
Machine Learning in
Compiler Optimization

Authors: Zheng Wang and Michael O’Boyle

Qi Zhang, Shengpu Tang, Yanqi Wang, Yiting Shen

Main Takeaways
● Machine Learning (ML) based compilation is a trustworthy and exciting

direction for compiler research.

● Data is fuel to ML based research.

Why do we need ML?
● Compilers have two jobs - translation and optimization

○ Compiler writers develop heuristics with the hope of improving

performance

○ ML can serve as a predictor of the optima

● Machine-Learning Compilation

○ Automation!

○ Evidence-based science

OpenCL Kernel code snippet

Example: Best Thread Coarsening Factor
Thread Coarsening Pros & Cons

Pros:
- Increase instruction-level parallelism

- Reduce # of memory-access operations

- Eliminate redundant computations

Cons:
- Reduce the total amount of parallelism

- Increase the register pressure

Architecture Overview

Stage 1: Feature Engineering

Static Code Features
Extracted from the intermediate representations

Dynamic Features
Extracted from multiple layers of the runtime environment.

Reaction Based Features
Carefully selected compiler options.

Feature Selection and Dimension Reduction
Problem: Too many features -> need a lot more training examples

Solution: Feature space dimension reduction

Example: Best Thread Coarsening Factor

Stage 2: Learning a Model

Models
Supervised vs. Unsupervised

Possible supervised setup

Supervised Learning: Classification
Goal: Separate different types of program by a decision boundary
Given a new unseen program, knows what to do

1

2

4

Supervised Learning: Regression

Goal:
Learn a function to predict
- Power consumption
- Latency
- Exec. time

Unsupervised Learning: Auto-encoder
Learn best feature representation

Embedding

Stage 3: Deployment

Deployment
How to utilize the learned model:

1. Extract the features of the input program

2. Feed the extracted feature values to the learned model to make a

prediction

3. Apply the predicted results

Application
What hardware problems can machine learning solve?

➢ Optimize sequential programs
- target a fixed set of compiler options
- represent the optimization problem as a multi-class classification

problem – where each compiler option is a class.

➢ Optimize parallel programs
- provide the potential for high performance and energy-efficient

computing

Goal: Predict the optimal loop unroll factor

Approach:

● Decision tree based model
○ Multi-class Classification

○ Label: loop unroll factor 𝑙 ∈ [0, 15], 16 classes in total

Optimize Sequential Programs - Example

Goal: Predict the scheduling policy

Approach:

● Regression based neural net

● SVM classifier

Optimize Parallel Programs - Example

Challenges & Limitations
● Training cost

● Garbage in, garbage out

● Unable to invent new program

transformations

● Unable to prove the validity

