EECS 583 – Class 15 Register Allocation

University of Michigan

November 5, 2018

Announcements + Reading Material

- Signup for paper presentation today in class
 - » Available days: Nov 21, Nov 26, Nov 28, Dec 3, Dec 5
 - » No class: Nov 19 (class after exam), Dec 10 (last class)
 - » Signup sheet posted on my door if you do not sign up today
- Today's class reading
 - » "Register Allocation and Spilling Via Graph Coloring," G. Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler Construction, 1982.
- Next class reading
 - » "Automatic Thread Extraction with Decoupled Software Pipelining," G. Ottoni, R. Rangan, A. Stoler, and D. I. August, *Proceedings of the 38th IEEE/ACM International Symposium on Microarchitecture*, Nov. 2005.
 - "Revisiting the Sequential Programming Model for Multi-Core," M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, *Proc 40th IEEE/ACM International Symposium on Microarchitecture*, December 2007.

Midterm Exam

- ✤ When
 - » Wednesday, Nov 14, 2018, 10:40-12:20
- ✤ Where
 - » This room
- What to expect
 - » Open notes (bring whatever you like), but no laptops
 - » Apply techniques we discussed in class
 - » Reason about solving compiler problems how/why things are done
 - » A couple of thinking problems
 - » No LLVM code
 - » Reasonably long so don't get stuck on a single problem

Midterm Exam – Continued

- ✤ 3 exams (F11-F13) are posted on the course website
 - » Note Past exams may not accurately predict future exams!!
- No regular class next Monday (Nov 12)
 - » Scott will hold group office hours in class (2246 SRB), so come with your questions
- Office hours
 - » Ze: Tue, Thurs, Fri: 2-4pm
 - » Scott: after class Mon or Wed
- Studying
 - » Yes, you should study even though its open notes
 - Lots of material that you have likely forgotten from early this semester
 - Refresh your memories
 - No memorization required, but you need to be familiar with the material to finish the exam
 - » Go through lecture notes, especially the examples!
 - » If you are confused on a topic, go through the reading
 - » Go through the practice exams (Don't look at the answer) as the final step

Exam Topics

- Control flow analysis
 - » Control flow graphs, Dom/pdom, Loop detection
 - » Trace selection, superblocks
- Predicated execution
 - » Control dependence analysis, if-conversion
- Dataflow analysis
 - » Liveness, reaching defs, DU/UD chains, available defs/exprs
 - » Static single assignment
- Optimizations
 - » Classical: Dead code elim, constant/copy prop, CSE, LICM, induction variable strength reduction
 - » ILP optimizations unrolling, tree height reduction, induction/accumulator expansion
 - » Speculative optimization like HW2

Exam Topics - Continued

- Acyclic scheduling
 - » Dependence graphs, Estart/Lstart/Slack, list scheduling
 - » Code motion across branches, speculation, exceptions
 - » Can ignore sentinel scheduling
- Software pipelining
 - » DSA form, ResMII, RecMII, modulo scheduling
 - » Make sure you can modulo schedule a loop!
 - » Execution control with LC, ESC
- Register allocation
 - » Live ranges, graph coloring
- Can ignore automatic parallelization (next class)

Class Problem – Answers in Red

latencies: add=1, mpy=3, Id = 2, st = 1, br = 1

LC = 99

1: $r3 = load(r1)$
2: r4 = r3 * 26
3: store (r2, r4)
4: $r1 = r1 + 4$
5: $r^2 = r^2 + 4$
7: brlc Loop

How many resources of each type are required to achieve an II=1 schedule? For II=1, each operation needs a dedicated resource, so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined, how many resources of each type are required to achieve II=1 Instead of 1 ALU to do the multiplies, 3 are needed, and instead of 1 MEM to do the loads, 2 are needed. Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate the II=1 modulo schedule. See next few slides

Problem continued

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Problem continued

resources: 3 alu, 2 mem, 1 br latencies: add=1, mpy=3, Id = 2, st = 1, br = 1

LC = 99

Schedule op7 at time 5

Loop:	1: r3[-1
	2: r4[-1
	3: store
	4: r1[-1

Problem continued

The final loop consists of a single MultiOp containing 6 operations, each predicated on the appropriate staging predicate. Note register allocation still needs to be performed.

LC = 99

Loop:

 $r_{3}[-1] = load(r_{1}[0])$ if $p_{1}[0]$; $r_{4}[-1] = r_{3}[-1] * 26$ if $p_{1}[2]$; store ($r_{2}[0]$, $r_{4}[-1]$) if $p_{1}[5]$; $r_{1}[-1] = r_{1}[0] + 4$ if $p_{1}[0]$; $r_{2}[-1] = r_{2}[0] + 4$ if $p_{1}[5]$; brf Loop

Register Allocation: Problem Definition

- Through optimization, assume an infinite number of virtual registers
 - » Now, must allocate these infinite virtual registers to a limited supply of hardware registers
 - » Want most frequently accessed variables in registers
 - Speed, registers much faster than memory
 - Direct access as an operand
 - » Any VR that cannot be mapped into a physical register is said to be <u>spilled</u>
- Questions to answer
 - » What is the minimum number of registers needed to avoid spilling?
 - » Given n registers, is spilling necessary
 - » Find an assignment of virtual registers to physical registers
 - » If there are not enough physical registers, which virtual registers get spilled?

Live Range

- Value = definition of a register
- Live range = Set of operations
 - » 1 more or values connected by common uses
 - » A single VR may have several live ranges
- Live ranges are constructed by taking the intersection of reaching defs and liveness
 - Initially, a live range consists of a single definition and all ops in a function in which that definition is live

Example – Constructing Live Ranges

Each definition is the seed of a live range. Ops are added to the LR where <u>both the defn reaches</u> and the variable is live

> LR1 for def $1 = \{1,3,4\}$ LR2 for def $2 = \{2,4\}$ LR3 for def $5 = \{5,7,8\}$ LR4 for def $6 = \{6,7,8\}$

Merging Live Ranges

- If 2 live ranges for the same VR overlap, they must be merged to ensure correctness
 - » LRs replaced by a new LR that is the union of the LRs
 - » Multiple defs reaching a common use
 - » Conservatively, all LRs for the same VR could be merged
 - Makes LRs larger than need be, but done for simplicity
 - We will not assume this

Example – Merging Live Ranges

Class Problem

Compute the LRs

-) for each def
-) merge overlapping

Interference

- Two live ranges interfere if they share one or more ops in common
 - » Thus, they cannot occupy the same physical register
 - » Or a live value would be lost
- Interference graph
 - » Undirected graph where
 - Nodes are live ranges
 - There is an edge between 2 nodes if the live ranges interfere
 - » What's not represented by this graph
 - Extent of interference between the LRs
 - Where in the program is the interference

Example – Interference Graph

Graph Coloring

- A graph is <u>n-colorable</u> if every node in the graph can be colored with one of the n colors such that 2 adjacent nodes do not have the same color
 - » Model register allocation as graph coloring
 - » Use the fewest colors (physical registers)
 - » Spilling is necessary if the graph is not n-colorable where n is the number of physical registers
- Optimal graph coloring is NP-complete for n > 2
 - » Use heuristics proposed by compiler developers
 - "Register Allocation Via Coloring", G. Chaitin et al, 1981
 - "Improvement to Graph Coloring Register Allocation", P. Briggs et al, 1989
 - » <u>Observation</u> a node with degree < n in the interference can always be successfully colored given its neighbors colors

Coloring Algorithm

- ✤ 1. While any node, x, has < n neighbors</p>
 - » Remove x and its edges from the graph
 - » Push x onto a stack
- ✤ 2. If the remaining graph is non-empty
 - » Compute cost of spilling each node (live range)
 - For each reference to the register in the live range
 - Cost += (execution frequency * spill cost)
 - > Let NB(x) = number of neighbors of x
 - » Remove node x that has the smallest cost(x) / NB(x)
 - Push x onto a stack (mark as spilled)
 - » Go back to step 1
- While stack is non-empty
 - » Pop x from the stack
 - » If x's neighbors are assigned fewer than R colors, then assign x any unsigned color, else leave x uncolored

Example – Finding Number of Needed Colors

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B Then can remove A, C Then can remove D, E Thus it is 3-colorable

Example – Do a 3-Coloring

$$lr(a) = \{1,2,3,4,5,6,7,8\}$$

$$refs(a) = \{1,6,8\}$$

$$lr(b) = \{2,3,4,6\}$$

$$refs(b) = \{2,4,6\}$$

$$lr(c) = \{1,2,3,4,5,6,7,8,9\}$$

$$refs(c) = \{3,4,7\}$$

$$lr(d) = \{4,5\}$$

$$lr(d) = \{4,5\}$$

$$lr(e) = \{5,7,8\}$$

$$refs(e) = \{5,7,8\}$$

$$lr(f) = \{6,7\}$$

$$refs(f) = \{6,7\}$$

$$lr\{g\} = \{8,9\}$$

$$refs(g) = \{8,9\}$$

$$refs(g) = \{8,9\}$$

$$refs(g) = \{8,9\}$$

$$refs(g) = \{8,9\}$$

	a	b	С	d	e	f	g
cost	225	200	175	150	200	50	200
neighbors	6	4	5	4	3	4	2
cost/n	37.5	50	35	37.5	66.7	12.5	100

Example – Do a 3-Coloring (2)

Remove all nodes < 3 neighbors

So, g can be removed

Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest $cost/NB \rightarrow f$ is chosen

<u>Stack</u> f (spilled) g

Example – Do a 3-Coloring (4)

Remove all nodes < 3 neighbors	<u>Stack</u>
So, e can be removed	e f (spilled)
	g

Example – Do a 3-Coloring (5)

Now must spill another node

Choose one with the smallest cost/NB \rightarrow c is chosen

Stack c (spilled) e f (spilled) g

Example – Do a 3-Coloring (6)

Example – Do a 3-Coloring (7)

Have 3 colors: red, green, blue, pop off the stack assigning colors only consider conflicts with non-spilled nodes already popped off stack

 $d \rightarrow red$

- $b \rightarrow$ green (cannot choose red)
- a \rightarrow blue (cannot choose red or green)
- $c \rightarrow$ no color (spilled)
- $e \rightarrow$ green (cannot choose red or blue)
- f \rightarrow no color (spilled)
- $g \rightarrow red$ (cannot choose blue)

Example – Do a 3-Coloring (8)

Class Problem

do a 2-coloring compute cost matrix draw interference graph color graph

Class Problem – Answer

Class Problem Answer (continued)

1. Remove all nodes degree < 2, remove node 2

2. Cannot remove any nodes, so choose node 4 to spill

