
EECS 583 – Class 4

If-conversion

University of Michigan

September 17, 2018

- 1 -

Announcements & Reading Material

 HW 1 – Deadline Monday Sept 24, midnight

» Talk to Ze this week if you are having troubles with LLVM

» Refer to EECS 583 piazza group for tips and answers to questions

» Generating and using profile info is posted

 Today’s class

» “The Program Dependence Graph and Its Use in Optimization”,

J. Ferrante, K. Ottenstein, and J. Warren, ACM TOPLAS, 1987

 This is a long paper – the part we care about is the control dependence

stuff. The PDG is interesting and you should skim it over.

 “On Predicated Execution”, Park and Schlansker, HPL Technical Report,

1991.

 Material for Wednesday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6 Edition 1) (Sections 9.2 Edition 2)

- 2 -

Homework Problem Answer

if (a > 0) {

 if (b > 0)

 r = t + s

 else

 u = v + 1

 y = x + 1

}

a. Draw the CFG

b. Predicate the code removing

 all branches

u = v + 1 r = t + s

y = x + 1

b > 0 b <= 0

a > 0
a <= 0

p1 = cmpp.UN(a > 0) if T

p2, p3 = cmpp.UNUC(b > 0) if p1

r = t + s if p2

u = v + 1 if p3

y = x + 1 if p1

- 3 -

If-conversion

 Algorithm for generating predicated code

» Automate what we’ve been doing by hand

» Handle arbitrary complex graphs

 But, acyclic subgraph only!!

 Need a branch to get you back to the top of a loop

» Efficient

 Roots are from Vector computer days

» Vectorize a loop with an if-statement in the body

 4 steps

» 1. Loop backedge coalescing

» 2. Control dependence analysis

» 3. Control flow substitution

» 4. CMPP compaction

 My version of Park & Schlansker

- 4 -

Running Example – Initial State

BB2

BB4

BB7

BB6

do {

 b = load(a)

 if (b < 0) {

 if ((c > 0) && (b > 13))

 b = b + 1

 else

 c = c + 1

 d = d + 1

 }

 else {

 e = e + 1

 if (c > 25) continue

 }

 a = a + 1

} while (e < 34)

BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 5 -

Step 1: Backedge Coalescing

 Recall – Loop backedge is branch from inside the loop
back to the loop header

 This step only applicable for a loop body

» If not a loop body  skip this step

 Process

» Create a new basic block

 New BB contains an unconditional branch to the loop header

» Adjust all other backedges to go to new BB rather than header

 Why do this?

» Heuristic step – Not essential for correctness

 If-conversion cannot remove backedges (only forward edges)

 But this allows the control logic to figure out which backedge you
take to be eliminated

» Generally this is a good thing to do

- 6 -

Running Example – Backedge Coalescing

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

BB9

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 7 -

Step 2: Control Dependence Analysis (CD)

 Control flow – Execution transfer from 1 BB to another
via a taken branch or fallthrough path

 Dependence – Ordering constraint between 2 operations

» Must execute in proper order to achieve the correct result

» O1: a = b + c

» O2: d = a – e

» O2 dependent on O1

 Control dependence – One operation controls the
execution of another

» O1: blt a, 0, SKIP

» O2: b = c + d

» SKIP:

» O2 control dependent on O1

 Control dependence analysis derives these dependences

- 8 -

Control Dependences

 Recall

» Post dominator – BBX is post dominated by BBY if every path

from BBX to EXIT contains BBY

» Immediate post dominator – First breadth first successor of a

block that is a post dominator

 Control dependence – BBY is control dependent on BBX

iff

» 1. There exists a directed path P from BBX to BBY with any

BBZ in P (excluding BBX and BBY) post dominated by BBY

» 2. BBX is not post dominated by BBY

 In English,

» A BB is control dependent on the closest BB(s) that determine(s)

its execution

» Its actually not a BB, it’s a control flow edge coming out of a BB

- 9 -

Control Dependence Example

BB2

BB4

BB6

BB5

BB1

BB3

BB7

Control dependences

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

T F

T F

Notation

positive BB number = fallthru direction

negative BB number = taken direction

- 10 -

Running Example – CDs

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Control deps (left is taken)

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

BB8:

BB9:

Entry

Exit

First, nuke backedge(s)

Second, nuke exit edges

Then, Add pseudo entry/exit nodes

 - Entry  nodes with no predecessors

 - Exit  nodes with no successors

- 11 -

Algorithm for Control Dependence Analysis

for each basic block x in region

 for each outgoing control flow edge e of x

 y = destination basic block of e

 if (y not in pdom(x)) then

 lub = ipdom(x)

 if (e corresponds to a taken branch) then

 x_id = -x.id

 else

 x_id = x.id

 endif

 t = y

 while (t != lub) do

 cd(t) += x_id;

 t = ipdom(t)

 endwhile

 endif

 endfor

endfor

Notes

Compute cd(x) which contains those

BBs which x is control dependent on

Iterate on per edge basis, adding

edge to each cd set it is a member of

- 12 -

Running Example – Post Dominators

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

 pdom ipdom

BB1: 1, 9, ex 9

BB2: 2, 7, 8, 9, ex 7

BB3: 3, 9, ex 9

BB4: 4, 7, 8, 9, ex 7

BB5: 5, 7, 8, 9, ex 7

BB6: 6, 7, 8, 9, ex 7

BB7: 7, 8, 9, ex 8

BB8: 8, 9, ex 9

BB9: 9, ex ex

Entry

Exit

- 13 -

Running Example – CDs Via Algorithm

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 1

e = taken edge 1  2

y = 2

y not in pdom(x)

lub = 9

x_id = -1

t = 2

2 != 9

cd(2) += -1

t = 7

7 != 9

cd(7) += -1

t = 8

8 != 9

cd(8) += -1

t = 9

9 == 9

1  2 edge (aka –1)

- 14 -

Running Example – CDs Via Algorithm (2)

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 3

e = taken edge 3  8

y = 8

y not in pdom(x)

lub = 9

x_id = -3

t = 8

8 != 9

cd(8) += -3

t = 9

9 == 9

3  8 edge (aka -3)

Class ProblemA: 1  3 edge (aka 1)

Class ProblemB: 7  8 edge (aka -7)

- 15 -

Running Example – CDs Via Algorithm (3)

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

Control deps (left is taken)

BB1: none

BB2: -1

BB3: 1

BB4: -2

BB5: -4

BB6: 2, 4

BB7: -1

BB8: -1, -3

BB9: none

- 16 -

Step 3: Control Flow Substitution

 Go from branching code  sequential predicated code

 5 baby steps

» 1. Create predicates

» 2. CMPP insertion

» 3. Guard operations

» 4. Remove branches

» 5. Initialize predicates

- 17 -

Predicate Creation

 R/K calculation – Mapping predicates to blocks

» Paper more complicated than it really is

» K = unique sets of control dependences

» Create a new predicate for each element of K

» R(bb) = predicate that represents CD set for bb, ie the bb’s

assigned predicate (all ops in that bb guarded by R(bb))

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 18 -

CMPP Creation/Insertion

 For each control dependence set

» For each edge in the control dependence set

 Identify branch condition that causes edge to be traversed

 Create CMPP to compute corresponding branch condition

 OR-type – handles worst case

 guard = True

 destination = predicate assigned to that CD set

 Insert at end of BB that is the source of the edge

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

Example: p1 = cmpp.ON (b < 0) if T BB1

b < 0 b >= 0

- 19 -

Running Example – CMPP Creation

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

p’s = p1, p2, p3, p4, p5, p6

p4 = cmpp.ON (b > 13) if T

p5 = cmpp.ON (b <= 13) if T

p1 = cmpp.ON (b < 0) if T

p2 = cmpp.ON (b >= 0) if T

p6 = cmpp.ON (b < 0) if T

p3 = cmpp.ON (c > 0) if T

p5 = cmpp.ON (c <= 0) if T p6 = cmpp.ON (c <= 25) if T

- 20 -

Control Flow Substitution – The Rest

 Guard all operations in each bb by R(bb)

» Including the newly inserted CMPPs

 Nuke all the branches

» Except exit edges and backedges

 Initialize each predicate to 0 in first BB

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 21 -

Running Example – Control Flow Substitution

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Loop:

 p1 = p2 = p3 = p4 = p5 = p6 = 0

 b = load(a) if T

 p1 = cmpp.ON (b < 0) if T

 p2 = cmpp.ON (b >= 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3 = cmpp.ON (c > 0) if p1

 p5 = cmpp.ON (c <= 0) if p1

 p4 = cmpp.ON (b > 13) if p3

 p5 = cmpp.ON (b <= 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:
e >= 34

- 22 -

Step 4: CMPP Compaction

 Convert ON CMPPs to UN

» All singly defined predicates don’t need to be OR-type

» OR of 1 condition  Just compute it !!!

» Remove initialization (Unconditional don’t require init)

 Reduce number of CMPPs

» Utilize 2nd destination slot

» Combine any 2 CMPPs with:

 Same source operands

 Same guarding predicate

 Same or opposite compare conditions

- 23 -

Running Example - CMPP Compaction

Loop:

 p1 = p2 = p3 = p4 = p5 = p6 = 0

 b = load(a) if T

 p1 = cmpp.ON (b < 0) if T

 p2 = cmpp.ON (b >= 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3 = cmpp.ON (c > 0) if p1

 p5 = cmpp.ON (c <= 0) if p1

 p4 = cmpp.ON (b > 13) if p3

 p5 = cmpp.ON (b <= 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:

Loop:

 p5 = p6 = 0

 b = load(a) if T

 p1,p2 = cmpp.UN.UC (b < 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3,p5 = cmpp.UN.OC (c > 0) if p1

 p4,p5 = cmpp.UN.OC (b > 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:

- 24 -

Homework Problem – Answer Next Time

if (a > 0) {

 r = t + s

 if (b > 0 || c > 0)

 u = v + 1

 else if (d > 0)

 x = y + 1

 else

 z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

- 25 -

When to Apply If-conversion?

 Positives

» Remove branch

 No disruption to sequential fetch

 No prediction or mispredict

 No draining of pipeline for
mispredict

 No use of branch resource

» Increase potential for operation
overlap

 Creates larger basic blocks

 Convert control dependences into
data dependences

» Enable more aggressive compiler
xforms

 Software pipelining

 Height reduction

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 26 -

Negative 1: Resource Usage

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Each BB requires 3 resources

Assume processor has 2 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 2 = 4.5 = 5 cycles

IC: 1(3 + 3 + 3+ 3) = 12

 12 / 2 = 6 cycles

100

Instruction execution is additive

for all BBs that are if-converted, thus

require more processor resources

Case 2: Each BB requires 3 resources

Assume processor has 6 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 6 = 1.5 = 2 cycles

IC: 1(3+3+3+3) = 12

 12 / 6 = 2 cycles

BB1

BB2 if p1

BB3 if p2

BB4

- 27 -

Negative 2: Dependence Height

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 9, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*9 + 1*2 = 8.4

IC: 1*1 + 1*MAX(3,9) + 1*3 = 13

100

Dependence height is max of

for all BBs that are if-converted

(dep height = schedule length

with infinite resources)

BB1

BB2 if p1

BB3 if p2

BB4

Case 2: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 3, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*3 + 1*2 = 6

IC: 1*1 + 1*MAX(3,3) + 1*2 = 6

- 28 -

Negative 3: Hazard Presence

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Hazard in BB3

No IC : SB out of BB1, 2, 4, operations

In BB4 free to overlap with those in

BB1 and BB2

IC: operations in BB4 cannot overlap

With those in BB1 (BB2 ok)

100

Hazard = operation that forces

the compiler to be conservative,

so limited reordering or optimization,

e.g., subroutine call, pointer store, …

BB1

BB2 if p1

BB3 if p2

BB4

- 29 -

Deciding When/What To If-convert
 Resources

» Small resource usage ideal for less

important paths

 Dependence height

» Matched heights are ideal

» Close to same heights is ok

 Remember everything is relative for

resources and dependence height !

 Hazards

» Avoid hazards unless on most

important path

 Estimate of benefit

» Branches/Mispredicts removed

» Fudge factor

 Read more about Hyperblock

Formation if you are interested

BB2

BB4

BB1

BB3

60 40

100

60 40

100

BB1

BB2 if p1

BB3 if p2

BB4

