Optimizing Array Bound
Checks Using Flow Analysis

Rajiv Gupta

Presented by Lauren Biernacki, Colton Holoday, Yirui Liu, Andrew McCrabb

Bounds Checking

Python C++

array [0, 1, 2] <iostream>
i (5) : std;
(arrayl[i]),
int array [] {0, 1, 2}%};
int main () {
(int 1=0; i<10; i++)

01 2 cout array[i] -
Traceback (most recent call last): 0:
File "main.py", line 3, in <module> }

print (arrayli]),
IndexError: list index out of range

01200000 852851984 32534

...Program finished with exit code 0

Stack Buffer Overflow Vulnerability

C++

void target () {

printf ("You overflowed successfully, gg"):;
exit (0);

}

void vulnerable (char* strl) {

char buf (5] 0x£0010100
strcpy (buf, strl);
} AAAAAAA. ..
int main () {
vulnerable ("AAAAAAAAAAAANXTO\x01\x01\x00") ; AARAA. ..
printf ("This only prints in normal control
flow") ;

}

Address Sanitizer (ASan)

e An open source tool created by Google, included in

LLVM
e Used to identify memory errors, including buffer
overflows S LLED
Address

Instruments code to:

redzonel
o Create poisoned redzones around stack objects A
u
o Check shadow memory before each memory access

redzone?2

Address Sanitizer (ASan)

“‘AddressSanitizer achieves efficiency without sacrificing comprehensiveness.”

73% slowdown, 337% increased memory usage

Compile Time Optimizations for ASan

e Using dataflow techniques, such as the work done by Gupta, it should be
possible to optimize ASan’s checks

e This could be applied to other memory safety protections, or simply bounds
checking in general

Fully redundant checks Hoisting bounds checks

Optimizing Array Bounds Checks

Local elimination
2. Global elimination
a. Elimination algorithm
b. Further optimization
3. How to deal with loops

4. Evaluation

Local Elimination

-- MIN(a) < i+1 < MAX(a) -- MIN(a) <1i,i+1 £ MAX(a)
«ali+1] temp «— ali+1]

-- MIN(a) < i+1 < MAX(a) ali+1] « a[i)

-- MIN(a) <1< MAX(a) afi] « temp

afFI] < a[j

-- MIN(a) £ i < MAX(a)

a[i] « temp

Before Optimization After Optimization

Fig. 1. Local elimination of bound checks.

Global Elimination

then /\ else

10 <= i <= 50 20 <= i <= 100

— =

5 <=1i <= 200

Global Elimination

then /\ else

10 <= i <= 50 20 <= i <= 100

— =

5 <=3 <=200

Both checks subsume the
last one

Global Elimination

By propagating bounds checks through the CFG we can determine
which checks are redundant and eliminate them

Formulating a Dataflow Analysis

Available Checks ~ “A bound check C is available at a program point p if it is
guaranteed that, along each path leading to point p, either
C is performed or a check that subsumes C is performed.”

Key Characteristics

All Paths Forward /\ instead of ﬂ

Eliminating Redundant Checks

N = — w

10 <= i <= 50 20 <= i <= 100
ouT =
OUT = < (7\/ 20<=i /\ i<=100
10<=i /\ i<=50 IN=10<=i/\ i<=50
/A\20<=i /\ i<=100

5 <=3 <= 200

Eliminating Redundant Checks

100
ouT =
20<=i /\ i<=100

==20<=i /\ i<=50 -

OUT = - =
10<=i /\ i<=50 IN=10<=i /\ i<=50
/A\20<=i /\ i<=100

5 <=3 <= 200

Let’s Formalize the Analysis

How Kkill is handled

C_OUT[B] = C_GENI B] V|forward(C_IN| B, B),

C_IN[B] = A\ C_OUTI[P], where B is not the initial block,
P < Pred(B)

C_IN[B] = ¢, where B is the initial block.

forward(C_IN[B],B) {

Handling KILL Set o ach chck C C_INIB) do

case C of
b <v:
case AFFECT(B ,v) of
unchanged: S=S 1y {ib <v}
increment: S=S {/b <v}

20 <= i <= 100 decrement: /* the check is killed */
T = multiply: S=S {Ib <v}
i=1i+1 div>1: /* the check is killed */

div<1: S=S b <v)
changed: /* the check is killed */
end case
v<ub:
case AFFECT(B ,v) of
unchanged: S=S) (v <ub}
increment: /* the check is killed */
decrement: S=S) {v <ub}
multiply: /* the check is killed */
div>1: S=Sy{v<ub}
i i ; div<l: /* the check is killed */
e Monotonic operations can retain checks through chmgod: /% tho check s killed */

kl“ fllter end case

| >
ouT =
20 <=i /\ +<=100

Optimizing Array Bounds Checks

Local elimination

2. Global elimination
a. Elimination algorithm
b. Further optimization

3. How to deal with loops

4. Evaluation

Eliminating Redundant Checks

--5<i<200 -10Li<100 -~ 10<i< 100
if () then if () then
(10=7<50 @si—sés —> <50
else else else
--20 <i (100 --20< i Q69 > . 20<i
fi fi fi
Before Optimization After Modification After Elimination

Formulating a Dataflow Analysis

Very-busy Checks ~ “A bound check C is very busy at a program point p if it is
guaranteed that, along each path starting at point p, either
C is performed or a check that subsumes C is performed.”

Key Characteristics

All Paths Backward /\ instead of ﬂ

Let’s Formalize the Analysis
here...

Compute the set of very-busy checks at all points in the prograss

C_IN[B] = C_GEN[B]V

backward(C_OUT| B], B),

C_OUTI[B] = A\ C_IN[S], where B is not the terminating block,

SeSuce(B)

C_OUT[B] = &, where B is the terminating block;

S;ANSg A NS,

A

={C:V¥S,,1<i<n,(Ce8;v3IAC' €8, AC'subsumes C)},
S, VS8,V Vv§S,
={C:(3S,,1<i<n,CeS) AN(AC'€S,,1<i<n,C' subsumes C)}.

Let’s Formalize the Analysis
here...

C_IN[B] = C_GEN|[B] V|backward(C_OUT| B], B),

C_OUTI[B] = A\ C_IN[S], where B is not th-
SeSuce(B)

C_OUT[B] = &, where B is the terminating block;
S;ANSg A NS,

={C:V¥S,,1<i<n,(Ce8;v3IAC' €8, AC'sub

S, VS8,V Vv§S,

={C:(3S,,1<i<n,CeSH)A(AC' eS,,1<ix<n,

ouT =
20<=i /\i<=100

Modifying Checks

If a check C’ is very busy at the point immediately following the check C, and C’
subsumes C, then C can be replaced by C'.

--5<i<200 --10<z<100 ~10<i< 100
if () then if () then
{10<7<50 : —> <50
else else
--20<i<(00) <i > 20<i
oo]] N

Before Optimization After Modification After Elimination

Optimizing Array Bounds Checks

Local elimination

2. Global elimination
a. Elimination algorithm
b. Further optimization

3. How to deal with loops

4. Evaluation

Propagating the Checks out of the Loops

Example:

repeat

if ()

else

fi
until ()

then

- 10<i<100
- 1<j<10

-1<j<10
-5<i<100

~-5<i<50
—-1<j<10

Before Optimization

repeat
if () then
- 10<i

else
--1<50

fi
until ()

After Propagation

Fig. 7. Propagation of bound checks.

Propagating the Checks out of the Loops

Goal:
e Reduce the number of times the checks are executed

Algorithm:
e Identify the candidates (e.g. loop invariants) for propagation
o Use-def Chain
o Dominator Sets

e Check hoisting

e Propagate the checks out of the loop

Propagating the Checks out of the Loops

Another Example:

for i < min to max do -- MIN(a) < min, max < MAX(a)
if (inc) then -- MIN(a) <i< MAXdaj/ i < min to max do
sum ¢« sum + afi] if (inc) then
else -- MIN(a) <1< MAX({ sum <« sum + a[i]
sum <« sum - a[i] else sum « sum - a[i}
fi fi
od od
Before Propagation After Propagation

Fig. 10. Propagation out of loops with known bounds for subscript variables.

Optimizing Array Bounds Checks

Local elimination

2. Global elimination
a. Elimination algorithm
b. Further optimization

3. How to deal with loops

4. Evaluation

Experimental Evaluation

>80% of Bounds Checks Eliminated on Average

Effect of Bounds Check Optimization

UNOPT L-elim G-elim Prop Total Deleted % Deleted

Bubble 59,400 39,600 9,900 9,900 59,400 100%
Quick 271,184 72,784 10,014 54,347 137,145 51%
Queen 13,784 2,288 1,748 1,778 5,814 42%
Towers 556,262 261,944 97,844 0 359,788 65%
Lloop6 20,160 8,064 0 12,096 20,160 100%
FFT 37,414 24,568 0 5,930 30,498 82%
MatMul 1,043,200 640,000 256,000 147,200 1,043,200 100%
Perm 80,624 10,078 0 7,240 17,318 21%

Implications of This Work

1993
e Compilers came with “array bound check” flag

e Too much performance and memory overhead

e Gupta publishes this paper

Today
e Address Sanitizer used to provide comprehensive memory checks

e Still comes with high overheads

e \We can apply these three optimizations from Gupta to reduce overheads

Conclusion

Comprehensive Bounds Checking
e Useful for Testing & Debugging

o 73% slowdown; 337% memory overhead

Pre-process bounds checks to eliminate many runtime checks
e Local & Global Elimination; Loop Propagation

e >80% Runtime bounds checks eliminated

Questions

“Optimizing Array Bound Checks Using Flow Analysis”

Backup Slides

Address Sanitizer (ASan)

e An open source tool created by Google, included in LLVM

e Used to identify memory errors, including buffer overflows

e Consists of two parts:

o Code Instrumentation — Creates poisoned redzones around stack and global
objects, instruments code to check shadow memory before each memory access

o Run-time Library — Augments malloc () and free () to apply the above
protections to the heap

Address Sanitizer (ASan)

Before: After:

void foo () { void foo () {
char a[32]; char redzonel[32];
N char a[32];
*address = ...; char redzone3[32];
int *shadow = MemToShadow (redzonel) ;
return;
} shadow [0] Oxffffffff;
shadow [1] 0x00000000;
shadow [2] Oxffffffff;
(IsPoisoned (address)) {

ReportError (address) ;

}

*address 5008

Address Sanitizer (ASan)

“‘AddressSanitizer achieves efficiency without sacrificing comprehensiveness.”

73% slowdown, 337% increased memory usage

Main Insights

Elimination:
e Eliminate redundant checks at compile time
e Analogous to constant folding and common subexpression elimination

Propagation:
e Propagate bound checks out of loops to reduce the number of run-time
checks

e Analogous to loop invariant code motion optimization

Algorithm for Eliminating Redundant Checks

- 5<i<200
if () then
—~10<i<50

else
--20<i<100

fi
Before Optimization

- 10<i<100

if () then 4

else

fi

-~ 10<i< 100

-10<§<50

Y
-20<i<100

After Modification

if () then
—-i<50

else
-20<1i

fi
After Elimination

Fig. 3. Global elimination by modification of bound checks.

