
TZSlicer: Security-Aware Dynamic Program Slicing
for Hardware Isolation

Mengmei Ye, Jonathan Sherman, Witawas Srisa-an, and Sheng Wei

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE, USA

Email: {mye, jsherman, witty, swei}@cse.unl.edu

Abstract—To address security issues related to information
leakage, microprocessor designers and manufacturers such as
ARM and Intel have introduced hardware isolation-based tech-
nologies to support secure software execution. However, utilizing
such technologies often requires significant efforts to design new
applications or refactor existing applications to adhere to the
usage protocols. Developers also need to clearly distinguish code
sections that can manipulate sensitive data and relocate them
to the secure execution environment. These processes can be
laborious and error-prone, since over-protection can result in
poor application performance and high resource usage, and
under-protection may cause exploitable security vulnerabilities.
In this paper, we introduce TZSlicer, a framework to auto-

matically identify code that must be protected based on a sensitive
variable list provided by developers. TZSlicer automatically
identifies code sections that can process sensitive data, extracts
those sections from the original program, and creates harness in
the original and extracted code sections so that they can interface
with each other. We develop a prototype of TZSlicer to support
slicing of C programs at function, code block, and code line
levels. Also, we identify optimization opportunities to improve
the context switching overhead of TZSlicer via applying loop
unrolling and variable renaming. We evaluate TZSlicer using
seven real-world programs, and the evaluation results indicate
that TZSlicer is effective in protecting sensitive data without
incurring significant runtime and resource usage overheads.

I. Introduction
Embedded systems, such as Internet of Things (IoT) devices,

have gained a great deal of popularity recently. Currently,
there are tens of billions of embedded systems in deployment,
which perform various tasks ranging from controlling basic
appliances to handling sensitive information via various forms
of data processing and routing. Unfortunately, many of these
deployed devices are inadequately protected from malicious
acts such as leaking confidential information and modifying
critical data [1], [2].
Since these embedded systems often have low power budget

and limited computing capability, it is not applicable to deploy
complex security mechanisms. Therefore, hardware vendors
and manufacturers have developed hardware measures to pro-
vide the necessary security. One notable technology for secure
data processing is hardware-based isolation. For example,
ARM introduced TrustZone technology [3] for hardware iso-
lation on embedded devices; Intel developed Software Guard
Extensions (SGX) to provide isolated execution environment
for Intel-based platforms [4].

While such technologies have been available, employing
them in general embedded computing software is not straight-
forward. When the data that needs to be protected is only
processed by a small region of code, designing a program
to ensure that the data is processed in full isolation by
trusted hardware is relatively simple. However, when sensitive
information flows across multiple methods or in a much larger
code region, securing the processing of such data can be
quite complex. Furthermore, for legacy programs that have
long been deployed, refactoring them to take advantage of
technologies like TrustZone may require significant efforts.
The resulting software can also be inefficient or erroneous.
For example, manually identifying possible weak links along
a processing chain that a piece of sensitive data must flow
through can lead to over-protection, resulting in waste of pre-
cious hardware resources as excessive code is being protected.
On the other hand, if the data flow is complex, manual analysis
can lead to under-protection, resulting in weak links that can
be exploited by adversaries.
We develop TZSlicer, a new framework to automatically

identify code statements in a program that must be protected
based on a sensitive, must-protect variable list provided by
developers. As such, the inputs of TZSlicer are a program
that contains sensitive data and a list of variables that must be
protected. TZSlicer analyzes the program and applies taint
analysis of sensitive variables. It then analyzes the taint analy-
sis results and performs program slicing to extract statements
that must be executed in isolation. The extracted statements
are then used to form new methods that are executed in
isolation. The remaining code from the original program is
then instrumented so that code statements that make calls
to the protected methods can be inserted. The outputs of
TZSlicer include a “normal world" program that executes
without hardware protection and a “secure world" program
that executes under protection.
A major challenge in the design of TZSlicer is the fact

that the capacity of the “secure world” must be kept low. It
is because all the “secure world” resources are considered
as part of the trusted computing base (TCB), which, once
compromised, would propagate the security threats to the
entire system. As having been a consensus in the security
community, minimizing the size of TCB is an important
requirement to security design [5]. We address this challenge

17978-1-5386-4731-8/18/$31.00 c©2018 IEEE

by developing multiple program slicing schemes targeting the
method (i.e., TZ-M), code block (i.e., TZ-B), and code line (i.e.,
TZ-L) levels. While TZ-L (i.e., the finest granularity in slicing)
achieves the minimum TCB size, it introduces an increased
number of context switches between the two worlds. To further
address this issue, we develop an advanced version of TZ-L
(i.e., TZ-L+) that conducts loop unrolling and rescheduling on
the results of TZ-L to optimize the context switching overhead.
We evaluate the effectiveness and efficiency of TZSlicer

using 7 real-world applications that perform common tasks in
embedded systems, such as signal processing, cryptographic
operations, and statistical computations. Our evaluation results
indicate that TZSlicer can successfully achieve the program
slicing objectives for hardware isolation and meet the security
requirement. Furthermore, the multi-level slicing and the loop
unrolling mechanisms are capable of achieving controllable
TCB sizes and context switching times, respectively, which are
essential to accommodate for various application requirements.

II. Background and Motivation
A. Threat Models
We target two common types of threat models that have been

used against embedded systems: information leakage attacks
and data falsifying attacks. Both attacks have the potential of
compromising the security or privacy of the critical data and
programs in the embedded systems and must be prevented.
Throughout the discussions in this paper, we employ a concrete
example as shown in Fig. 1 to introduce the threat models, the
countermeasures, as well as the design and implementation
of TZSlicer. Without loss of generality, we assume that
array x contains sensitive data that are subject to security or
privacy breaches under the two threat models. The program
involves typical code structures (e.g., loops and branches), data
structures (e.g., arrays), and operations (e.g., assignments and
arithmetic computations) that commonly appear in real world
C programs.

Fig. 1. Sample C code for the technical discussion of TZSlicer, where array
x contains sensitive data that requires protection.

1) Information Leakage Attacks.: Information leakage is
one of the major forms of threats that compromise the security
and privacy of critical systems [6], wherein the adversary
breaches into the system, identifies the secret data, and leaks

the data via an overt or covert channel. To date, there are a vari-
ety of effective methods to issue information leakage attacks,
such as malware [7], memory access pattern inference [8],
and hardware Trojans [9]. In the example shown in Fig. 1, an
information leakage attack can be conducted by the attacker
hacking into the program call stacks involving lines 5, 8, and
14 via debugging and reading the array x values.

2) Data Falsifying Attacks.: Different from the information
leakage attacks that read critical data from the system, data
falsifying attacks aim to modify the critical data, which may
cause system malfunction or denial of services. In particular, in
security sensitive systems, such as authentication or monitor-
ing systems, the falsified data can cause the system to bypass
the otherwise mandatory security verification procedures and
result in severe security compromises [1]. In the example
shown in Fig. 1, the attacker can issue a data falsifying attack
directly by manipulating the array x values (i.e., at lines 5,
8, and 14) or indirectly by compromising the variable f lag
(i.e., at line 2). Both cases falsify the critical data x and thus
endanger the security of the entire system.

Fig. 2. TrustZone-based hardware isolation framework.

B. TrustZone Framework.
As a countermeasure to prevent the information leakage and

data falsifying attacks, the security community has developed
hardware isolation techniques that create trusted execution
environment (TEE) for the protection of sensitive data and
programs [3][4]. For example, Fig. 2 shows the hardware
isolation framework we target in this paper based on ARM
TrustZone [3]. The application runtime is split into two sep-
arate environments, namely the secure world and the normal
world, which are isolated at the physical bus level using the
TrustZone technology provided as a security extension in the
ARM processor. The principle of hardware isolation is that
the normal world cannot directly access the secure world as
ensured by the bus level isolation. Instead, to issue an access
to the secure world, the normal app must invoke a secure
monitor call (SMC) that triggers the secure monitor to switch
the CPU mode from normal to secure. Then, the secure agent
in the secure world conducts security verifications and either
grant or deny the access request. The data exchange between

18 International Symposium on Hardware Oriented Security and Trust (HOST)

the secure and normal worlds can be enabled by a shared
memory allocated in the normal world, which is accessible to
both worlds.
Fig. 3 shows the most straightforward way to deploy the

target program to the TrustZone framework and gain immedi-
ate security benefits. The entire program is embedded in the
secure world and, consequently, no accesses to any part of the
program can be achieved without going through the security
verifications at the secure agent.

Fig. 3. Sliced programs by directly leveraging the ARM TrustZone framework.

Based on the example shown in Fig. 3, we note that the
developer must create two separate programs: the secure app
and the normal app, and deploy them into the two worlds
in order to leverage the TrustZone framework. This signif-
icantly increases the complexity of software development. In
particular, the new hardware isolation architecture requires the
developer to determine how to split the data and code based on
their security properties, which is challenging for the general
software developers who do not have security background or
deep understanding about the underlying hardware framework.
Furthermore, we note that the straightforward code deployment
shown in Fig. 3 results in a big size TCB (i.e., the size of the
secure world) in the TrustZone framework, which negatively
impacts security. In this paper, we aim to address these
challenges by developing TZSlicer, an automatic security-
aware program slicing technique to achieve security guarantee
while maintaining a small TCB.

III. TZSlicer System Framework

Fig. 4 shows the system architecture of the TZSlicer
framework, which automatically generates the secure and
normal slices required by TrustZone for traditional software
developers who do not have deep knowledge about TrustZone.
To achieve this goal, we develop two system components
for TZSlicer: the Taint Analyzer and the Slice Optimizer.
The Taint Analyzer determines the propagation of sensitive
information (i.e., the user tainted variables) throughout the
program following the system dependency graph (SDG) [10].
Based on the taint analysis results, TZSlicer deploys all
the sensitive components into the secure world and the rest
into the normal world. After that, the Slice Optimizer further
reduces two types of system runtime overhead introduced by
the sliced programs, namely the resource overhead and the

communication overhead, by refining the deployed code in the
two slices.

Fig. 4. TZSlicer system framework.
A. Taint Analyzer
To indicate the security requirement of the application for

program slicing, the developer provides three data blocks
as the inputs to TZSlicer: (1) a set of tainted variables
that are the source of security sensitivities; (2) a set of test
input vectors that provide a full coverage of the functional
test to enable dynamic program slicing; and (3) the resource
constraints that determine the key parameters in the slicing
optimization.
Based on the user inputs, we employ TaintGrind, a dy-

namic taint analysis framework [11] to determine the prop-
agation of taints in the SDG [10]. The originally tainted
variables combined with those determined by the propagation
analysis represent the critical program components that require
protection. Depending on the granularity of the taint analysis,
we develop the following three tainting methods.
• Method-level Tainting (TZ-M), which taints the program at
the function level and generates security sensitive functions
and non-sensitive functions;

• Block-level Tainting (TZ-B), which further taints the inter-
nal code blocks (e.g., branches) within the functions and
generates security sensitive and non-sensitive blocks; and

• Line-level Tainting (TZ-L), in which each line of the pro-
gram is labeled as either security sensitive or non-sensitive
based on the taint propagation.
Fig. 5 shows the taint analysis procedure and results of

TZ-L for the function M1 presented in Fig. 1, where Array
x is the user tainted variable. We observe that the taint on
x is propagated to 3 lines of code, including lines 5, 8,
and 14, which are deemed security sensitive and subject to
the information leakage and data falsifying threats discussed
in Section II-A. The taint analysis fully identifies the attack
surfaces that have the potential of exposing the sensitive data.

B. Program Slicer
The results of the taint analysis form two sets of program

components: (1) the code that is tainted, either originally by
the developer or by the propagation in the SDG; and (2)
the code that is not tainted. By the definition of taint under
this context, Component (1) indicates the security sensitive

International Symposium on Hardware Oriented Security and Trust (HOST) 19

Fig. 5. System dependency graph for taint analysis for the Function M1 in
Fig. 1. The shaded nodes represent the sensitive code (line numbers) identified
by the taint analysis.

component that composes the secure slice, and Component
(2) forms the normal slice, which are targeted to deploy in the
secure world and the normal world, respectively.
We develop a Program Slicer that conducts the slicing

and deployment of the two program slices based on the
results obtained from the Taint Analyzer. An important design
principle of the Program Slicer is to ensure that the sliced
programs are functionally equivalent to the original program.
Such a principle cannot be achieved by directly slicing the
original program into the secure and normal slices, because
there exist communications between the secure and normal
slices that are now split into two separate and non-concurrent
CPU modes. To address the missing communication problem,
the Program Slicer injects world switching code into the two
slices where the communication with the other slice is needed.
As discussed in Section II, the communication between the
two worlds is through the shared memory and, therefore, the
injected world switching code involves two parts:
• shared memory access, in which the program slice loads
or stores data to or from the shared memory, enabling the
communication with the other slice; and

• world switching, in which the program slice in one world
issues a secure monitor call that causes the secure monitor
in the TrustZone framework to switch the CPU mode to the
other world.
Upon accomplishing the memory access and the world

switching operations, both the shared data and the CPU
mode are switched from the source world to the destination
world, which concludes one complete world switching. In
summary, the program slicing methods achieve secure world
resource savings with the consequence of possibly increased
communication overhead in certain cases. After slicing, the
information flow of the sliced programs remains the same as
the original program.

C. Slice Optimizer
1) Resource Optimization: To address the system resource

challenge, we employ dynamic taint analysis that is dependent
upon the specific executions of the sliced programs, which has
been shown to achieve significantly smaller slices than static
slicing [12]. The dynamic taint analysis method leverages
the user provided test input vectors and propagates the taints
only if the corresponding code exists in the execution path
determined by the test input vectors. Consequently, the secure
world only hosts sensitive data and code that will be executed

Fig. 6. TZ-M & TZ-B Slicing.

Fig. 7. TZ-L Slicing.

at system runtime, which reduces a significant amount of
resource usage as compared to the static method. Fig. 6
and Fig. 7 demonstrate the complete program slicing process
following the code example in Fig. 1, corresponding to the
three tainting methods TZ-M, TZ-B, and TZ-L.
• TZ-M Slicing. As shown in Fig. 6, TZ-M Slicing applies the

TZ-M tainting method, which places the tainted function M1
into the secure world and the non-tainted M2 function into
the normal world. Compared to the baseline slicing method
in Fig. 3, TZ-M Slicing reduces the resource overhead of
the secure world by the size of the non-tainted M2 function.
Consequently, since M2 is now in the normal world, a world
switch together with shared memory accesses are required
to maintain the original program flow and functionality.

• TZ-B Slicing. As shown in Fig. 6, TZ-B Slicing leverages TZ-
B tainting that further carves the unexecuted “else” branch
in M1 out of the secure world, which can be achieved by
considering the dynamic flag value provided by the user
(flag=1). As can be observed from Fig. 6, TZ-B Slicing
achieves direct resource savings in the secure world (by
the size of the “else” branch in M1) without increasing the
communication overhead.

• TZ-L Slicing. As shown in Fig. 7, TZ-L Slicing further
reduces the secure world resource usage by tainting into the
level of each line of code within the M1 function. Based on
the TZ-L tainting method demonstrated in Fig. 5, the lines 5,
8, and 14 are tainted and migrated to the secure world. After

20 International Symposium on Hardware Oriented Security and Trust (HOST)

the slicing, in order to maintain the original program flow,
the sliced programs must conduct 2 round-trip switches as
shown in Fig. 7.
2) Communication Optimization: Isolation-aware Dynamic

SMC Scheduling: To reduce the communication overhead, we
employ a dynamic scheduling mechanism, which manipulates
the order of the instruction execution at the runtime of each
world to reduce the number of communications between the
two worlds. To achieve this goal, the dynamic scheduling
mechanism involves two systematic approaches, namely loop
unrolling and code reordering. The loop unrolling scheme
applies to the sliced program with loop structures, which fully
or partially decomposes the loops and enables the merge of
multiple iterations to reduce the number of world switches.
The code reordering mechanism further reorders and merges
the code within each iteration to reduce communications under
the constraints of data dependencies.
Communication Optimization 1: Loop Unrolling. Similar
to the benefits obtained in other domains [13], [14], loop
unrolling in the context of TZSlicer has the potential of
breaking the restricted boundaries enforced by the iterations,
which enables flexible and thus less frequent world switches.
Fig. 8 demonstrates the benefit of loop unrolling using the
same example in Fig. 1 while unrolling 2 iterations of the loop
at a time. We observe that although the number of switches per
iteration remains 4, the total number of iterations is reduced
by half and, therefore, the total number of switches is reduced
by half after unrolling. Without loss of generality, we define
an unrolling parameter x to represent the number of iterations
being unrolled. In other words, the total number of switches
is reduced by x times in the ideal case.

Fig. 8. TZ-L+ Slicing using loop unrolling.

The applicability of loop unrolling is restricted by several
factors. First, the loop must have been split partially into the
secure and partially into the normal world with SMCs for
communication. Second, the code in the next iteration must
be predictable; in other words, there are no branch statements
present in the loop. Third, there are no data dependencies in the
loop body, as otherwise it is not possible to execute the code
line of next iteration right after the one in the current iteration.
For the programs that do not meet the first two requirements,
we downgrade TZ-L+ to TZ-L, while for those that do not

meet the third requirement, we employ a variable renaming
technique to eliminate the dependency.
Communication Optimization 2: Variable Renaming. In the
cases of data dependency, we employ a variable renaming ap-
proach to eliminate the dependency and maintain the capability
of unrolling and scheduling. The variable renaming approach
works in the following two steps:
• Step 1: Dependency Detection, wherein we find variables
that are subject to data dependencies, including read after
write (RAW), write after read (WAR), and write after write
(WAW) in the current iteration. Fig. 9 shows an example
(extracted from the DAXPY test program discussed in Sec-
tion IV), where line #4 has an RAW dependency on lines
#2 and #3. Consequently, the original loop unrolling method
will fail as the lines #2 and #3 cannot be re-scheduled to
the current iteration due to the data dependency.

• Step 2: Variable Renaming. Once a data dependency is
detected, we rename the variables subject to the dependency
by expanding the variable name with iteration numbers, as
shown in Fig. 9. The renaming keeps the variables from
being overwritten and thus eliminates the dependency.

Fig. 9. TZ-L+ variable renaming under data dependency.

IV. Empirical Evaluation
A. Experimental Setup
We adopt 7 real-world C programs to evaluate TZSlicer, as

shown in TABLE I. The programs involve the functionalities of
signal processing, cryptography, and statistical computations,
where there exist security sensitive variables that are subject
to information leakage and/or data falsifying attacks. TABLE I
also summarizes the statistics of the programs. We observe that
the programs cover a diverse set of test cases with varying lines
of code (LoC), branch statements, loops, and functions, which
collectively provide a comprehensive test set for evaluating
different slicing methods supported by TZSlicer.
Furthermore, we develop a bare-metal TrustZone framework

in our lab targeting Xilinx Zynq platforms. As shown in
Fig. 10, the framework enables the TrustZone functionality
on a Xilinx Zedboard by configuring the corresponding ARM
CPU and the Xilinx specific registers following [15]. In our
evaluation, we employ the 256KB on-chip memory (OCM) to

International Symposium on Hardware Oriented Security and Trust (HOST) 21

TABLE I
Test programs adopted to evaluate TZSlicer.

Test Cases # Lines Branches Loops Functions

FFT 83 3 7 1
Sobel_Filter 121 8 5 6

Matrix_Multiplication 26 1 3 1
AES_KeyExpansion 81 2 2 4
Linear_Regression 40 1 1 1

Shift_Cipher 57 8 0 2
DAXPY 33 5 2 1

deploy the secure world and normal world applications, each
of which is assigned 128 KB of space. The hardware isolation
is enforced at the physical bus level by the non-secure (NS) bit
settings on the AXI interconnect, which ensures that normal
world cannot access secure world resources as supported by
the AMBA3 AXI bus protocol.

Fig. 10. TrustZone framework implemented on Xilinx Zynq Zedboard serving
as the evaluation platform for TZSlicer.

B. Security Analysis
Technically, TZSlicer is capable of defending against the

aforementioned information leakage and data falsifying attacks
benefiting from the strong hardware bus-level isolation pro-
vided by ARM TrustZone. This is possible because attackers
are now restricted from accessing the resources deployed in
the secure world based on the user-specified tainted variables.
Without loss of generality, we discuss the following three cases
regarding taint propagation for security analysis in TZSlicer.
• Assignment Statements, which is the most straightforward
way of taint propagation, where the taint propagates from the
variable(s) being read (i.e., the right side of the assignment
statement) to the those being written (i.e., the left side of
the assignment statement). Based on our observation on the
implemented prototype system, the Taint Analyzer is able
to capture and taint all the variables being written, and the
program slicer is thus able to place the code lines containing
all those variables in the secure world (i.e., in the TZ-L case).
Therefore, there are no security vulnerabilities that can be
exploited due to the assignment statements.

• Sub-function Calls, which is also a common way of taint
propagation. In this case, TZSlicer taints the arguments
of the function that obtain assigned values from the user
tainted variables, which ensures that the operations related
to sensitive data is still protected (i.e., placed in the secure
world) in the sub-functions.

• Pointer Propagation, where a tainted pointer instead of the
value it points to is assigned to a new variable, via either
assignment statements or sub-function calls. In this case,
TZSlicer taints the new variable only if it is referencing the
values of the corresponding pointer other than the pointer
itself. In this way, the value of the sensitive variable will be
protected, and even if the attacker has access to the pointer
value, it is still impossible to access the value it points to.
In summary, we observe that TZSlicer is able to handle all

the above channels where a sensitive variable has the potential
of being leaked.

C. Quantitative Security Evaluation: TCB Size
We further evaluate the security of TZSlicer quantitatively

by measuring the size of TCB, which is represented by
the lines of code deployed in the secure world. TABLE II
summarizes the results we obtained by running TZSlicer
with the 7 test programs shown in TABLE I. We first taint
a random input variable in each program. Then, we evaluate
all the proposed slicing methods, including TZ-M, TZ-B, TZ-L,
and TZ-L+ (with various unrolling parameters) and compare
them with the baseline approach in which the entire program is
placed in the secure world. We adopt the relative saving value
described in Equation (1) to quantify the improvement in each
method (shown as the percentage numbers in parenthesis) and
thus enable the comparison across examples.

(1)Savings =
Original Lines − Secure Lines

Original Lines

We observe from TABLE II that TZ-M achieves significant
savings in the AES_KeyExpansion test case that involves non-
tainted functions, while it does not contribute to the other
cases where there are either too few functions or all of the
functions are tainted. TZ-B reduces the TCB sizes for 6 out
of the 7 programs. TZ-L achieves additional improvement by
cutting down the TCB size at the level of code lines, which
results in TCB savings in all 7 examples (ranging from 12.4%
to 73.7%) compared to the baseline. TZ-L+ increases the TCB
sizes compared to TZ-L due to the code unrolling, which grows
linearly with the unrolling parameter. Note that in programs
where there are no loops or no world switching within the
loops, including Matrix_Multiplication, AES_KeyExpansion,
and Shift_Cipher, TZ-L+ do not apply and thus result in the
same TCB sizes as compared to TZ-L.

D. Performance Evaluation: World Switches
The migration of the partial program into the secure world

results in additional communications (i.e., world switches) be-
tween the two worlds in order to maintain the original function-
ality, which introduces additional timing overhead compared to
the original program without TrustZone protection. Therefore,
we quantitatively evaluate the communication overhead of the
programs generated by TZSlicer. TABLE III shows our evalu-
ation results represented by the number of world switches (i.e.,
SMC calls) using the 7 test programs. Since TZ-M and TZ-B
do not require world switches below the function level, we set

22 International Symposium on Hardware Oriented Security and Trust (HOST)

TABLE II
Resource usage evaluation results represented by the number of lines of code. The percentage value in parenthesis represent the relative

savings from the baseline, as described in Equation (1).

Test Cases Original(Baseline) TZ-M TZ-B TZ-L TZ-L+(x=2) TZ-L+(x=3) TZ-L+(x=4)

FFT 83 83 (0%) 80 (-3.6%) 60 (-27.7%) 81 (-2.4%) 90 (+8.4%) 99 (+19.3%)

Sobel_Filter 121 121 (0%) 121 (0%) 106 (-12.4%) 131 (+8.3%) 140 (+15.7%) 149 (+23.1%)

Matrix_Multiplication 26 26 (0%) 17 (-34.6%) 19 (-26.9%) 19 (-26.9%) 19 (-26.9%) 19 (-26.9%)

AES_KeyExpansion 81 49 (-39.5%) 40 (-50.6%) 42 (-48.1%) 42 (-48.1%) 42 (-48.1%) 42 (-48.1%)

Linear_Regression 40 40 (0%) 27 (-32.5%) 24 (-40%) 41 (+2.5%) 45 (+12.5%) 51 (+27.5%)

Shift_Cipher 57 57 (0%) 15 (-73.7%) 15 (-73.7%) 15 (-73.7%) 15 (-73.7%) 15 (-73.7%)

DAXPY 33 33 (0%) 17 (-48.5%) 16 (-51.5%) 26 (-21.2%) 29 (-12.1%) 32 (-3.0%)

the results of TZ-L as the baseline for comparison. We observe
that in 4 of the test programs, TZ-L+ is capable of reducing
the communication overhead significantly (ranging from 7.8%
to 63.2%) thanks to the benefit of unrolling. The other 3
examples, namely Matrix_Multiplication, AES_KeyExpansion,
and Shift_Cipher, do not show improvements because they
either do not have loops or do not contain world switches
within the loops.

E. Discussion: Trade-off between Security and Performance
Our evaluation results in TABLES II and III indicate that

there is a trade-off between the TCB size (i.e., security) and
the number of world switches (i.e., performance). To better
understand the trade-off, we plot the correlations between
the normalized values of the two metrics in Fig. 11 while
varying the unrolling parameter in TZ-L+ from 2 to 4. The
curves for the 4 test programs confirm the general trade-off
between security and performance, which provide reference to
the developers to fine tune TZSlicer based on the application-
specific security and performance requirements.

Fig. 11. Timing versus resource usage (normalized) under TZ-L and different
unrolling parameters (x = 2, 3, 4) in TZ-L+.

V. Related Work
A. Hardware Isolation
Hardware isolation techniques, such as ARM TrustZone [3]

and Intel SGX [4], have become popular security primitives
to prevent information leakage and data falsifying attacks.

For example, ARM TrustZone [3] provides physical bus-
level hardware isolation on ARM-based platforms, which has
been adopted to protect a variety of software and hardware
applications, such as programming runtime [16], operating
system kernel [17], one-time password token [18], trusted
platform module [19], and hardware Trojan defense [20]. Intel
SGX [4] achieves hardware isolation (i.e., secure enclaves)
by memory encryption, which has been employed to secure
containers in the cloud [5]. Both hardware isolation primitives
require an application-specific programming model that splits
the runtime resources into isolated execution environments.
However, most of the existing research has mainly focused
on the applications of the isolation frameworks instead of
the programming challenge. More recently, Lind et al. [21]
proposed an automatic partitioning framework targeting Intel
SGX. Our work differentiates from [21] by targeting a different
hardware platform and hardware isolation mechanism (i.e.,
ARM TrustZone based on bus-level isolation), which intro-
duces different context switching overhead and thus enables
the opportunity of line-level slicing (i.e., TZ-L).

B. Program Slicing

Program Slicing [22] is a commonly used approach in soft-
ware engineering, wherein a software program is partitioned
into multiple pieces that satisfy certain slicing criteria to
facilitate software testing, debugging, and maintenance. There
are more than 30 types of program slicing methods that have
been developed [22] to satisfy a variety of conditions, which
fall under two basic categories: static slicing [10], [23] and
dynamic slicing [24], [25]. Static slicing extracts slices from a
program based on the static analysis without considering any
specific input data. As such, they can suffer from imprecision
that can lead to a large amount of code that must be protected
in the context of our application. Dynamic slicing, on the other
hand, considers the execution context and thus generates much
smaller and more precise slices than static slicing. However,
the generated slices are incomplete as the quality of the slices
depends on the quality of the test inputs. Test inputs that
provide higher code coverage would be likely to produce more
slices.

International Symposium on Hardware Oriented Security and Trust (HOST) 23

TABLE III
Evaluation of context switching overhead. The percentage value in parenthesis represent the relative savings from the baseline.

Test Cases TZ-M TZ-B TZ-L (Baseline) TZ-L+(x=2) TZ-L+(x=3) TZ-L+(x=4)

FFT 0 0 77 68 (-11.7%) 71 (-7.8%) 68 (-11.7%)

Sobel_Filter 0 0 729 471 (-35.4%) 351 (-51.9%) 351 (-51.9%)

Matrix_Multiplication 0 0 0 0 (0%) 0 (0%) 0 (0%)

AES_KeyExpansion 0 0 101 101 (0%) 101 (0%) 101 (0%)

Linear_Regression 0 0 19 10 (-47.4%) 7 (-63.2%) 10 (-47.4%)

Shift_Cipher 0 0 0 0 (0%) 0 (0%) 0 (0%)

DAXPY 0 0 20 14 (-30.0%) 8 (-60.0%) 11 (-45.0%)

VI. Conclusion and Discussions
We have developed TZSlicer, a security-aware dynamic

program slicing framework, which automatically partitions the
target program into a secure slice and a normal slice to work
with the hardware isolation-based trusted execution environ-
ment. While designing TZSlicer, we focused on optimizing
the trusted computing base of the system to ensure security
while reducing the performance overhead via loop unrolling
and scheduling. Our experimental results on seven real-world
C programs justified the effectiveness and performance of
TZSlicer. Although mainly targeting the ARM TrustZone
platform in this work, TZSlicer can be adapted to other
isolation-based frameworks, such as Intel SGX [4], with min-
imum engineering efforts on the wrapper of the program and
the world switching operations.
The goal of TZSlicer is to bridge the gap between hard-

ware security and software developers/end users, so that they
can benefit from adopting hardware security primitives (e.g.,
TrustZone) in their system design without the huge burden of
development or deep understanding of hardware security. The
TZSlicer project is available at [26], where we plan to release
the current and future versions of TZSlicer together with new
evaluation results.
For future work, we will focus on addressing the limitation

of dynamic tainting that produces incomplete coverage of
execution paths, because only paths exercised by the test inputs
would undergo the taint analysis. This can potentially leave
vulnerable paths that were not exercised during the initial taint
analysis. Our anticipated solution is to develop a dynamic code
generation technique to identify additional paths that must be
protected at runtime and employ the dynamic secure/normal
migration feature of TrustZone to adapt to the runtime changes.

Acknowledgement
We appreciate the constructive reviews provided by the

anonymous reviewers. Also, we would like to thank Nianhang
Hu who contributed to the implementation of the TrustZone
framework used in this work.

References
[1] V. van der Veen et al., “Drammer: Deterministic rowhammer attacks on

mobile platforms,” in CCS, 2016, pp. 1675–1689.

[2] R. G. Dutta et al., “Estimation of safe sensor measurements of au-
tonomous system under attack,” in DAC, 2017.

[3] “ARM security technology: Building a secure system using Trust-
Zone technology,” http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.prd29-genc-009492c/index.html.

[4] “Intel SGX,” https://software.intel.com/en-us/isa-extensions/intel-sgx.
[5] F. S. et al., “VC3: Trustworthy data analytics in the cloud using SGX,”

in S&P, 2015, pp. 38–54.
[6] “Yahoo says 1 billion user accounts were hacked,” https://www.nytimes.

com/2016/12/14/technology/yahoo-hack.html.
[7] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization

and evolution,” in S&P, 2012, pp. 95–109.
[8] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Steal this movie:

Automatically bypassing DRM protection in streaming media services,”
in USENIX Security, 2013.

[9] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” in IEEE Design & Test of Computers, 2010,
pp. 10–25.

[10] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” in PLDI, 1988, pp. 35–46.

[11] “Taintgrind,” https://github.com/wmkhoo/taintgrind.
[12] J. Newsome, D. Song, J. Newsome, and D. Song, “Dynamic taint

analysis: Automatic detection, analysis, and signature generation of
exploit attacks on commodity software,” in NDSS, 2005.

[13] A. Cilardo and L. Gallo, “Interplay of loop unrolling and multidimen-
sional memory partitioning in HLS,” in DATE, 2015, pp. 163–168.

[14] J. Cong and C. H. Yu, “Impact of loop transformations on software
reliability,” in ICCAD, 2015, pp. 278–285.

[15] Xilinx Inc., “Programming ARM TrustZone architecture on the Xilinx
Zynq-7000 all programmable SoC,” in UG1019 (v1.0), 2014.

[16] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone
to build a trusted language runtime for mobile applications,” in ASPLOS,
2014, pp. 67–80.

[17] A. Azab et al., “SKEE: A lightweight secure kernel-level execution
environment for arm,” in NDSS, 2016.

[18] H. Sun et al., “TrustOTP: Transforming smartphones into secure one-
time password tokens,” in CCS, 2015, pp. 976–988.

[19] H. Raj et al., “fTPM: A software-only implementation of a TPM chip,”
in USENIX Security, 2016, pp. 841–856.

[20] N. Hu, M. Ye, and S. Wei, “Surviving information leakage hardware
Trojan attacks using hardware isolation,” IEEE TETC, 2017.

[21] J. Lind et al., “Glamdring: Automatic application partitioning for intel
SGX,” in USENIX ATC, 2017, pp. 285–298.

[22] J. Silva, “A vocabulary of program slicing-based techniques,” ACM
Comput. Surv., vol. 44, no. 3, pp. 12:1–12:41, Jun. 2012.

[23] J.-D. Choi and J. Ferrante, “Static slicing in the presence of goto
statements,” ACM Trans. Program. Lang. Syst., vol. 16, no. 4, pp. 1097–
1113, 1994.

[24] D. Binkley et al., “A formalisation of the relationship between forms of
program slicing,” Sci. Comput. Program., vol. 62, no. 3, pp. 228–252,
2006.

[25] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” SIGPLAN
Not., vol. 25, no. 6, pp. 246–256, 1990.

[26] “TZSlicer github repository,” https://github.com/hwsel/tzslicer.

24 International Symposium on Hardware Oriented Security and Trust (HOST)

