
EECS 583 – Class 5

Dataflow Analysis

University of Michigan

September 19, 2018

- 1 -

Reading Material + Announcements

 Reminder – HW 1 due next Monday at midnight

» Submit uniquename_hw1.tgz file to:

 eecs583a.eecs.umich.edu:/hw1_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit

 Then, post question or talk to Ze if you are stuck

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

- 2 -

Class Problem From Last Time - Answer

if (a > 0) {

 r = t + s

 if (b > 0 || c > 0)

 u = v + 1

 else if (d > 0)

 x = y + 1

 else

 z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

BB2

BB3

BB1

BB5

BB6 BB7

BB4

BB8

a <= 0 a > 0

b > 0

b <= 0

c <= 0
c > 0

d > 0 d <= 0

BB CD

1 -

2 1

3 -2

4 -3

5 2,3

6 -4

7 4

8 -

p3 = 0

p1 = CMPP.UN (a > 0) if T

r = t + s if p1

p2,p3 = CMPP.UC.ON (b > 0) if p1

p4,p3 = CMPP.UC.ON (c > 0) if p2

u = v + 1 if p3

p5,p6 = CMPP.UC.UN (d > 0) if p4

x = y + 1 if p6

z = z + 1 if p5

- 3 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 4 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 5 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 6 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in reverse sequential order in X, op, do

 for each destination operand of op, dest, do

 GEN(X) -= dest

 KILL(X) += dest

 endfor

 for each source operand of op, src, do

 GEN(X) += src

 KILL(X) -= src

 endfor

 endfor

endfor

- 7 -

Example – GEN/KILL Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 8 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_IN = IN(X)

 OUT(X) = Union(IN(Y)) for all successors Y of X

 IN(X) = GEN(X) + (OUT(X) – KILL(X))

 if (old_IN != IN(X)) then

 change = 1

 endif

 endfor

endfor

- 9 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 10 -

Class Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute liveness

 Calculate GEN/KILL for each BB

 Calculate IN/OUT for each BB

- 11 -

Reaching Definition Analysis (rdefs)

 A definition of a variable x is an operation that assigns, or
may assign, a value to x

 A definition d reaches a point p if there is a path from the
point immediately following d to p such that d is not
“killed” along that path

 A definition of a variable is killed between 2 points when
there is another definition of that variable along the path

» r1 = r2 + r3 kills previous definitions of r1

 Liveness vs Reaching defs

» Liveness  variables (e.g., virtual registers), don’t care about
specific users

» Reaching defs  operations, each def is different

» Forward dataflow analysis as propagation occurs from defs
downwards (liveness was backward analysis)

- 12 -

Compute Rdef GEN/KILL Sets for each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in sequential order in X, op, do

 for each destination operand of op, dest, do

 G = op

 K = {all ops which define dest – op}

 GEN(X) = G + (GEN(X) – K)

 KILL(X) = K + (KILL(X) – G)

 endfor

 endfor

endfor

GEN = set of definitions created by an operation

KILL = set of definitions destroyed by an operation

- Assume each operation only has 1 destination for simplicity

 so just keep track of “ops”..

- 13 -

Example GEN/KILL Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

- 14 -

Compute Rdef IN/OUT Sets for all BBs

initialize IN(X) = 0 for all basic blocks X

initialize OUT(X) = GEN(X) for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_OUT = OUT(X)

 IN(X) = Union(OUT(Y)) for all predecessors Y of X

 OUT(X) = GEN(X) + (IN(X) – KILL(X))

 if (old_OUT != OUT(X)) then

 change = 1

 endif

 endfor

endfor

IN = set of definitions reaching the entry of BB

OUT = set of definitions leaving BB

- 15 -

Example Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

- 16 -

Class Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute reaching defs

 Calculate GEN/KILL for each BB

 Calculate IN/OUT for each BB

