
Optimizing Array Bound 
Checks Using Flow Analysis

Rajiv Gupta
_____________________________________________________________________

Presented by Lauren Biernacki, Colton Holoday, Yirui Liu, Andrew McCrabb



0 1 2 0 0                                                      

                                                                                          

...Program finished with exit code 0                                                      

C++Python

Bounds Checking

2

1 array = [0, 1, 2]
2 for i in range(5):
3 print (array[i]),
4

0 1 2
Traceback (most recent call last):
  File "main.py", line 3, in <module>
    print (array[i]),
IndexError: list index out of range

1 #include <iostream>
2 using namespace std;
3
4 int array [] = {0, 1, 2};
5 int main(){
6 for (int i=0; i<5; i++)
7 cout << array[i] << “ ”;
8 return 0;
9 }

0 1 2 0 0 0 0 0 1231727888 32719                                                          

                                                                                          

...Program finished with exit code 0                                                      

0 1 2 0 0 0 0 0 -759767792 32755

                                                                                          

...Program finished with exit code 0                                                      

0 1 2 0 0 0 0 0 852851984 32534

                                                                                          

...Program finished with exit code 0                                                      

1 #include <iostream>
2 using namespace std;
3
4 int array [] = {0, 1, 2};
5 int main(){
6 for (int i=0; i<10; i++)
7 cout << array[i] << “ ”;
8 return 0;
9 }



Stack Buffer Overflow Vulnerability

3

1 void target() {
2   printf("You overflowed successfully, gg");
3   exit(0);
4 }
5
6 void vulnerable(char* str1) {
7   char buf[5];
8   strcpy(buf, str1);
9 }
10
11 int main() {
12   vulnerable(“AAAAAAAAAAAA\xf0\x01\x01\x00");
13   printf("This only prints in normal control  
14   flow");
15 }

buf[]

AAAAAAA...

Return 
Address

.

.

.

.

.

.

AAAAA...

0xf0010100

C++



Address Sanitizer (ASan) 

● An open source tool created by Google, included in 
LLVM

● Used to identify memory errors, including buffer 
overflows

Instruments code to:

○ Create poisoned redzones around stack objects

○ Check shadow memory before each memory access

44

.

.

.

.

.

.

buf[]

Return 
Address

.

.

.

.

.

.

buf[]

redzone2

Return 
Address

redzone1



Address Sanitizer (ASan) 

● An open source tool created by Google, included in 
LLVM

● Used to identify memory errors, including buffer 
overflows

Instruments code to:

○ Create poisoned redzones around stack objects

○ Check shadow memory before each memory access

55

.

.

.

.

.

.

buf[]

Return 
Address

.

.

.

.

.

.

buf[]

redzone2

Return 
Address

redzone1

“AddressSanitizer achieves efficiency without sacrificing comprehensiveness.” 

73% slowdown, 337% increased memory usage



Compile Time Optimizations for ASan 
● Using dataflow techniques, such as the work done by Gupta, it should be 

possible to optimize ASan’s checks

● This could be applied to other memory safety protections, or simply bounds 
checking in general 

66

1 if (f) {
2   a[i] = ...;
3 } 
4 else {  
5   a[i] = ...;
6 }
7 a[i] = ...; //Redundant

1 //Enough to check a[i] here
2 if (f) {
3   a[i] = ...;
4 } 
5 else {  
6   a[i] = ...;
7 }

Fully redundant checks Hoisting bounds checks



Optimizing Array Bounds Checks

1. Local elimination
2. Global elimination

a. Elimination algorithm

b. Further optimization

3. How to deal with loops
4. Evaluation

77



Local Elimination

88



Global Elimination

99

10 <= i <= 50
...

20 <= i <= 100
...

5 <= i <= 200
...

...

then else



Global Elimination

1010

10 <= i <= 50
...

20 <= i <= 100
...

5 <= i <= 200
...

...

Both checks subsume the 
last one

then else



Both checks subsume the 
last one

Global Elimination

1111

10 <= i <= 50
...

20 <= i <= 100
...

5 <= i <= 200
...

...

By propagating bounds checks through the CFG we can determine 
which checks are redundant and eliminate them



Formulating a Dataflow Analysis

1212

“A bound check C is available at a program point p if it is 
guaranteed that, along each path leading to point p, either 
C is performed or a check that subsumes C is performed.”

Available Checks ~

Key Characteristics

All Paths Forward instead of 



Eliminating Redundant Checks

1313

10 <= i <= 50
...

20 <= i <= 100
...

5 <= i <= 200
...

...

IN = IN = 

OUT = 
10 <= i        i <= 50 IN = 10 <= i        i <= 50

        20 <= i        i <= 100

OUT = 
20 <= i        i <= 100



Eliminating Redundant Checks

1414

10 <= i <= 50
...

20 <= i <= 100
...

5 <= i <= 200
...

...

IN = IN = 

OUT = 
10 <= i        i <= 50 IN = 10 <= i        i <= 50

        20 <= i        i <= 100

OUT = 
20 <= i        i <= 100

== 20 <= i        i <= 50



Let’s Formalize the Analysis

1515

How kill is handled



1616

.

.

.

20 <= i <= 100
i = i + 1
...

OUT = 
20 <= i        i <= 100

● Monotonic operations can retain checks through 
kill filter

Handling KILL Set



Optimizing Array Bounds Checks

1. Local elimination
2. Global elimination

a. Elimination algorithm

b. Further optimization

3. How to deal with loops
4. Evaluation

1717



Eliminating Redundant Checks



Formulating a Dataflow Analysis

1919

“A bound check C is very busy at a program point p if it is 
guaranteed that, along each path starting at point p, either 
C is performed or a check that subsumes C is performed.”

Very-busy Checks ~

Key Characteristics

All Paths Backward instead of 



Let’s Formalize the Analysis
Compute the set of very-busy checks at all points in the program

2020

Different to available checks 
here...



Let’s Formalize the Analysis
Compute the set of very-busy checks at all points in the program

2121

Different to available checks 
here...

i = i - 1
...

IN = 
20 <= i        i <= 100

OUT = 
20 <= i       i <=100



Modifying Checks
If a check C’ is very busy at the point immediately following the check C, and C’ 
subsumes C, then C can be replaced by C’.

2222



Optimizing Array Bounds Checks

1. Local elimination
2. Global elimination

a. Elimination algorithm

b. Further optimization

3. How to deal with loops
4. Evaluation

2323



Example:

Propagating the Checks out of the Loops

2424



Propagating the Checks out of the Loops
Goal:
● Reduce the number of times the checks are executed

Algorithm:
● Identify the candidates (e.g. loop invariants) for propagation

○ Use-def Chain
○ Dominator Sets

● Check hoisting

● Propagate the checks out of the loop

2525



Propagating the Checks out of the Loops
Another Example:

2626



Optimizing Array Bounds Checks

1. Local elimination
2. Global elimination

a. Elimination algorithm

b. Further optimization

3. How to deal with loops

4. Evaluation

2727



Experimental Evaluation
>80% of Bounds Checks Eliminated on Average

2828

Effect of Bounds Check Optimization
UNOPT L-elim G-elim Prop Total Deleted % Deleted

Bubble 59,400 39,600 9,900 9,900 59,400 100%
Quick 271,184 72,784 10,014 54,347 137,145 51%
Queen 13,784 2,288 1,748 1,778 5,814 42%
Towers 556,262 261,944 97,844 0 359,788 65%
Lloop6 20,160 8,064 0 12,096 20,160 100%

FFT 37,414 24,568 0 5,930 30,498 82%
MatMul 1,043,200 640,000 256,000 147,200 1,043,200 100%
Perm 80,624 10,078 0 7,240 17,318 21%



Implications of This Work
1993
● Compilers came with “array bound check” flag

● Too much performance and memory overhead

● Gupta publishes this paper

Today
● Address Sanitizer used to provide comprehensive memory checks

● Still comes with high overheads

● We can apply these three optimizations from Gupta to reduce overheads

2929



Conclusion
Comprehensive Bounds Checking
● Useful for Testing & Debugging

● 73% slowdown; 337% memory overhead

Pre-process bounds checks to eliminate many runtime checks
● Local & Global Elimination; Loop Propagation

● >80% Runtime bounds checks eliminated

3030



Questions

“Optimizing Array Bound Checks Using Flow Analysis”

3131



Backup Slides

3232



Address Sanitizer (ASan) 

● An open source tool created by Google, included in LLVM

● Used to identify memory errors, including buffer overflows

● Consists of two parts:

○ Code Instrumentation — Creates poisoned redzones around stack and global 
objects, instruments code to check shadow memory before each memory access

○ Run-time Library — Augments malloc() and free() to apply the above 
protections to the heap

3333



Before: After:

Address Sanitizer (ASan) 

3434

1 void foo() {
2   char a[32];
3   ... 
4   *address = ...;
5   ...
6   return;
7 }
8
9
10
11
12
13
14
15
16

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32];  
5   ... 
6   *address = ...;
7   ... 
8   return;
9 }
10
11
12
13
14
15
16

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32]; 
5   int  *shadow = MemToShadow(redzone1);
6   // poison redzones
7   shadow[0] = 0xffffffff;    
8   shadow[1] = 0x00000000;    
9   shadow[2] = 0xffffffff;  
10   ... 
11   *address = ...;
12   ... 
13   // unpoison all
14   shadow[0] = shadow[1] = shadow[2] = 0;
15   return;
16 }

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32]; 
5   int  *shadow = MemToShadow(redzone1);
6   // poison redzones
7   shadow[0] = 0xffffffff;    
8   shadow[1] = 0x00000000;    
9   shadow[2] = 0xffffffff;  
10   ... 
11   if (IsPoisoned(address)) {
12     ReportError(address);
13   }
14   *address = ...;
15   ... 
16   // unpoison all



Before: After:

Address Sanitizer (ASan) 

3535

1 void foo() {
2   char a[32];
3   ... 
4   *address = ...;
5   ...
6   return;
7 }
8
9
10
11
12
13
14
15
16

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32];  
5   ... 
6   *address = ...;
7   ... 
8   return;
9 }
10
11
12
13
14
15
16

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32]; 
5   int  *shadow = MemToShadow(redzone1);
6   // poison redzones
7   shadow[0] = 0xffffffff;    
8   shadow[1] = 0x00000000;    
9   shadow[2] = 0xffffffff;  
10   ... 
11   *address = ...;
12   ... 
13   // unpoison all
14   shadow[0] = shadow[1] = shadow[2] = 0;
15   return;
16 }

1 void foo() {
2   char redzone1[32]; 
3   char a[32];          
4   char redzone3[32]; 
5   int  *shadow = MemToShadow(redzone1);
6   // poison redzones
7   shadow[0] = 0xffffffff;    
8   shadow[1] = 0x00000000;    
9   shadow[2] = 0xffffffff;  
10   ... 
11   if (IsPoisoned(address)) {
12     ReportError(address);
13   }
14   *address = ...;
15   ... 
16   // unpoison all

“AddressSanitizer achieves efficiency without sacrificing comprehensiveness.” 

73% slowdown, 337% increased memory usage



Main Insights
Elimination:
● Eliminate redundant checks at compile time
● Analogous to constant folding and common subexpression elimination

Propagation:
● Propagate bound checks out of loops to reduce the number of run-time 

checks
● Analogous to loop invariant code motion optimization

3636



Algorithm for Eliminating Redundant Checks

3737


