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Main Takeaways

. Machine Learning (ML) based compilation is a trustworthy and exciting
direction for compiler research.

. Datais fuel to ML based research.
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Why do we need ML?

. Compilers have two jobs - translation and optimization
- Compiler writers develop heuristics with the hope of improving
performance
- ML can serve as a predictor of the optima
. Machine-Learning Compilation

- Automation!

- Evidence-based science




OpenCL Kernel code snippet

1  kernel void square(global floatx in, global floatx out){
2 int gid = get_global_id (0);
3 out[gid] = in[gid] * in[gid];
4 1}
(a) Original OpenCL kernel
1 kernel void square(global floatx in, global floatx out){
2 int gid = get_global_id (0):
3 int tid0 = 2xgid + O;
4 int tidl = 2xgid + 1;
5 out[t1d0] = in|t1d0] * in[tidO ];
6 out[tidl] = in[tid1l] * in[tid1l ];
7 )

(b) Code transformation with a coarsening factor of 2




Example: Best Thread Coarsening Factor

Thread Coarsening Pros & Cons

Pros: Cons:
Increase instruction-level parallelism - Reduce the total amount of parallelism
Reduce # of memory-access operations - Increase the register pressure

Eliminate redundant computations



Architecture Overview
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Stage 1: Feature Engineering
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Static Code Features

Extracted from the intermediate representations

Description

Examples

Arithmetic instructions

Memory operations
Branch instructions

loop information
parallel information

#floating point instr., #integer instr.,
#method call instr.

#load 1nstr, #store 1nstr.
#conditional branch instr, #uncon-
ditional branch instr

#loops, loop depth

#work threads, work group size




Dynamic Features

Extracted from multiple layers of the runtime environment.

01010 /\/ >

profiling runs

Program binary

Application

dynamic program features (e.g. loop

® counts, hot code etc.)

Operating System

. OSinfo. (e.g. I/O contention, CPU
loads)

Hardware

. Performance counter values (e.g.
#instr., #L1 cache misses)




Reaction Based Features

Carefully selected compiler options.
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Feature Selection and Dimension Reduction

Problem: Too many features -> need a lot more training examples

Solution: Feature space dimension reduction
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(a) Original feature space (b) Reduced feature space



Example: Best Thread Coarsening Factor

kernel void square (global float* in,
global floatx out) {
int gid = get_global_id(9);

out[gid] = in[gid] * in[gidl;

4

Feature Description

Feature Description

# Basic Blocks

# Divergent Instr.

(# instr. in Divergent regions)/(# total
instr.)

# Instrs

Avg. ILP per basic block

# integer instr.

Avg. MLP per basic block

# stores

# barriers

# Branches
# Instrs. in Divergent Regions
# Divergent regions

# Floating point instr.

(# integer instr.) / (# floating point instr.)
# Math built-in func.

# loads

# loads that are independent of the
coarsening direction




Stage 2: Learning a Model
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Models

Supervised vs. Unsupervised
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Supervised Learning: Classification

Goal: Separate different types of program by a decision boundary
Given a new unseen program, knows what to do

Best device to run

\ - GPU

Best coarsening factor




Supervised Learning: Regression

Goal: f(xl, 2)
Learn a function to predict

- Power consumption
- Latency ol T

- Exec. time

X, - coarsening factor



Unsupervised Learning: Auto-encoder

Learn best feature representation
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Stage 3: Deployment
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Deployment

How to utilize the learned model:

1. Extract the features of the input program

2. Feed the extracted feature values to the learned model to make a
prediction

3. Apply the predicted results

Features for new program

3 - * Model —

New
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Application
What hardware problems can machine learning solve?

> QOptimize sequential programs
- target a fixed set of compiler options

represent the optimization problem as a multi-class classification
problem - where each compiler option is a class.

> Optimize parallel programs
provide the potential for high performance and energy-efficient
computing



Optimize Sequential Programs - Example

Goal: Predict the optimal loop unroll factor
Approach:

. Decision tree based model

o Multi-class Classification

o Label: loop unroll factor [ [0, 15], 16 classes in total




Optimize Parallel Programs - Example

Goal: Predict the scheduling policy

Approach:

. Regression based neural net
. SVM classifier




Challenges & Limitations

« Training cost

. Garbage in, garbage out

. Unable to invent new program
transformations

. Unable to prove the validity

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE |LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.




