EECS 583 — Class 5
Dataflow Analysis

University of Michigan

September 19, 2018

Reading Material + Announcements

< Reminder — HW 1 due next Monday at midnight
» Submit uniquename_hw1.tgz file to:
* eecsb83a.eecs.umich.edu:/hwl_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit
e Then, post question or talk to Ze if you are stuck

< Today’s class

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

<« Material for next Monday

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

Class Problem From Last Time - Answer

. BB CD
f(a>0){ BB1 1 -
r=t+s a>0 2 1
If(b>0]c>0) 3 2
BB2 4 3
u=v+1 5 2,3
else if (d > 0) bs0 g ;14
X=y+1 BB3) 3)
else |
y z=z+1 BB4 BB5
d<=0_~ \d~0 p3=0
BB7 pl=CMPP.UN (a>0)if T
r=t+sifpl
\ / p2,p3 = CMPP.UC.ON (b > 0) if p1
p4,p3 = CMPP.UC.ON (c > 0) if p2
BBS u=v+1ifp3
2. Draw the CEG 25_,p;s+: lCiI}/IFI;’6P.UC.UN (d > 0) if p4
b. Compute CD z=z+1ifp5

c. If-convert the code

_ooking Inside the Basic Blocks:
Dataflow Analysis + Optimization

rt=r2+r3
re=r4—-rb

0.0

r6=r2+r3
r‘'=rd—-rb5

Control flow analysis

» Treat BB as black box

» Just care about branches
Now

» Start looking at ops in BBs

» What’s computed and where
Classical optimizations

» Want to make the
computation more efficient

Ex: Common Subexpression
Elimination (CSE)
» 1sr2 + r3 redundant?
» Isr4 —r5 redundant?
» What if there were 1000 BB’s
» Dataflow analysis !!

Dataflow Analysis Introduction

Dataflow analysis — Collection of information
that summarizes the creation/destruction of
values in a program. Used to identify legal
optimization opportunities.

Pick an arbitrary point in the program

Which VRs contain useful
data values? (liveness or upward
exposed uses)

Which definitions may reach

rt=r2+r3
re=r4—-rb
r6=r2+r3
r‘'=rd—-rb5

_— this point? (reaching defns)

Which definitions are guaranteed
to reach this point? (available defns)

Which uses below are exposed?
(downward exposed uses)

-4 -

Live Variable (Liveness) Analysis

< Defn: For each point p in a program and each variable y,
determine whether y can be used before being redefined

starting at p

- Algorithm sketch

» Foreach BB, yis live if it is used before defined in the BB or it is
live leaving the block

» Backward dataflow analysis as propagation occurs from uses
upwards to defs

<+ 4 sets
» GEN = set of external variables consumed in the BB
» KILL = set of external variable uses killed by the BB
 equivalent to set of variables defined by the BB
» IN = set of variables that are live at the entry point of a BB
» OUT = set of variables that are live at the exit point of a BB
5.

&

D)

D)

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X) =0
for each operation in reverse sequential order in X, op, do
for each destination operand of op, dest, do
GEN(X) -= dest
KILL(X) += dest
endfor
for each source operand of op, src, do
GEN(X) +=src
KILL(X) -=src
endfor
endfor
endfor

Example — GEN/KILL Liveness Computation

OUT = Union(IN(succs))

IN = GEN + (OUT — KILL
BBL 1 v1=MEM[r2+0] ()

2.r2=MEM]rl + 1]
3.r8=r1*r2

T

4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 r3=4

\/

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

BB2

Compute IN/OUT Sets for all BBs

Initialize IN(X) to O for all basic blocks X
change =1
while (change) do
change =0
for each basic block in procedure, X, do
old _IN = IN(X)
OUT(X) = Union(IN(Y)) for all successors Y of X
IN(X) = GEN(X) + (OUT(X) — KILL(X))
if (old_IN '=IN(X)) then
change =1
endif
endfor
endfor

Example — Liveness Computation

BB1

1. rl = MEM]r2+0]
2.r2=MEM]rl + 1]
3.r8=rl1*r2

T

BB2 4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 r3=4

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

\/

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

Class Problem

Compute liveness
1.r1=3 Calculate GEN/KILL for each BB
2.r2=r3 Calculate IN/OUT for each BB

3.r3=r4

4.rl=rl+1
5. r7=r1*r2

/\

6.r4=r4+1 7.r4=r3+1r2

R

8.r8=8

9.r9=r7+1r8

-10 -

Reaching Definition Analysis (rdefs)

()

A definition of a variable x is an operation that assigns, or
may assign, a value to x

A definition d reaches a point p if there is a path from the
point immediately following d to p such that d is not
“killed” along that path

A definition of a variable is killed between 2 points when
there is another definition of that variable along the path

»

rl =r2 + r3 kills previous definitions of rl

Liveness vs Reaching defs

»

»

»

Liveness = variables (e.g., virtual registers), don’t care about
specific users

Reaching defs = operations, each def is different

Forward dataflow analysis as propagation occurs from defs
downwards (liveness was backward analysis)

-11 -

Compute Rdef GEN/KILL Sets for each BB

GEN = set of definitions created by an operation

KILL = set of definitions destroyed by an operation

- Assume each operation only has 1 destination for simplicity
so just keep track of “ops”..

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X)=0
for each operation in sequential order in X, op, do
for each destination operand of op, dest, do
G=o0p
K = {all ops which define dest — op}
GEN(X) = G + (GEN(X) - K)
KILL(X) =K + (KILL(X) - G)
endfor
endfor
endfor

-12 -

Example GEN/KILL Rdef Calculation

IN = Union(OUT (preds))

OUT =GEN + (IN — KILL
BBL 1 v1=MEM[r2+0] ()

2.r2=MEM]rl + 1]
3.r8=r1*r2

T

4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 9.r3=4

o~

10.r3=r3+r7
11.r1=r2-r8
12.r3=rl1*2

BB2

-13-

Compute Rdef IN/OUT Sets for all BBs

IN = set of definitions reaching the entry of BB
OUT = set of definitions leaving BB

initialize IN(X) = 0 for all basic blocks X
Initialize OUT(X) = GEN(X) for all basic blocks X
change =1
while (change) do
change =0
for each basic block in procedure, X, do
old_ OUT = OUT(X)
IN(X) = Union(OUT(Y)) for all predecessors Y of X
OUT(X) = GEN(X) + (IN(X) — KILL(X))
if (old_OUT !'= OUT(X)) then
change =1
endif
endfor
endfor

-14 -

Example Rdef Calculation

IN = Union(OUT (preds))

OUT =GEN + (IN — KILL
BBL 1 v1=MEM[r2+0] ()

2.r2=MEM]rl + 1]
3.r8=rl1*r2

T

4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 9.r3=4

o~

10.r3=r3+r7
11.r1=r2-r8
12.r3=rl1*2

BB2

-15 -

Class Problem

Compute reaching defs
1.r1=3 Calculate GEN/KILL for each BB
2.r2=1r3 Calculate IN/OUT for each BB

3.r3=r4

4.rl=rl+1
5. r7=r1*r2

/\

6.r4=r4+1 7.r4=r3+1r2

R

8.r8=8

9.r9=r7+1r8

-16 -

