EECS 583 — Class 2
Control Flow Analysis

University of Michigan

September 10, 2018

Announcements & Reading Material

< eecsb83a,eecs583b.eecs.umich.edu servers are ready
» Everyone has home directory and login

<« HW 0 — Nominally due on Wednes, but nothing to turn in
» Please get this done ASAP, talk to Ze if you have problems
» Needed for HW 1 which goes out on Wednes

+ Reading

» Today’s class

* Ch9.4,10.4 (6.6, 9.6) from Compilers: Principles, Techniques Tools Ed
1 (Ed 2)

* “Trace Selection for Compiling Large C Applications to Microcode”,
Chang and Hwu, MICRO-21, 1988.

» Next class

e “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation”, Hwu et al., Journal of Supercomputing, 1993

-1-

From Last Time: Dominator (DOM)

< Defn: Dominator — Given a CFG(V, E, Entry, Exit), a
node x dominates a node y, if every path from the Entry
block to y contains x

< 3 properties of dominators
» Each BB dominates itself
» If x dominates y, and y dominates z, then x dominates z

» If x dominates z and y dominates z, then either x dominates y or
y dominates x

< Intuition

» Given some BB, which blocks are guaranteed to have executed
prior to executing the BB

Dominator Analysis

<« Compute dom(BBi) = set of
BBs that dominate BBI

< Initialization
» Dom(entry) = entry

» Dom(everything else) = all
nodes

< |terative computation

» while change, do
* change = false
» for each BB (except the entry
BB)

o tmp(BB) = BB + {intersect of
Dom of all predecessor BB’s}

o if (tmp(BB) '=dom(BB))
dom(BB) = tmp(BB)
change = true

Immediate Dominator

\/
0’0

Defn: Immediate

dominator (idom) — Each

node n has a unique
Immediate dominator m
that is the last dominator
of n on any path from the
Initial node to n

» Closest node that
dominates

Dominator Tree

First BB is the root node, each node
dominates all of its descendants

BB5 BB6

BB7

BB DOM BB DOM
1 1 5 1,45
2 1,2 6 1,4,6
3 1,3 7 1,4,7
4 1,4

BB1

LS

BB2

BB3 BB4

BB5 BB6 BBY

Dom tree

Class Problem

Draw the dominator
tree for the following CFG

.
BB2 BB3
BB4 BB5 BB6
=
BB7
BBS

Post Dominator (PDOM)

<+ Reverse of dominator
<+ Defn: Post Dominator —

Given a CFG(V, E, Entry,

Exit), a node X post
dominates a node v, if
every path from y to the
EXit contains X

< Intuition
» Given some BB, which
blocks are guaranteed to
have executed after
executing the BB

<« pdom(BBI) = set of BBs
that post dominate BBI

< Initialization

» Pdom(exit) = exit
» Pdom(everything else) = all
nodes

« |terative computation

» while change, do
* change = false
» for each BB (except the exit
BB)
¢ tmp(BB) = BB + {intersect
of pdom of all successor
BB’s}
o if (tmp(BB) != pdom(BB))
pdom(BB) = tmp(BB)
change = true

Post Dominator Examples

@ BB1

BB1 BB2

BBZ/\BBB | BB?’/\

BB4 BB4

BB5

N4

BB/

Immediate Post Dominator

<+ Defn: Immediate post (Entry)
dominator (ipdom) — I
Each node n has a unique BB1
immediate post N
dominator m that is the BB2 BB3
first post dominator of n ~_
on any path from n to the BB4
Exit PN
» Closest node that post BB5 BB6
dominates
S~

» First breadth-first
successor that post

dominates a node

Why Do We Care About Dominators?

< Loop detection — next subject
_ Entr
< Dominator @

» Guaranteed to execute before Blt%l
» Redundant computation — an

op is redundant if it is N

computed in a dominating BB BB2 BB3

» Most global optimizations use \/

dominance info
< Post dominator s

» Guaranteed to execute after /\

» Make a guess (ie 2 pointers BB5 BB6

do not point to the same locn) \ /

» Check they really do not BB7

point to one another in the

post dominating BB

-10 -

Natural Loops

< Cycle suitable for optimization
» Discuss optimizations later
< 2 properties

» Single entry point called the header
e Header dominates all blocks in the loop

» Must be one way to iterate the loop (ie at least 1 path
back to the header from within the loop) called a
backedge

< Backedge detection

» Edge, x> y where the target (y) dominates the source

(X)

-11 -

Backedge Example
BB1

LLoop Detection

L)

*

Identify all backedges using Dom info

Each backedge (x = y) defines a loop
» Loop header is the backedge target (y)

» Loop BB — basic blocks that comprise the loop

 All predecessor blocks of x for which control can reach x
without going through y are in the loop

Merge loops with the same header

» l.e., aloop with 2 continues

» LoopBackedge = LoopBackedgel + LoopBackedge?2
» LoopBB = LoopBB1 + LoopBB2

Important property

» Header dominates all LoopBB

L)

L)

*%

L)

*%

L)

*%

-13-

Loop Detection Example

BB1

Important Parts of a Loop

D)

0.0

Header, LoopBB
Backedges, BackedgeBB

Exitedges, ExitBB

» For each LoopBB, examine each outgoing edge
» |If the edge is to a BB not in LoopBB, then its an exit

» Preheader (Preloop)

» New block before the header (falls through to header)

» Whenever you invoke the loop, preheader executed

» Whenever you iterate the loop, preheader NOT executed

» All edges entering header
* Backedges — no change
 All others, retarget to preheader

Postheader (Postloop) - analogous

D)

*

D)

0’0

\/
*

\/
*

-15 -

Find the Preheaders for each Loop

BB1

= -
BB4
|

-16 -

Characteristics of a Loop

< Nesting (generally within a procedure scope)
» Inner loop — Loop with no loops contained within it
» Outer loop — Loop contained within no other loops

» Nesting depth
 depth(outer loop) =1
 depth = depth(parent or containing loop) + 1

< Trip count (average trip count)
» How many times (on average) does the loop iterate
» for (1=0; 1<100; I1++) -> trip count = 100
» With profile info:
e Ave trip count = weight(header) / weight(preheader)

-17 -

Trip Count Calculation Example

Calculate the trip
counts for all the loops
in the graph

!
BB2

o]

480

BB1

20

600

1000

1340

140

Reducible Flow Graphs

< A flow graph is reducible if and only if we can partition
the edges into 2 disjoint groups often called forward and
back edges with the following properties

» The forward edges form an acyclic graph in which every node
can be reached from the Entry

» The back edges consist only of edges whose destinations
dominate their sources
< More simply — Take a CFG, remove all the backedges
(x-> y where y dominates x), you should have a
connected, acyclic graph bbl

A P

bb2 bb3

Non-reducible!

-19 -

Regions

< Region: A collection of operations that are treated as a
single unit by the compiler

» Examples
* Basic block
* Procedure
* Body of a loop

» Properties
e Connected subgraph of operations
e Control flow is the key parameter that defines regions
* Hierarchically organized

< Problem
» Basic blocks are too small (3-5 operations)
» Hard to extract sufficient parallelism

» Procedure control flow too complex for many compiler xforms
* Plus only parts of a procedure are important (90/10 rule)

-20 -

Regions (2)

<+ Want
» Intermediate sized regions with simple control flow
» Bigger basic blocks would be ideal !!
» Separate important code from less important
» Optimize frequently executed code at the expense of
the rest
< Solution
» Define new region types that consist of multiple BBs
» Profile information used in the identification
» Sequential control flow (sorta)
» Pretend the regions are basic blocks

-21 -

Region Type 1 - Trace

Trace - Linear collection of
basic blocks that tend to
execute in sequence

» “Likely control flow path”

» Acyclic (outer backedge ok)
Side entrance — branch into the
middle of a trace

Side exit — branch out of the
middle of a trace
Compilation strategy

» Compile assuming path
occurs 100% of the time

» Patch up side entrances and
exits afterwards

Motivated by scheduling (i.e.,
trace scheduling)

-22 -

90

90

10

Linearizing a Trace

J 10 (entry count)
' | BBL | !
80 | 20 (side exit)
90 (entry/ BB2 i BB3
exit count) ' 80 /
: * ! 20 (side entrance)
' | BB4 |
| 10 (side exit)
' 90 BB5
i ! 10 (side entrance)
. | BB6 |

10 (exit count)

-23 -

Intelligent Trace Layout for Icache Performance

Trace view

Intraprocedural code placement i |
Procedure positioning tracel
Procedure splitting ' '
' trace 2
' trace 3

The rest

Procedure view

-24 -

Issues With Selecting Traces

< Acyclic | 10
» Cannot go past a backedge
+ Trace length BB1
» Longer = better ? 20 80/\20
» Not always ! BB2 BB3
< On-trace / off-trace transitions 8N /20
» Maximiz -
» M?nimiz: (s)frll-gzz: 554
: : : 1(?/
» Compile assuming on-trace is
100% (ie single BB) BB5 90
» Penalty for off-trace 1N
< Tradeoff (heuristic) BB6
» Length
» Likelihood remain within the
trace 10

- 925

Trace Selection Algorithm

1 =0;
mark all BBs unvisited
while (there are unvisited nodes) do
seed = unvisited BB with largest execution freq
trace[i] += seed
mark seed visited
current = seed
[* Grow trace forward */
while (1) do
next = best_successor_of(current)
if (next == 0) then break
trace[i] += next
mark next visited
current = next
endwhile
[* Grow trace backward analogously */
I++
endwhile

- 26 -

Best Successor/Predecessor

< Node weight vs edge
weight best_successor_of(BB)
e = control flow edge with highest

» edge more accurate . :
probability leaving BB

+ THRESHOLD if (e is a backedge) then
» controls off-trace return 0
probability endif
» 60-70% found best if (probability(e) <= THRESHOLD) then
< Notes on this algorithm &:ﬁum ’
» BB only allowed in 1 d = destination of e
trace if (d is visited) then
» Cumulative probability return 0
ignored endif
return d

» Min weight for seed to be
chose (ie executed 100
times)

end procedure

-27 -

Class Problems

Find the traces. Assume a threshold probability of 60%.
100
| 100 BB1
207 a0
60 40
/ \l
BE2 BB3 BB2 BB3
50 10 N5 100 20\‘ ‘/30
BB4 BB5 BB6 BB4
& & 35,/ L SlNg
N BB , BB5 BB6
./75 ! / \ i 49
i 450 B

B7 BB38
R
10
B

-28 -

B9

