bank?
○ Spread it so the following access is in a

different bank?

Queue

Memory Aware Scheduling (MAS)

● Compiler scheduling technique, used in conjunction with modulo scheduling to issue

loads and stores to PEs to avoid bank conflicts

● High level idea: cluster arrays with distinct access patterns into groups

● Put groups in same bank to eliminate conflict

● Biggest Problem: both instruction scheduling and memory instruction scheduling are

Hard problems

● Need to be done together so as to avoid conflicting schedules

Memory Aware Scheduling

● Step 1: Array Clustering into banks
○ Compute priority for each array accessed in loop,

based on several factors
○ (Size of Array / Size of Bank) + Sum over all loops

((Num accesses in loop) / II of Loop)
■ Intuition: Bigger Arrays have higher

Priority, so do arrays that are accessed
more

○ With this information, we cluster arrays based
on cost of assigning to a bank

○ Gives rise to MemMII - related to number of
accesses to a bank in one cycle

○ Combined with RecMII and ResMII to find MII
for scheduling

Flashback to the past

Scott’s Approach : Edge-centric
time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P
2

P
1

1

0

2

3 4

C

C

C
C
C

time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P
2

P
1

C

3

5

8

0

2

6

9

4

1

10

7

Node-centric Edge-centric

Start routing without placing the operation
Placement occurs during routing

Credit: [2]

Benefit 1 : Less Routing Calls
time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P
2

P
1

3

5

8

0

2

6

9

4

1

10

7

time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P
2

P
1

1

0

2

3 4

11 routing calls for P1 ➔ C 1 routing call for P1 ➔ C

Node-centric Edge-centric

C C

Reduce compile time with less number of routing calls
Credit: [2]

Benefit 2 : Global View
time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P

1

2

C
0

C

101
1

1
11

1
11 1

1

time FU 0 FU 1 FU 2 FU 3 FU 4

0

1

2

3

4

P

1

2

0

C

node-centric edge-centric

• Assume slot 0 is a precious resource (better to save it for later use)
• Node-centric greedily picks slot 1
• Edge-centric can avoid slot 0 by simply assigning a high cost

Credit: [2]

Edge-centric Modulo Scheduling
• It’s all about edges

– Scheduling is constructed by routing ‘edges’
– Placement is integrated into routing process

• Global perspective for EMS
– Scheduling order of edges

• Prioritize edges to determine scheduling order
– Routing optimization

• Develop contention model for routing resources Credit: [2]

Memory Aware Scheduling

Step 2: Edge-Centric Modulo Scheduling with

memory bank awareness

● Treat each PE and bank as a separate resource

● Factor in latency of sending information

across PEs for dependent instructions in

routing (done by EMS)

Performance Analysis
● Three Approaches to compare

○ MUS with stalls
○ MUS with queues
○ MAS

● Benchmarks: Multimedia

Programs

17.3% improvement
on average over MUS

8.5% improvement
over MUS + DMQ

MAS + Queues
Can adding the Queue to prevent stalling help in a Memory Aware Schedule?

Intuition: Queue effectively increases latency of loads/stores - doesn’t help if conflicts are rare

Strengths & Weaknesses

● Strengths:
○ Novel idea to reduce memory access overhead in CGRA mappings by being aware of access

conflicts introduced by the Architecture of CGRA
○ Effective extension to pre-existing work in CGRA modulo scheduling

● Weaknesses:
○ Strong assumptions for scheduler to simplify problem

■ Assuming unlimited local memory
■ Assuming loop count is provided before mapping occurs during runtime
■ Array clustering is based on a greedy heuristic

● Y’all should read Scott’s paper though, for real

Food for thought

● Can the scheduler provide both an optimal performance vs optimal resource usage

solution?
○ I.e. accomplish the same amount of work while using a subsection of the PEs

● How often does the optimal performance solution lead to optimal usage?

● Can this scheduler be replaced with better banking mechanics in hardware?

Thanks!

Any Questions?

References

[1] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Yunheung Park. Operation and Data

Mapping for CGRAs with Multibank Memory

[2] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim. Edge-centric modulo

scheduling for coarse-grained reconfigurable architectures. [

