
Operation and Data Mapping for
CGRAs with Multi-bank Memory

Yongjoo Kim
School of EECS, Seoul National

University, Korea
yjkim@optimizer.snu.ac.kr

Jongeun Lee ∗

School of ECE, Ulsan National Institute
of Sci. and Tech. (UNIST), Ulsan, Korea

jlee@unist.ac.kr

Aviral Shrivastava
CML Research Group, Arizona State

University, USA
Aviral.Shrivastava@asu.edu

Yunheung Paek
School of EECS, Seoul National University, Korea

ypaek@snu.ac.kr

Abstract
Coarse Grain Reconfigurable Architectures (CGRAs) promise high
performance at high power efficiency. They fulfil this promise by
keeping the hardware extremely simple, and moving the complex-
ity to application mapping. One major challenge comes in the form
of data mapping. For reasons of power-efficiency and complex-
ity, CGRAs use multi-bank local memory, and a row of PEs share
memory access. In order for each row of the PEs to access any
memory bank, there is a hardware arbiter between the memory re-
quests generated by the PEs and the banks of the local memory.
However, a fundamental restriction remains that a bank cannot be
accessed by two different PEs at the same time. We propose to meet
this challenge by mapping application operations onto PEs and data
into memory banks in a way that avoids such conflicts. Our exper-
imental results on kernels from multimedia benchmarks demon-
strate that our local memory-aware compilation approach can gen-
erate mappings that are up to 40% better in performance (17.3% on
average) compared to a memory-unaware scheduler.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.4 [Processors]: Code generation and Optimization

General Terms Algorithms, Design, Performance

Keywords Coarse-grained Reconfigurable Architecture, Compi-
lation, Multi-bank Memory, Bank conflict, Arbiter.

1. Introduction
The need of high performance processing is undeniable, not only
in increasing our pace of learning by large-scale simulation of fun-
damental particle and object interactions, but also to fructify the

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’10, April 13–15, 2010, Stockholm, Sweden.
Copyright c© 2010 ACM 978-1-60558-953-4/10/04. . . $10.00

Category Processor Name MIPS W MIPS/mW

VLIW Itanium2 8000 130 0.061

GPP Athlon 64 Fx 12000 125 0.096

GPMP Intel core 2 quad 45090 130 0.347

Embedded Xscale 1250 1.6 0.78

DSP TI TMS320C6455 9.57 3.3 2.9

MP Cell PPEs 204000 40 5.1

DSP(VLIW) TI TMS320C614T 4.711 0.67 7

Figure 1. CGRAs promise the highest levels of power-efficiency
in programmable architectures

increasing horizons of possibilities in automation, robotics, ambi-
ent intelligence etc. General-purpose high performance processors
attempt to achieve this, but pay a severe price in power-efficiency.
However, with thermal effects directly limiting achievable perfor-
mance, power-efficiency has become the prime objective in high
performance solutions. Figure 1 shows that there is a fundamental
trade-off between “performance” and “ease of programmability”
and the power-efficiency of operation. It illustrates that special-
purpose and embedded systems processors achieve high perfor-
mance by trading off “performance” and “ease of programming”
for higher power-efficiency. While high-performance processors
operate at power-efficiencies of 0.1 MIPS/mW, embedded proces-
sors can operate at up to two orders of magnitude higher, at about
10 MIPS/mW. Application Specific Integrated Circuits provide ex-
tremely high performance, at extremely high power efficiency of
about 1000 MIPS/mW, but they are not programmable. Among
programmable platforms, CGRAs or Coarse Grain Reconfigurable
Architectures come closest to ASICs in simultaneously achieving
both high performance and high power-efficiency. CGRA designs
have been demonstrated to achieve high performance at power ef-
ficiencies of 10-100 MIPS/mW [18].

The simultaneous high performance, and high power efficiency
comes with significant challenges. The hardware of CGRAs is ex-
tremely simplified, with very little “dynamic effects”, and the com-
plexity has been shifted to the software. CGRAs are essentially an
array of processing elements (PEs), like ALUs and multipliers, in-
terconnected with a mesh-like network. PEs can operate on the re-
sult of their neighboring PEs connected through the interconnection

17

Figure 2. CGRA is just a 2-dimensional array of processing units,
like adders and multipliers connection by a mesh-like interconnect.
The computation has to be laid out in space and time, and the
data routed through the interconnection explicitly in the application
code.

network. CGRAs are completely statically scheduled, including the
memory operations. One of the main challenges in using CGRAs is
that the computation in the application must be laid out explicitly
over the PEs, in space and time, and their data routed through the
interconnection network. When we program general-purpose pro-
cessor, the code just contains the “application” expressed in terms
of the instruction set, and all this is automatically managed by the
processor hardware. In contrast, this has to be explicitly done in the
application code for CGRAs, and therefore compilation for CGRAs
is quite tough.

A lot of work has been done towards this aspect of application
mapping [5, 6, 12, 14–17, 20, 21], however, another aspect of appli-
cation mapping, i.e., managing application data has been rather left
untouched. Caches are an excellent dynamic structures, that ease
”programmability” by automatically fetching the data required by
the processor “on-demand” in general purpose processors. How-
ever, due to their dynamic behavior, high complexity and power
consumption, CGRAs do not use caches, and use local memory in-
stead. The local memory is raw memory, in the sense, that it does
not store address tags for (or with) the data, and therefore form an
separate address space than the main memory. The main challenge
in using local memories is that, since there are no address tags,
there is no concept of a “hit”, or “miss”. The application must ex-
plicitly bring the data that it will need next into the local memory
and after its use, it must write it back and bring the data that will be
needed after that.

To minimize the challenge, CGRAs could have large on-chip
local memory so that all the required data may fit into the local
memory which can be loaded once before the program, and then
written back at the end of the program. Clearly this is not always
possible, and in reality the on-chip local memories are rather small.
Further complications arise, because PEs have to share the local
memory especially in large, say 8x8 CGRA. If each PE should be
able to read two data and write one data to the local memory, then

we need 128 read ports, and 64 write ports. Even if one row of
PEs access one port of the local memory. we need at 16 read and 8
write ports in the local memory. This is still quite large, and a more
practical solution is to have multi-bank local memory, in which
each bank has two read and one write port on the memory side, and
a row of PEs sharing memory access on the PE array side. So that
each PE can access data in any bank, a hardware arbiter between
the memory requests generated by the PEs and the banks of the
memory is used. We call such an architecture, that has arbiters in
front of the memory ports of multiple banks, Multiple Banks with
Arbitration (MBA) architecture, and most existing CGRA designs
are MBA architectures [7, 13, 18].

Even in the MBA architecture, a fundamental restriction re-
mains that a bank cannot be accessed by two different PEs at the
same time remains. This is the challenge that we meet in this pa-
per. Fundamentally there are two solutions to this. One is hardware
solution, i.e., add a request queue in the arbiter, and increase the
access latency of the memory operation, or second is to change
the application mapping technique to explicitly consider the mem-
ory banking architecture, and map memory operations into rows, so
that two different rows do not access the same bank simultaneously.
We argue for the second technique and develop application data and
operation mapping techniques to avoid memory bank conflicts. Our
experiments on important multimedia kernels demonstrate that our
memory memory aware compilation approach generates mappings
that are up 17.3% better than the state-of-the-art memory unaware
scheduler. As compared to the hardware approach using arbiters,
our technique is on average 8.5% better, and promises to be a good
alternative.

2. Background on CGRAs
2.1 CGRA Architecture
The main components of CGRA include the PE (Processing Ele-
ment) array and the local memory. The PE array is a 2D array of
possibly heterogeneous PEs connected with a mesh interconnect,
though the exact topology and the interconnects are architecture-
dependent. A PE is essentially a function unit (e.g., ALU, mul-
tiplier) and a small local register file. Some PEs can additionally
perform memory operations (load/store), which are specifically re-
ferred to as load-store units. The functionality of each PE and the
connections between PEs are controlled by configuration, much
like the configuration bitstream in FPGAs. However, the configura-
tion for CGRAs is coarser-grained (word level), and can be changed
very fast, even in every cycle for some CGRAs [7, 13, 18].

The local memory of a CGRA is typically a high speed, high
bandwidth, highly predictable random access memory that pro-
vides temporary storage space for array data, which are often in-
put/output of loops that are mapped to CGRAs. To provide high
bandwidth, local memories are often organized in multiple banks.
For instance the MorphoSys architecture [18] has 16 banks, ev-
ery two of which may be accessed exclusively by each row of
PEs (there are eight rows in total). However, this organization can
severely limit the accessibility of the local memory, since a PE can
access only its own share of the local memory. This limitation can
be relaxed by providing arbiters or muxes at the interface (memory
ports) to the local memory; for instance, a mux in front of a mem-
ory port allows the bank to be accessed by different load-store units
at different cycles. We call such an architecture that has arbiters in
front of the memory ports of multiple banks, MBA (Multiple Banks
with Arbitration) architecture.

Even in MBA architecture, a fundamental restriction remains
that a bank cannot be accessed by two different PEs at the same
time, if the bank consists of single-port cells. (In the rest of the
paper we assume that a bank consist of single-port cells, and thus

18

5

SoC Optimizations and Restructuring
Figure 3. Multi-Bank with Arbitration (MBA) architecture: There is arbitration between the PE array and the memory banks, so that any PE
can access data from any bank. However a fundamental limitation still remains: Two PEs cannot access data in the same bank simultaneously.
This can be solved either by i) hardware approach of adding a queue to sequentialize the accesses, and ii) compiler approach, where compiler
makes sure that this does not happen. This paper develops application operations and data mapping for the second approach and show that it
is promising.

has only one port.) In MBA architecture, if two PEs try to access
the same bank at the same time, a bank conflict occurs. CGRA
hardware supporting MBA architecture must detect such a bank
conflict and resolve it by generating a stall. Hardware stall ensures
that all the requests from different PEs are serviced sequentially,
but is very expensive because most of the PEs will be idle during
stall cycles.

A solution proposed by [1] uses in front of each bank a hardware
queue, called DMQ or DAMQ (Dynamically Allocated, Multi-
Queue buffer) [19]. Though adding DMQ of length n (n > 1)
increases the latency of a load operation by n− 1 cycles, it allows
up to n simultaneous memory requests to be serviced without a
stall.1 But since adding a queue cannot increase the bandwidth of a
memory system, stall must be generated if the request rate exceeds
the service rate, or the number of memory ports. We call such
a memory architecture MBAQ (Multiple Banks with Arbitration
and Queues) architecture, an example of which is the ADRES
architecture. In this paper we present mapping algorithms for both
MBA and MBAQ architectures, and compare them against using
hardware solutions only.

2.2 Execution Model and Application Mapping
CGRA is typically used as a coprocessor, offloading the burden
of the main processor by accelerating compute-intensive kernels.
We assume blocking communication between main processor and
CGRA coprocessor (i.e., no parallelism between them). For appli-
cation mapping, first the loops that are mapped to CGRA are iden-
tified. The selected loops are then compiled for CGRA while the
rest of the code is compiled for the main processor.

The result of CGRA compilation for selected loops is configu-
ration, which is fed to the PE array at runtime. The other compo-
nent, the local memory, gets the necessary data through DMA from
system memory. After loop execution the output data of the loop
may be transferred back to system memory. Such data transfers and

1 It works as if the DMQ holds the values of n requests until all of them
become available, which requires n − 1 additional cycles in a pipelined
memory, when all the load values are returned simulataneously.

CGRA computation are often interleaved to hide the data transfer
latency. For CGRAs with larger local memories, opportunities may
exist to reuse data (usually arrays) between different loops, as the
output of one loop is often an input to the next loop. For instance,
ADRES allows a fairly large local memory of up to 1 Mbytes in to-
tal, which can provide input data of 100 Kbytes each for 10 loops.
In such a case if the data can be reused between the loops with-
out needing to move the data around on the local memory (e.g., to
another bank), it can greatly reduce the runtime as well as energy
consumption of CGRA execution.

There are two dominant ways of placing arrays on multiple
banks. Sequential refers to placing all the elements of an array to an
particular bank, whereas interleaving refers to placing contiguous
elements of an array on different banks. Interleaving can not only
guarantee a balanced use of all the banks, but also more or less
randomize memory accesses to each bank, thereby spreading bank
conflicts around as well. The DMQ used in the MBAQ architecture
thus can effectively reduce stalls due to bank conflicts when used
with bank-interleaved arrays. However, interleaving makes it com-
plicated for compilers or static analysis to predict bank conflicts.
Thus our compiler approach uses sequential array mapping.2

3. Related Work
Memory architectures of CGRA can be largely classified into im-
plicit load-store architecture (e.g., MorphoSys [18] and RSPA [7])
and explicit load-store architecture (e.g., ADRES [1, 13]). Whereas
implicit load-store architectures have data (array elements) pre-
arranged in the local memory and PEs can only sequentially access
them, explicit load-store architectures allow random access of data
in the local memory. There are also variations in the connection
between banks and PEs. Whereas earlier architectures [7, 18] have
assumed one-to-one connection between PE rows and local mem-
ory banks, recent architectures like ADRES assume one-to-many
connection through muxes or arbiters, and even load queues. Our

2 To be fair, we compare our approach with sequential array mapping
against hardware approach (DMQ) with interleaved array mapping.

19

target architecture assumes explicit load-store with muxes and op-
tionally queues.

Most previous CGRA mapping approaches [5, 6, 9, 10, 12, 14–
17, 20, 21] consider computation mapping only, but not data map-
ping. [21] considers computation mapping as a graph embedding
problem from a data flow graph into a PE interconnection graph,
and solves the problem using a known graph algorithm. Many oth-
ers consider mapping as a scheduling problem targeting an array
processor, of which a simpler form is VLIW processor. Software
pipelining and modulo scheduling is often used. [16] proposes an
improved variant of modulo scheduling by considering edges rather
than nodes (of input data flow graph) as the unit of scheduling. [14]
proposes a scheduling algorithm for loops with recurrence rela-
tion (inter-iteration data dependence). In all those approaches, data
mapping is only an after-thought, and not included in the optimiza-
tion framework.

There is little work that considers memory during CGRA map-
ping. [3] considers a hierarchical memory architecture and presents
a mapping algorithm to reduce the amount of data transfer between
L1 and L2 local memory. [4] proposes routing reused data through
PEs instead of using the local memory, which can reduce the lo-
cal memory traffic and thus improve performance. Our work is or-
thogonal to this and the effective is additive when applied together.
[4] also considers the data layout with sequential memory. But it
is limited as it considers only one loop and is based on simulated
annealing; extending it to multiple loops does not seem straightfor-
ward. [11] proposes the idea of quickly evaluating memory archi-
tectures for CGRA mapping; however, it lacks a detailed mapping
algorithm. Our earlier work [8] proposes a mapping algorithm that
takes into account data mapping as well as computation mapping.
However, the memory architecture assumed in [8] is much simpler,
with no arbiter or queues. In this paper we provide a more general
framework that considers data and computation mappings together.

4. Problem of Memory Aware Mapping
Given a sequence of loops and the CGRA architecture parameters,
the problem of CGRA compilation is to find the optimal mapping
of the loops on to the CGRA architecture, which includes the PE
array and the local memory. A CGRA mapping must specify two
pieces of information; i) computation mapping: mapping from
each operation of the loops to a specific PE (where) and to which
schedule step (when, in cycle), and ii) data mapping: mapping
from each array in the loops to which bank of the local memory
to use. A loop is represented by the data flow graph of the loop
body, along with data dependence information and memory refer-
ence information (which array is accessed by a memory operation
and the access function). We assume that the number of iterations is
given at runtime before the loop entry and remains constant during
loop execution (hence the actual number may not be available at
compile-time). The optimality of mapping is judged by the sched-
ule length of the mapping, which is equivalent to the II (Initiation
Interval) in the case of modulo scheduling. For a sequence of loops,
we take the average II, assuming equal weights for all loops.

Hence the goal of optimization problem is to minimize the
average II. In addition to the usual constraints for computation
mapping (e.g., [16]), we have additional constraints for optimal
data mapping. One thing to understand to derive the constraints
is that assuming sequential array placement and a sufficiently large
local memory, the optimal solution should be without any expected
stall. If there is an expected stall in the optimal mapping, one can
always find a different mapping that has the same schedule length
but no expected stall. Simply add a new cycle in the place where
a stall is expected and schedule one of the conflicting memory
operations at the new cycle, which does not increase the actual
schedule length and has no expected stall. Thus we can limit our

search to those with no expected stall, without losing optimality.
This no-conflict condition translates into different forms depending
on the memory architecture. For a MBA architecture (any load-
store PE can access any bank through arbitration), the constraint is
that there must be at most one access to each bank at every cycle.
For a MBAQ architecture, the memory access latency is slightly
increased. If the added latency is n cycle, there must be at most n
accesses to each bank in every n consecutive cycles.

5. Our Approach
5.1 Overview
The main challenge of our problem comes from inter-dependence
between computation mapping and data mapping; i.e., fixing data
mapping creates constraints on computation mapping, and vice
versa. Due to the inter-dependence, the optimal solution can only be
obtained by solving the two subproblems simultaneously. However
solving the two subproblems simultaneously is extremely hard,
since even a subproblem alone, i.e., computation mapping, is an
intractable problem. In [21], spatial mapping is solved by ILP
formulation. In this experiments, ILP solver cannot find a solution
within a day, if a node number excesses only 13. Our problem is
also intractable, since it can be reduced to the computation temporal
mapping problem, which is more intractable than spatial mapping.
Hence our heuristic solves them sequentially, first clustering data
arrays to balance utilization and access frequency of each bank, and
then finding computation mapping through conflict free modulo
scheduling.

First we perform a pre-mapping, which is just computation
mapping by traditional modulo scheduling without considering
data mapping. The II resulting from pre-mapping serves as the
minimum II in the ensuing iterative process. We then repeat the
two steps of array clustering and conflict free scheduling, incre-
menting II, until a conflict free mapping is found. Pre-mapping can
provide a tighter upper bound for II than traditional minimum II
calculation considering resource and recurrence requirements only,
and thus reduce the overall time for CGRA compilation.

5.2 Array Clustering
Like other CGRA architectures including ADRES, our target ar-
chitecture is homogeneous across multiple rows though it may
have heterogenous PEs within a row. This makes data mappings
position-independent, meaning that the absolute position, or bank,
that an array is mapped to is not important as long as the same set
of arrays is mapped together.

Array mapping can affect performance (through computation
mapping) in at least two ways. First, banks have a limited capacity.
If arrays are concentrated in a few banks, not only does it reduce the
effective total size of the local memory, but there is a higher chance
of having to reload arrays during a loop execution or between
loops, diminishing data reuse. And since the size of arrays can be
very different from each other especially due to different strides,
it is important to balance the utilization of banks and prevent
pathological cases. Second, each array is accessed a certain number
of times per iteration in a given loop, which is denoted by AccL

A

for array A and loop L. In both MBA and MBAQ architectures,
II cannot be less than the sum of access counts of all the arrays
mapped to a bank. In other words, there can be no conflict free
scheduling if

P
A∈C AccL

A > II ′L, where C is an array cluster
(set of arrays) that will be mapped to a certain bank and II ′L is
the current target II of loop L. Thus it is important to spread out
accesses (per-iteration access count) across banks. Note that bank
utilization balancing is static, or independent of loops, whereas
balancing per-iteration access counts is dependent on which loop
we are looking at.

20

We combine the two factors, viz. array size and array access
count, into one metric, i.e., priority. Our clustering algorithm takes
one array at a time and determines its clustering by assigning a
cluster to it. Because of the greedy nature of the algorithm the order
of selecting arrays is important. We use priority to determine which
array to cluster first. The priority of an array A is defined as:

priorityA = SizeA/SzBank +
X
∀L

AccL
A/II ′L (1)

where SizeA is the size of array A and SzBank is the size of a
bank.

Once the priorities of all arrays are calculated, we begin assign-
ing cluster to arrays, starting from the one with the highest priority.
To make this decision of which cluster to assign to a given array, we
compare the relative costs of assigning different clusters. Similarly
to the priority definition, our cost model considers both array size
and array access count, and is defined as follows. Given a cluster C
and an array A, the relative cost of assigning C to A is,

cost(C, A) = SizeA/SzSlackC +
X
∀L

AccL
A/AccSlackL

C (2)

where SzSlackC and AccSlackL
C are the remaining space of a

cluster (total budget is SzBank) and the remaining per-iteration
access count of loop L (total budget is II ′L), respectively, and are
updated as assignments are made. In this formula, we use the re-
maining value to calculate cost. If one bank’s size or access count is
used up too much than other bank, we have to avoid assigning array
to this bank for balancing and leaving it to other array which really
need this resource. So, to avoid this case, when we calculate cost,
we decide to divide by remaining resource. If remaining resources
are small, the cost becomes bigger. In a consequence, the balancing
is derived. Figure 4 shows the pseudo code of array clustering al-
gorithm. From line 1 to 6, array information is analyzed. From line
7 to 10, priority for each array is calculated. And in the remaining
parts, assignment is executed. The array which has high priority
is assigned first.(11) Cost for each cluster is calculated(14-17) and
then the cluster which shows minimum cost is chosen(19). If the
assignment is failed by a lack of access count, increase II and start
clustering again. But if the reason of fail is lack of memory size,
then we need to reduce the number of loop considered together. Af-
ter array clustering, we can decide a MII for conflict aware schedul-
ing. In previous modulo scheduling algorithm, resMII and recMII
is used to calculate MII. But in our work, we used third factor that
is calculated in array clustering step. We define the third factor
is MemMII(Memory-constrained minimum II). MemMII is related
with the number of access to each bank for one iteration and a mem-
ory access throughput per a cycle. The array clustering is calculated
with this information. So, the II, the result of array clustering, is
MemMII.

Figure 5 illustrates array clustering. Figure 5(a) shows the parts
of array analysis result(access frequency analysis). Then after cal-
culating array priority once (Figure 5(b)), the minimum-cost clus-
ters are assigned to arrays, in the decreasing order of array priority
(Figure 5(c)). Figure 5(d) lists the number of accesses to each bank
(per iteration), which is balanced across different banks and loops.

5.3 Conflict Free Scheduling
With previous memory-unaware scheduling, bank conflicts can oc-
cur even if array clustering is first done. It is because array clus-
tering only guarantees that the total per-iteration access count to
the arrays included in a cluster, or simply, the total (per-iteration)
access count of a bank, does not exceed the target II(because it is
already reflected by MemMII), which is only a necessary condition
for a conflict free mapping. In other words, once array clustering
is done, the total access count of a bank does not change because

* Array Clustering algorithm *

ArrayInfo; // a data structure that contains a size of array,

access for each loop’s iteration
AL; // a list of arrayInfo
DFGs; // a list of DFG
CandList; // a set of candidate cluster

// array analysis
1. AL = initArrayList();
2. for(each DFGs) {
3. * let dfg be an element of DFGs;
4. AL = arrayAccessAnalysis(dfg);
5. }
6. AL = arraySizeAnalysis();

// cluster assignment
7. for(each arrayInfo in AL) {
8. * let x be an element of AL
9. calcPriority(x);
10. }
11. sortArrayList(AL); // sort in descending order by priority
12. while(AL ≠ Ø) {
13. * let x be an element of AL
14. for(#cluster) {
15. * let y be a cluster number
16. candList += calcCost(x, y);
17. }
18. if (candList ≠ Ø) {
19. cl = getMinCostCluster(candList);
20. assign(x, cl);
21. }
22. else {
23. fail(); // increase II and do clustering again
24. }
25. }

Figure 4. Array clustering algorithm

of scheduling, but temporary access count can. For instance if two
memory operations accessing the same bank are scheduled at the
same cycle, spontaneously two load-store units will try to access
the same bank, which is a bank conflict. Thus we extend a previous
modulo scheduling algorithm [16] developed for CGRAs to gener-
ate conflict free mapping.

5.3.1 Base scheduling algorithm
In this paper, we applied a previous scheduling research results
to make a base modulo scheduling algorithm. We decide to use
EMS(Edge-centric Modulo Scheduling) [16] for our base sched-
uler. In previous node-centric scheduling, the placements of source
node and destination node are decided first. And then it try to find
the routing path between these nodes. But in the edge-centric ap-
proach, routing from source node is tried first. During routing,
if routing path pass through a place that destination node can be
placed, then the placement is decided at this time. Figure 6 shows
a pseudo code of our base scheduler. In this paper, we use several
costs for placement decision, which are widely used in mapping
algorithm such as resource cost, routing cost, relativity cost. Re-
source cost means the cost for using a PE for node placement. Its
costs are set to be different according to function of PE. If target
PE is expensive PE, such as the PE having memory access unit, the
cost is set to higher. Routing cost means the cost for routing data to
destination. The cost becomes bigger, if routing path is long or rout-
ing path passed by expensive PE. Relativity cost is used for placing
related nodes at adjacent PEs. In these basic modulo scheduling
environment, we added our approaches.

5.3.2 MBA Architecture
Modulo scheduling for CGRA uses placement and routing (P&R)
technique to find feasible scheduling and resource allocation simul-
taneously. While the resources that are considered in previous mod-

21

Data layout exampleData layout example
4

// swim loop 1// swim loop 1
for (j = 0; j < N2; ++j) {
for (i = 0; i < N1; ++i) {
cu[j][i+1] = (p[j][i+1] + p[j][i]) / 2 * u[j][i+1];
cv[j+1][i] = (p[j+1][i] + p[j][i]) / 2 * v[j+1][i];
z__[j+1][i+1] = (fsdx * (v[j+1][i+1] ‐ v[j+1][i])

f d * ([1][1] [][1]))

Array
name

#Access
(per iter)

p 4

u 3

Array
name

#Access
(per iter)

h__ 3

z__ 3
‐ fsdy * (u[j+1][i+1] ‐ u[j][i+1]))
/ (1 + p[j][i] + p[j][i+1] + p[j+1][i+1] + p[j+1][i]);

h__[j][i] = p[j][i] + (u[j][i+1] * u[j][i+1] + u[j][i] * u[j][i]
+ v[j+1][i] * v[j+1][i] + v[j][i] * v[j][i]) / 4;

}
}

v 3

cu 1

cv 1

1

cv 4

cu 4

uold 1

vold 1}

tdts8 = con.tdt / 8.;
tdtsdx = con.tdt / con.dx;
tdtsdy = con.tdt / con.dy;

// swim loop 2

z__ 1

h__ 1 pold 1

unew 1

vnew 1
<swim loop1>

// swim loop 2
for (j = 0; j < N2; ++j) {
for (i = 0; i < N1; ++i) {
unew[j][i+1] = uold[j][i+1]
+ tdts8 * (z__[j+1][i+1] + z__[j][i+1]) * (cv[j+1][i+1] + cv[j+1][i] + cv[j][i] + cv[j][i+1])
‐ tdtsdx * (h__[j][i+1] ‐ h__[j][i]);

pnew 1

<swim loop2>

vnew[j+1][i] = vold[j+1][i]
‐ tdts8 * (z__[j+1][i+1] + z__[j+1][i]) * (cu[j+1][i+1] + cu[j+1][i] + cu[j][i] + cu[j][i+1])
‐ tdtsdy * (h__[j+1][i] ‐ h__[j][i]);
pnew[j][i] = pold[j][i] ‐ tdtsdx * (cu[j][i+1] ‐ cu[j][i]) ‐ tdtsdy * (cv[j+1][i] ‐ cv[j][i]);
}
}}

(a) Array access frequency analysis

Data layout exampleData layout example
5

Array
name

Priority

Cluster0 Cluster1 Cluster2 Cluster3

cv, u, uold h__, z__ p, pnew, pold,
unew, vold

cu, v, vnew

p 1.0

u 0.80

v 0.80

unew, vold

h__ 0.90

z__ 0.90

cv 1.07

cu 1.07

Array #access Total

Bank1
u,
cv

3
1 4

Bank2
h__,
z__

1
1 2

Bank3 p 4 4

Array #access Total

Bank1
cv,
uold

4
1 5

Bank2
h__,
z__

3
3 6

pnew 1
uold 0.367

vold 0.367

pold 0.367

Bank3 p 4 4

Bank4
cu,
v

1
3 4 Bank3

pnew,
pold,
unew,
vold

1
1
1
1

4

Bank4
cu,
vnew

4
1 5

<swim loop1>

unew 0.367

vnew 0.367

pnew 0.367

<swim loop2>

Loop1 II = 5

SoC Optimizations and Restructuring

p
Loop2 II = 6

(b) Prioritization

Data layout exampleData layout example
5

Array
name

Priority

Cluster0 Cluster1 Cluster2 Cluster3

cv, u, uold h__, z__ p, pnew, pold,
unew, vold

cu, v, vnew

p 1.0

u 0.80

v 0.80

unew, vold

h__ 0.90

z__ 0.90

cv 1.07

cu 1.07

Array #access Total

Bank1
u,
cv

3
1 4

Bank2
h__,
z__

1
1 2

Bank3 p 4 4

Array #access Total

Bank1
cv,
uold

4
1 5

Bank2
h__,
z__

3
3 6

pnew 1
uold 0.367

vold 0.367

pold 0.367

Bank3 p 4 4

Bank4
cu,
v

1
3 4 Bank3

pnew,
pold,
unew,
vold

1
1
1
1

4

Bank4
cu,
vnew

4
1 5

<swim loop1>

unew 0.367

vnew 0.367

pnew 0.367

<swim loop2>

Loop1 II = 5

SoC Optimizations and Restructuring

p
Loop2 II = 6

(c) Clustering result

Data layout exampleData layout example
5

Array
name

Priority

Cluster0 Cluster1 Cluster2 Cluster3

cv, u, uold h__, z__ p, pnew, pold,
unew, vold

cu, v, vnew

p 1.0

u 0.80

v 0.80

unew, vold

h__ 0.90

z__ 0.90

cv 1.07

cu 1.07

Array
#access
(per iter)

Total
(per iter)

Bank1
u,
cv

3
1 4

Bank2
h__,
z

1
1 2

Array
#access
(per iter)

Total
(per iter)

Bank1
cv,
uold

4
1 5

Bank2
h__,
z

3
3 6

uold 0.367

vold 0.367

pold 0.367

z__ 1
Bank3 p 4 4

Bank4
cu,
v

1
3 4

z__ 3

Bank3

pnew,
pold,
unew,
vold

1
1
1
1

4

Bank4
cu, 4

1 5i l 1unew 0.367

vnew 0.367

pnew 0.367

Bank4 vnew 1 5<swim loop1>

<swim loop2>

Loop1 II = 5

SoC Optimizations and Restructuring

p
Loop2 II = 6

(d) Number of accesses for each loop

Figure 5. Array clustering example.(swim application)

ulo scheduling include only PEs and interconnects, our extension
treats memory banks, or memory ports to the banks, as resources
too.3 This small extension, combined with our array clustering, al-
lows us to find conflict free mapping.

As explained, if two memory accesses to the same bank occur
at the same cycle, memory conflict occurs. Then one memory
access request cannot be completed on time. But we know the
array clustering information, we can prevent memory conflict by
saving the time information that memory operation is mapped on.
When a memory operation is mapped, update the cluster access
information. And by using this information, we can prevent that
two memory operations belonging same cluster is mapped on the
same cycle.

Figure 7 illustrates our conflict free mapping algorithm through
an example shown in Figure 7(b). Suppose that the architecture has
four PEs, two of which are load-store units (PE0 and PE2), and it
has two banks with arbiters (MBA architecture). Also assume that
arrays have been clustered as listed in Figure 7(c) with the target II
of 3, and that all the nodes from 1 through 7 have been scheduled
as shown in Figure 7(d), and now node 8, a memory operation, is

3 We use bank and cluster interchangeably since clusters are one-to-one
mapped to banks.

* EMS algorithm *

DFG G; // the data flow graph
NodeList N; // the set of DFG node
CandSpace S; // the set of mapping candidate
1. prioritizeEdge(G);
2. N = getOrderedNodes(G);
3. while(N ≠ Ø) {
4. targetN = pop(N);
5. setSearchSpace(targetN);
 // consider targetN’s predecessor
6. for(searchSpace) {
7. * let s be a mapping space of searchSpace

// mapping space consists of a location of PE & time)
8. if(spaceAvailable(s) && routable(s)) {

// spaceAvailable checks the functionality and availability of PE
// routable function checks the routability from source nodes to s

9. S += saveCandidate(s, calcCost(s));
// resource, routing and relativity cost are used to calculate cost

10. }
11. }
12. if(S≠ Ø) {
13. decision = getMinCostCand(S);
14. update(decision);
15. else {
16. fail(); // increase II & do scheduling again
17 }
18 }

Figure 6. Base modulo scheduling(implemented based on EMS
algorithm)

about to be scheduled. The first candidate for node 8 is cycle 4 on
PE2, which has conflict not in terms of computation resources (PE2
was not used in cycle 1 nor 4) but in terms of memory resources
(CL1 was already used in cycle 1). Choosing the first candidate
thus means bank conflict, or one stall, per every II, effectively in-
creasing II by one. Alternatively node 8 can be scheduled at cycle
6 on PE1 albeit via a longer route. But since this choice does not
cause any conflict on computation or memory resources, the effec-
tive II is not increased, resulting in much better performance than
the first candidate. Thus our extended modulo scheduling can find
conflict free mapping, which works well with our array clustering.
Moreover our approach can be easily applied to previous work. In
EMS algorithm, our clustering aware scheduling approach is im-
plemented in spaceAvailable function which is called Figure 6 line
9. spaceAvailable function checks several conditions to confirm the
space is available. Conflict free approach just adds one more condi-
tion on these, so there is no hard problems with unifying previous
scheduling algorithm with our approach.

5.3.3 MBAQ Architecture
As mentioned before, accesses to the same bank at the same
time occur bank conflict. MBA architecture treats this problem
by stalling CGRA processor until all requested data are ready.
But stalling processor degrade CGRA performance, so some
works[1, 2] proposed DMAQ architecture. They designed an ar-
bitration logic have queues for each bank and increase memory
operation latency longer than the lowest obtainable memory la-
tency. During this additional cycles, the loaded data is stored in
the arbitration logic queue. And at the end of latency, the data is
delivered to PE. In this manner, several accesses to the same ar-
ray can be handled without processor stall by fetching data earlier
to give an extra time for fetching other conflicted data. But these
previous works assumed interleaving memory architecture. In our
case, we can predict bank conflict. So in our case, MBAQ architec-
ture is used for relaxing the mapping constraint. MBA architecture
doesn’t permit bank conflict, but MBAQ architecture can permit
several conflict within a range of added memory operation latency.
We distinguish two cases(n is the added memory operation latency
cycles by MBAQ approach)

i) II ′ ≤ n (Target II is no greater than the DMQ length): Our
array clustering guarantees that there are at most II ′ accesses per

22

BackupBackup
5

PE0 PE1
Arbitr

Bank1

PE3 PE2

Arbitr
ation
Logic

Bank2a

SoC Optimizations and Restructuring

(a)

Conflict free mappingConflict free mapping
2

00

1 2
PE0 PE1 PE2 PE3 Cl1 Cl2

A[i]
3

64 5

PE0 PE1 PE2 PE3 Cl1 Cl2

0 x x

1 A

[]

II=3

0

1 2
87

1 A

2 B

3 x

B[i]

C[i]

II=3 1 2

3

6

4 5

73 x

4 x x x

5 x x x x
Cluster1 Cluster2

A[i], C[i] B[i]

67

c1 r

r

SoC Optimizations and Restructuring
6 x x x

[], [] []

c2

(b)

Conflict free mappingConflict free mapping
2

00

1 2
PE0 PE1 PE2 PE3 CL1 CL2

A[i]
3

64 5

PE0 PE1 PE2 PE3 CL1 CL2

0 x x

1 A

[]

II=3

0

1 2
87

1 A

2 B

3 x

B[i]

C[i]

II=3 1 2

3

6

4 5

73 x

4 x x x

5 x x x x
Cluster1 Cluster2

A[i], C[i] B[i]

67

c1 r

r

6 x x x
[], [] []

c2(c)

Conflict free mappingConflict free mapping
2

00

1 2
PE0 PE1 PE2 PE3 CL1 CL2

A[i]
3

64 5

PE0 PE1 PE2 PE3 CL1 CL2

0 x x

1 A

[]

II=3

0

1 2
87

1 A

2 B

3 x

B[i]

C[i]

II=3 1 2

3

6

4 5

73 x

4 x x x

5 x x x x
Cluster1 Cluster2

A[i], C[i] B[i]

67

c1 r

r

6 x x x
[], [] []

c2

(d) Scheduling table, with resources horizontally
(CL1 means Cluster1) and time vertically.

Figure 7. Conflict free scheduling.

iteration to every bank; if such a clustering cannot be found, the
target II is incremented. The worst scheduling of the II ′ accesses,
from the bank conflict point of view, is if they are all scheduled
at the same cycle(recollect MemMII)—and none until II ′ cycles
later. But this case cannot generate a bank conflict because the
DMQ can absorb at most n simultaneous requests. Therefore if
II ′ ≤ n, any schedule is conflict free.

ii) II ′ > n (Target II is greater than the DMQ length): In
this case, processor stall can occur if we do not consider data
layout. To ensure absence of processor stall, the scheduler checks
if the spontaneous request rate exceeds 1 whenever a new memory
operation is placed, where the spontaneous request rate can be
calculated as the number of memory operations during the last n
cycles divided by n. If the request rate doesn’t exceed 1, bank
conflict can be absorbed by DMAQ memory interface.

6. Experiments
6.1 Setup
For the target architecture we use a CGRA that is very similar to
the one illustrated in Figure 3. It has four load-store units in the
locations shown in the figure. The local memory has 4 banks, each
of which has one read/write port. Arbitration logic allows every
load-store unit to access any bank. Similarly to ADRES, we assume
that the local memory access latency is 3 cycles without DMQ;
with DMQ whose length is 4, the local memory load latency is 7
cycles. We assume that the local memory size is unlimited for our
experiments. Our CGRA has no shared register file, but each PE
has its own register file whose size is 4 entries. The local registers
are used for scalar variables or routing temporary data. A PE is
connected to its four neighbor PEs and four diagonal ones.

We use important kernels from multimedia applications. To get
performance numbers we run simple simulation on the mapping
result as well as array placement, which gives the total number

of execution cycles consisting of stall cycles and useful (non-stall)
cycles. Because of randomness in the scheduling algorithm (in the
placement and routing) we compile each loop ten times and the
average performance is taken as the representative performance of
the algorithm for that loop.

6.2 Effectiveness of Our Compiler Approach
To see the effectiveness of our approach, we compare our memory
aware scheduling (MAS) with the hardware approach using DMQ
to reduce bank conflict. For the hardware approach we use an
existing modulo scheduling algorithm [16], which is referred to as
memory unaware scheduling (MUS). MUS is also used as the base
scheduler for our memory aware scheduling.

Figure 8 compares three architecture-compiler combinations.
The first one, which represents the baseline performance, is the
combination of MUS with hardware arbiter only. Having no DMQ,
a stall occurs whenever there are more than one requests to the same
bank. Bank conflict is detected and resolved at runtime. Interleav-
ing array placement is used. The load latency is small (3 cycles) as
DMQ is not used. The second case is the hardware approach, using
DMQ to absorb some potential bank conflicts. Again, interleaved
array placement is used to maximize the effectiveness of DMQ (by
distributing bank conflicts). The use of DMQ results in longer load
latency (7 cycles). The third case is our compiler approach, using
MAS to generate conflict free mapping. Only hardware arbiter is re-
quired, but no DMQ or runtime conflict detection/resolution hard-
ware. The load latency is small (3 cycles). Sequential array place-
ment is used. The graph plots the runtimes normalized to that of
the baseline. We assume that the clock speed is the same for all the
cases.

In the baseline case we observe that about 10 ∼ 30% of the
total execution time is spent in stalls. Using the DMQ, the hardware
scheme can effectively reduce the stall cycles, which now account
for a very small fraction of the total execution time. The non-
stall times are mostly the same as in the baseline case, with a few
exceptions. The notable increase of the non-stall time of hardware
scheme in some applications (CopyImg, Init mbaff) is due to the
increase in the load latency. Overall the hardware scheme can
reduce the expected CGRA runtime, though not always, by 10
∼ 27% (9.7% on average) compared to the baseline case. With
our compiler approach the stall time is completely removed. The
increase in the non-stall time is very small to modest in most cases,
reducing the total execution time by up to more than 40%. The
graph shows that our compilation technique can achieve in most
cases far better performance (10 to 40% runtime reduction, 17.3%
on average) compared to memory unaware mapping. Also our
approach allows the removal of bank conflict resolution hardware,
which can contribute to reducing the cost and energy consumption.
Further, even compared to the hardware approach using DMQ, our
approach can deliver higher performance in most loops (on average
8.5% runtime reduction). Considering that the use of DMQ can
reduce the speed of the processor as well as complicate its design
and verification, the advantage of our compiler approach is many-
fold.

6.3 Effect of Using DMQ in Our Approach
Since DMQ can reduce bank conflicts and increase performance
when used with a conventional memory unaware scheduler, it is in-
teresting to know how effective it is with our memory aware com-
pilation flow. Figure 9 compares the II (the average of ten trials) by
our memory aware compiler with/without DMQ. Our compiler can
generate different mappings for architectures with DMQ, by relax-
ing the bank conflict condition. Surprisingly, contrary to the sig-
nificant performance improvement in the case of memory unaware
scheduling, DMQ does not really help in the case of our memory

23

0.4

0.6

0.8

1

1.2

stall time

non‐stall time

0

0.2

0.4

0.6

0.8

1

1.2
M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

M
U
S(
w
/o
 D
M
Q
)

M
U
S(
w
/
D
M
Q
)

M
A
S

loop1 loop2 loop3 loop1 loop2 loop3 loop4 loop1 loop2 loop1 loop2 loop1 loop2 loop1 loop2 loop1 loop1 loop2* loop1*

swim InvResidual CopyImg CopyFrames SetRef Init_mbaff laplace SOR lowpass AVERAGE

stall time

non‐stall time

Figure 8. Runtime comparison, normalized to the baseline case (MUS w/o DMQ). Total execution time is the sum of non-stall time and
stall time. Our compiler approach (MAS) completely eliminates stall time in all cases and can achieve up to 40% better performance than the
baseline. Asterisk (*) indicates the loop has recurrent edge, where non-stall time can be increased due to data dependence

2

3

4

5

6

7

8

9

1 2 3 1 2 3 4 1 2 1 2 1 2 1 2 1 1 2* 1*

swim InvResidual CopyImg CopyFrame SetRef Init_mbaff laplace SOR lowpass

MAS 7.5 8.5 5 5.7 4.8 2 3 2 2.1 2 3.2 4.7 4.6 4 4 4.2 3.6 7 7

MAS+DMQ 7.9 8.5 5.7 5.7 5 2 3 2 3 2 4 5.1 5 4 4 4 3.6 7 7

0

1

2

3

4

5

6

7

8

9

Figure 9. Comparing memory aware mappings with and without DMQ. Y-axis represents II (average of ten trials).

aware mapping. Mostly the II is the same, and in some cases the II
actually increases if there is DMQ. This is because while DMQ re-
laxes the bank conflict condition, it also increases the load latency,
complicating the job of the scheduler. Thus we conclude that one of
the best architecture-compiler combinations is our memory aware
mapping plus MBA (multiple bank with arbitration) architecture,
which again does not require runtime conflict detection and con-
tributes to reducing the complexity of the memory interface design.

7. Conclusion
We presented a data mapping aspect of CGRA compilation, focus-
ing on how to efficiently and effectively reduce bank conflicts for
realistic local memory architectures. Bank conflict is a fundamen-

tal problem and can cause a serious degradation of performance.
To reduce or eliminate bank conflicts either hardware approach or
compiler approach can be used. We define the mapping problem for
compiler approach, and also propose a heuristic approach, since the
problem is computationally intractable like many problems in com-
pilation. Our approach is a two-step process, first determining the
array mapping considering statically known information, and then
finding a computation mapping that is free of any bank conflict. Our
experiments demonstrate that our memory memory aware compi-
lation approach can generate mappings that are up to 40% better
in performance (on average 17.3%) compared to memory unaware
scheduler. Even compared to the hardware approach using DMQ,
our technique is on average 8.5% better, and can be a good alter-
native to the hardware solution. Moreover, our compiler guarantees

24

that all the mappings are free of bank conflict, which can be used to
eliminate conflict resolution hardware, which is another advantage
of our approach.

Acknowledgments
This work was supported by the Engineering Research Center
of Excellence Program of Korea Ministry of Education, Sci-
ence and Technology(MEST)/ Korea Science and Engineering
Foundation(KOSEF)(R11-2008-007-01001-0), Seoul R&BD Pro-
gram(10560), the IDEC and the Korea Science and Engineering
Foundation(KOSEF) NRL Program grant funded by the Korea gov-
ernment(MEST) (No. 2009-0083190), the Korea Research Founda-
tion Grant funded by the Korean Government(MOEHRD) (KRF-
2007-357-D00225), 2009 Research Fund of UNIST, and grants
from National Science Foundation CCF-0916652, Microsoft Re-
search, Raytheon, SFAz and Stardust Foundation.

References
[1] B. Bougard, B. De Sutter, D. Verkest, L. Van der Perre, and

R. Lauwereins. A coarse-grained array accelerator for software-
defined radio baseband processing. IEEE Micro, 28(4):41–50, 2008.

[2] F. Bouwens. Power and performance optimization for adres. Master’s
thesis, Delft University of Technology, 2006.

[3] G. Dimitroulakos, M. D. Galanis, and C. E. Goutis. Alleviating the
data memory bandwidth bottleneck in coarse-grained reconfigurable
arrays. In ASAP ’05: Proceedings of the 2005 IEEE International
Conference on Application-Specific Systems, Architecture Processors,
pages 161–168, Washington, DC, USA, 2005. IEEE Computer
Society.

[4] G. Dimitroulakos, S. Georgiopoulos, M. D. Galanis, and C. E. Goutis.
Resource aware mapping on coarse grained reconfigurable arrays.
Microprocess. Microsyst., 33(2):91–105, 2009.

[5] M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A spatial
mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures. In DATE ’06: Proceedings of the conference on
Design, automation and test in Europe, pages 363–368, 3001
Leuven, Belgium, Belgium, 2006. European Design and Automation
Association.

[6] A. Hatanaka and N. Bagherzadeh. A modulo scheduling algorithm
for a coarse-grain reconfigurable array template. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–8, March 2007.

[7] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. Resource sharing
and pipelining in coarse-grained reconfigurable architecture for
domain-specific optimization. In DATE ’05: Proceedings of the
conference on Design, Automation and Test in Europe, pages 12–17,
Washington, DC, USA, 2005. IEEE Computer Society.

[8] Y. Kim, J. Lee, A. Shrivastava, J. Yoon, and Y. Paek. Memory-aware
application mapping on coarse-grained reconfigurable arrays. In
HiPEAC 2010, LNCS 5952, pages 171–185, 2010. Springer-Verlag.

[9] J. Lee, K. Choi, and N. D. Dutt. An algorithm for mapping loops onto
coarse-grained reconfigurable architectures. ACM SIGPLAN Notices,
38(7):183–188, 2003.

[10] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained
reconfigurable architectures. IEEE D&T, 20:26–33, Jan./Feb. 2003.

[11] J. Lee, K. Choi, and N. Dutt. Evaluating memory architectures for
media applications on coarse-grained reconfigurable architectures.
In ASAP ’03: Proceedings of the conference on application-specific
systems, architectures, and processors, pages 172–182, 2003. IEEE
Computer Society.

[12] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
Dresc: a retargetable compiler for coarse-grained reconfigurable
architectures. pages 166–173, Dec. 2002.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix. pages 61–70. 2003.

[14] T. Oh, B. Egger, H. Park, and S. Mahlke. Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures.
SIGPLAN Not., 44(7):21–30, 2009.

[15] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph
embedding: mapping applications onto coarse-grained reconfigurable
architectures. In CASES ’06: Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded
systems, pages 136–146, New York, NY, USA, 2006. ACM.

[16] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim.
Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures. In PACT ’08: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques,
pages 166–176, New York, NY, USA, 2008. ACM.

[17] C. O. Shields, Jr. Area efficient layouts of binary trees in grids. PhD
thesis, 2001. Supervisor-Ivan Hal Sudborough.

[18] H. Singh, G. Lu, E. Filho, R. Maestre, M.-H. Lee, F. Kurdahi,
and N. Bagherzadeh. Morphosys: case study of a reconfigurable
computing system targeting multimedia applications. In DAC ’00:
Proceedings of the 37th Annual Design Automation Conference,
pages 573–578, New York, NY, USA, 2000. ACM.

[19] Y. Tamir and G. L. Frazier. Dynamically-allocated multi-queue buffers
for vlsi communication switches. IEEE Trans. Comput., 41(6):725–
737, 1992.

[20] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, and
W. Bohm. A compiler framework for mapping applications to a
coarse-grained reconfigurable computer architecture. In CASES ’01:
Proceedings of the 2001 international conference on Compilers,
architecture, and synthesis for embedded systems, pages 116–125,
New York, NY, USA, 2001. ACM Press.

[21] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek.
Spkm: a novel graph drawing based algorithm for application mapping
onto coarse-grained reconfigurable architectures. In ASP-DAC ’08,
pages 776–782, 2008.

25

