Machine Learning in
Compiler Optimization

. Authors: Zheng Wang and Michael O'Boyle _____

Qi Zhang, Shengpu Tang, Yanqgi Wang, Yiting Shen

Main Takeaways

. Machine Learning (ML) based compilation is a trustworthy and exciting
direction for compiler research.

. Datais fuel to ML based research.

IM NOT YOUR BUT YOO SPEND TWICE AS MucH | YOUR MATH 1S
Bom\mm TIME WITH ME AS WITH ANYONE. umerumw;
%EM;L%O;??END YOU TOTALLY ARE. EISE. TM ACIEAR OUTLER. FACE IT=IM
' I‘M CASUALLY YOUR STATISTICALLY
\ DATING A NUMBER snmnrxmromaz
OF PEOPLE. H[H
- %

Why do we need ML?

. Compilers have two jobs - translation and optimization
- Compiler writers develop heuristics with the hope of improving
performance
- ML can serve as a predictor of the optima
. Machine-Learning Compilation

- Automation!

- Evidence-based science

OpenCL Kernel code snippet

1 kernel void square(global floatx in, global floatx out){
2 int gid = get_global_id (0);
3 out[gid] = in[gid] * in[gid];
4 1}
(a) Original OpenCL kernel
1 kernel void square(global floatx in, global floatx out){
2 int gid = get_global_id (0):
3 int tid0 = 2xgid + O;
4 int tidl = 2xgid + 1;
5 out[t1d0] = in|t1d0] * in[tidO];
6 out[tidl] = in[tid1l] * in[tid1l];
7)

(b) Code transformation with a coarsening factor of 2

Example: Best Thread Coarsening Factor

Thread Coarsening Pros & Cons

Pros: Cons:
Increase instruction-level parallelism - Reduce the total amount of parallelism
Reduce # of memory-access operations - Increase the register pressure

Eliminate redundant computations

Architecture Overview

#inst.
for(--+) { #load
- #branch
} cache miss rate
T
A

(a) Feature engineering

e s e 4 e e e+ . ¢ G 4 G GmE ¢ Gmm ¢ Gmm ¢ G G+ Gw—. b . ¢ Gw—. m— ¢ wm— ¢ ww—y

oo
& \J
=
T n
s E
Y4— (O -

; S & Superv-lsed
o & — Machine » Model

oo o
Training 2 Learner
programs i E

Optimal options

(b) Learning a model

Features for new program

=

New
program

Model >

Prediction

(c) Deployment

Stage 1: Feature Engineering

;_ _____________________________ ?:; ________________ o
=
‘© w» Features for new program
#inst. = g i
S5 Supervised
for(---) { #load " " S . |
Qe =™ Machine Model — Model >
- #branch Training a= Learner New Brediciion
} cache miss rate || Programs + § progkam
[B
Optimal options
: |

(a) Feature engineering (b) Learning a model (c) Deployment

Static Code Features

Extracted from the intermediate representations

Description

Examples

Arithmetic instructions

Memory operations
Branch instructions

loop information
parallel information

#floating point instr., #integer instr.,
#method call instr.

#load 1nstr, #store 1nstr.
#conditional branch instr, #uncon-
ditional branch instr

#loops, loop depth

#work threads, work group size

Dynamic Features

Extracted from multiple layers of the runtime environment.

01010 /\/ >

profiling runs

Program binary

Application

dynamic program features (e.g. loop

® counts, hot code etc.)

Operating System

. OSinfo. (e.g. I/O contention, CPU
loads)

Hardware

. Performance counter values (e.g.
#instr., #L1 cache misses)

Reaction Based Features

Carefully selected compiler options.

1. Candidate compiler
(010000111000) transformation

.:.‘otl /\’Sl\‘

J

O
& : | ER4V
— EE~E [N, &2 q
2 | S > 5 Predicted
| ~ speedu
% ® (\ s3 gg_ peedtp
Program source > o
Q t3 Measured §peedups
Selected compiler (reactions)

transforms (t1, t2, t3)

Feature Selection and Dimension Reduction

Problem: Too many features -> need a lot more training examples

Solution: Feature space dimension reduction

A
M;

PC,

PC,

(a) Original feature space (b) Reduced feature space

Example: Best Thread Coarsening Factor

kernel void square (global float* in,
global floatx out) {
int gid = get_global_id(9);

out[gid] = in[gid] * in[gidl;

4

Feature Description

Feature Description

Basic Blocks

Divergent Instr.

(# instr. in Divergent regions)/(# total
instr.)

Instrs

Avg. ILP per basic block

integer instr.

Avg. MLP per basic block

stores

barriers

Branches
Instrs. in Divergent Regions
Divergent regions

Floating point instr.

(# integer instr.) / (# floating point instr.)
Math built-in func.

loads

loads that are independent of the
coarsening direction

Stage 2: Learning a Model

#inst.
for(++){ #load
- #branch
} cache miss rate
[T |
A

(a) Feature engineering

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J

-

Model

oo
=
=
T wn
s E
Y- (O =
o & Supervnlsed
; o 2 —> Machine
P o
Training 2 Learner
programs i §

-

Optimal options

(b) Learning a model

Features for new program

[s

New
program

Model —

Prediction

(c) Deployment

Models

Supervised vs. Unsupervised

e e e e L e b W e e 4 e e e w— e ww— ww— w— w— w— . w— . w— w—

Q0
=
=
T un
s €
%5 C
i g3
N Qo
a9 25
Training 3
©
programs 8

Optimal options

l

Supervised
Machine
Learner

Model

Supervised Learning: Classification

Goal: Separate different types of program by a decision boundary
Given a new unseen program, knows what to do

Best device to run

\ - GPU

Best coarsening factor

Supervised Learning: Regression

Goal: f(xl, 2)
Learn a function to predict

- Power consumption
- Latency ol T

- Exec. time

X, - coarsening factor

Unsupervised Learning: Auto-encoder

Learn best feature representation

Input Output
\\ S~ i //
\ s I - /
\ /.~ Embedding == TN /
kernel void s i \ / : / % / \ / b /
quare (global floatx in, / \ / N - \ / \
global float* out) { \ / \ \ / / \ /
int gid = get_global_id(@); \/ z / \ / \ / 4 ¢ \/
out[gid] = in[gid] * in[gid];) /< /< >\ >\ /(
3 7Y A I /AN [\ A
} I\ ;o\ /- <~ I\ / \\
// \ / \ 1 s / \ / \
N I (P ae A0
// it ~~ \\
N N 7 e N F.

Encoder Decoder

Stage 3: Deployment

#inst.
for(++) { #load
- #branch
} cache miss rate
|
A

(a) Feature engineering

QD \/
=
=
T wn
+ £
Y4— (O -

; 5 & Superv'lsed
o 2 — Machine Model

i a
Training 2 Learner
programs i §

O [

Optimal options

(b) Learning a model

Features for new program

[s

New
program

Model

—»

Prediction

(c) Deployment

Deployment

How to utilize the learned model:

1. Extract the features of the input program

2. Feed the extracted feature values to the learned model to make a
prediction

3. Apply the predicted results

Features for new program

3 - * Model —

New

program Prediction

Application
What hardware problems can machine learning solve?

> QOptimize sequential programs
- target a fixed set of compiler options

represent the optimization problem as a multi-class classification
problem - where each compiler option is a class.

> Optimize parallel programs
provide the potential for high performance and energy-efficient
computing

Optimize Sequential Programs - Example

Goal: Predict the optimal loop unroll factor
Approach:

. Decision tree based model

o Multi-class Classification

o Label: loop unroll factor [[0, 15], 16 classes in total

Optimize Parallel Programs - Example

Goal: Predict the scheduling policy

Approach:

. Regression based neural net
. SVM classifier

Challenges & Limitations

« Training cost

. Garbage in, garbage out

. Unable to invent new program
transformations

. Unable to prove the validity

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE |LJRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

