
EECS 583 – Class 9

Classic and ILP Optimization

University of Michigan

October 3, 2018

- 1 -

Announcements & Reading Material

 Hopefully everyone is making some progress on HW 2

 Today’s class

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” S. Mahlke, W. Chen, J. Gyllenhaal, W.

Hwu, P, Chang, and T. Kiyohara, Proceedings of

Supercomputing '92, Nov. 1992, pp. 808-817

 Next class (code generation)

» “Machine Description Driven Compilers for EPIC Processors”,

B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-

98-40, 1998. (long paper but informative)

- 2 -

Forward Copy Propagation

 Forward propagation of the RHS

of moves

» r1 = r2

» …

» r4 = r1 + 1 r4 = r2 + 1

 Benefits

» Reduce chain of dependences

» Eliminate the move

 Rules (ops X and Y)

» X is a move

» src1(X) is a register

» Y consumes dest(X)

» X.dest is an available def at Y

» X.src1 is an available expr at Y

1. r1 = r2

2. r3 = r4

3. r2 = 0 4. r6 = r3 + 1

5. r5 = r2 + r3

BB1

BB2 BB3

BB4

- 3 -

CSE – Common Subexpression Elimination

 Eliminate recomputation of an

expression by reusing the previous

result

» r1 = r2 * r3

» r100 = r1

» …

» r4 = r2 * r3 r4 = r100

 Benefits

» Reduce work

» Moves can get copy propagated

 Rules (ops X and Y)

» X and Y have the same opcode

» src(X) = src(Y), for all srcs

» expr(X) is available at Y

» if X is a load, then there is no store

that may write to address(X) along

any path between X and Y

1. r1 = r2 * r6

2. r3 = r4 / r7

3. r2 = r2 + 1 4. r6 = r3 * 7

5. r5 = r2 * r6

6. r8 = r4 / r7

7. r9 = r3 * 7

if op is a load, call it redundant

load elimination rather than CSE

BB1

BB2 BB3

BB4

- 4 -

Class Problem 1

Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

1. r4 = r1

2. r6 = r15

3. r2 = r3 * r4

4. r8 = r2 + r5

5. r9 = r3

6. r7 = load(r2)

7. if (r2 > r8)

8. r5 = r9 * r4

9. r11 = r2

10. r12 = load(r11)

11. if (r12 != 0)

12. r3 = load(r2)

13. r10 = r3 / r6

14. r11 = r8

15. store (r11, r7)

16. store (r12, r3)

BB1

BB2 BB3

BB4

- 5 -

Loop Invariant Code Motion (LICM)

 Move operations whose source
operands do not change within
the loop to the loop preheader

» Execute them only 1x per
invocation of the loop

» Be careful with memory
operations!

» Be careful with ops not
executed every iteration

1. r1 = 3

2. r5 = &A

3. r4 = load(r5)

4. r7 = r4 * 3

5. r8 = r2 + 1

6. r7 = r8 * r4
7. r3 = r2 + 1

8. r1 = r1 + r7

9. store (r1, r3)

BB1

BB2

BB3 BB4

BB5

BB6

- 6 -

LICM (2)

 Rules

» X can be moved

» src(X) not modified in loop body

» X is the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set

» for all exit BB, if dest(X) is live on the
exit edge, X is in the available defs set on
the edge

» if X not executed on every iteration, then
X must provably not cause exceptions

» if X is a load or store, then there are no
writes to address(X) in loop

1. r1 = 3

2. r5 = &A

3. r4 = load(r5)

4. r7 = r4 * 3

5. r8 = r2 + 1

6. r7 = r8 * r4
7. r3 = r2 + 1

8. r1 = r1 + r7

9. store (r1, r3)

BB1

BB2

BB3 BB4

BB5

BB6

- 7 -

Global Variable Migration

 Assign a global variable

temporarily to a register for the

duration of the loop

» Load in preheader

» Store at exit points

 Rules

» X is a load or store

» address(X) not modified in the

loop

» if X not executed on every

iteration, then X must provably

not cause an exception

» All memory ops in loop whose

address can equal address(X)

must always have the same

address as X

1. r4 = load(r5)

2. r4 = r4 + 1

3. r8 = load(r5)

4. r7 = r8 * r4
5. store(r5, r4)

6. store(r5,r7)

BB1

BB2

BB3 BB4

BB5

BB6

- 8 -

Induction Variable Strength Reduction

 Create basic induction

variables from derived

induction variables

 Induction variable

» BIV (i++)

 0,1,2,3,4,...

» DIV (j = i * 4)

 0, 4, 8, 12, 16, ...

» DIV can be converted into a

BIV that is incremented by 4

 Issues

» Initial and increment vals

» Where to place increments

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 9 -

Induction Variable Strength Reduction (2)

 Rules

» X is a *, <<, + or – operation

» src1(X) is a basic ind var

» src2(X) is invariant

» No other ops modify dest(X)

» dest(X) != src(X) for all srcs

» dest(X) is a register

 Transformation

» Insert the following into the preheader

 new_reg = RHS(X)

» If opcode(X) is not add/sub, insert to the
bottom of the preheader

 new_inc = inc(src1(X)) opcode(X) src2(X)

» else

 new_inc = inc(src1(X))

» Insert the following at each update of
src1(X)

 new_reg += new_inc

» Change X dest(X) = new_reg

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 10 -

Class Problem 2

Optimize this applying

induction var str reduction

3. r5 = r5 + 1

4. r11 = r5 * 2

5. r10 = r11 + 2

6. r12 = load (r10+0)

7. r9 = r1 << 1

8. r4 = r9 - 10

9. r3 = load(r4+4)

10. r3 = r3 + 1

11. store(r4+0, r3)

12. r7 = r3 << 2

13. r6 = load(r7+0)

14. r13 = r2 - 1

15. r1 = r1 + 1

16. r2 = r2 + 1

1. r1 = 0

2. r2 = 0

r13, r12, r6, r10

liveout

BB1

BB2

BB3

- 11 -

ILP Optimization

 Traditional optimizations

» Redundancy elimination

» Reducing operation count

 ILP (instruction-level parallelism) optimizations

» Increase the amount of parallelism and the ability to overlap

operations

» Operation count is secondary, often trade parallelism for extra

instructions (avoid code explosion)

 ILP increased by breaking dependences

» True or flow = read after write dependence

» False or (anti/output) = write after read, write after write

- 12 -

Back Substitution

 Generation of expressions by
compiler frontends is very
sequential

» Account for operator
precedence

» Apply left-to-right within
same precedence

 Back substitution

» Create larger expressions

 Iteratively substitute RHS
expression for LHS variable

» Note – may correspond to
multiple source statements

» Enable subsequent optis

 Optimization

» Re-compute expression in a
more favorable manner

1. r9 = r1 + r2

2. r10 = r9 + r3

3. r11 = r10 - r4

4. r12 = r11 + r5

5. r13 = r12 – r6

Subs r12:

 r13 = r11 + r5 – r6

Subs r11:

 r13 = r10 – r4 + r5 – r6

Subs r10

 r13 = r9 + r3 – r4 + r5 – r6

Subs r9

 r13 = r1 + r2 + r3 – r4 + r5 – r6

y = a + b + c – d + e – f;

- 13 -

Tree Height Reduction

 Re-compute expression as a

balanced binary tree

» Obey precedence rules

» Essentially re-parenthesize

» Combine literals if possible

 Effects

» Height reduced (n terms)

 n-1 (assuming unit latency)

 ceil(log2(n))

» Number of operations remains

constant

» Cost

 Temporary registers “live”

longer

» Watch out for

 Always ok for integer arithmetic

 Floating-point – may not be!!

r9 = r1 + r2

r10 = r9 + r3

r11 = r10 - r4

r12 = r11 + r5

r13 = r12 – r6

r13 = r1 + r2 + r3 – r4 + r5 – r6

r1 + r2 r3 – r4 r5 – r6

+

+

t1 = r1 + r2

t2 = r3 – r4

t3 = r5 – r6

t4 = t1 + t2

r13 = t4 + t3

r13

after back subs:

original:

final code:

- 14 -

Class Problem 3

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

1. r10 = r1 * r2

2. r11 = r10 + r3

3. r12 = r11 + r4

4. r13 = r12 – r5

5. r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

 Account for latency and arrival times

- 15 -

Optimizing Unrolled Loops

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

Not possible!

loop:

unroll 3 times

- 16 -

Register Renaming on Unrolled Loop

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 17 -

Register Renaming is Not Enough!

 Still not much overlap possible

 Problems

» r2, r4, r6 sequentialize the

iterations

» Need to rename these

 2 specialized renaming optis

» Accumulator variable

expansion (r6)

» Induction variable expansion

(r2, r4)

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 18 -

Accumulator Variable Expansion

 Accumulator variable

» x = x + y or x = x – y

» where y is loop variant!!

 Create n-1 temporary

accumulators

 Each iteration targets a

different accumulator

 Sum up the accumulator

variables at the end

 May not be safe for floating-

point values

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r16 = r16 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 19 -

Induction Variable Expansion

 Induction variable

» x = x + y or x = x – y

» where y is loop invariant!!

 Create n-1 additional induction

variables

 Each iteration uses and

modifies a different induction

variable

 Initialize induction variables to

init, init+step, init+2*step, etc.

 Step increased to n*original

step

 Now iterations are completely

independent !!

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 12

r4 = r4 + 12

r11 = load(r12)

r13 = load(r14)

r15 = r11 * r13

r16 = r16 + r15

r12 = r12 + 12

r14 = r14 + 12

r21 = load(r22)

r23 = load(r24)

r25 = r21 * r23

r26 = r26 + r25

r22 = r22 + 12

r24 = r24 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

r12 = r2 + 4, r22 = r2 + 8

r14 = r4 + 4, r24 = r4 + 8

- 20 -

Better Induction Variable Expansion

 With base+displacement

addressing, often don’t need

additional induction variables

» Just change offsets in each

iterations to reflect step

» Change final increments to n

* original step

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r11 = load(r2+4)

r13 = load(r4+4)

r15 = r11 * r13

r16 = r16 + r15

r21 = load(r2+8)

r23 = load(r4+8)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 12

r4 = r4 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 21 -

Homework Problem

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

- 22 -

Class Problem 1 Solution
Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

r4 = r1

r6 = r15

r2 = r3 * r4

r8 = r2 + r5

r9 = r3

r7 = load(r2)

if (r2 > r8)

r5 = r9 * r4

r11 = r2

r12 = load(r11)

if (r12 != 0)

r3 = load(r2)

r10 = r3 / r6

r11 = r8

store (r11, r7)

store (r12, r3)

r2 = r3 * r1

r8 = r2 + r5

r7 = load(r2)

if (r2 > r8)

if (r7 != 0)

r3 = r7

store (r8, r7)

store (r12, r3)

- 23 -

Class Problem 2 Solution

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

r5 = r5 + 1

r111 = r111 + 2

r11 = r111

r10 = r11 + 2

r12 = load (r10+0)

r9 = r109

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r113

r1 = r1 + 1

r109 = r109 + 2

r2 = r2 + 1

r113 = r113 + 1

r1 = 0

r2 = 0

r111 = r5 * 2

r109 = r1 << 1

r113 = r2 -1

r13, r12, r6, r10

liveout

Note, after copy

propagation, r10

and r4 can be

strength reduced

as well.

