EECS 583 - Class 15 Register Allocation

University of Michigan

November 5, 2018

Announcements + Reading Material

* Signup for paper presentation today in class
» Available days: Nov 21, Nov 26, Nov 28, Dec 3, Dec 5
» No class: Nov 19 (class after exam), Dec 10 (last class)
» Signup sheet posted on my door if you do not sign up today
* Today's class reading
" "Register Allocation and Spilling Via Graph Coloring," G. Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler Construction, 1982.
* Next class reading
»"Automatic Thread Extraction with Decoupled Software Pipelining," G. Ottoni, R. Rangan, A. Stoler, and D. I. August, Proceedings of the 38th IEEE/ACM International Symposium on Microarchitecture, Nov. 2005.
» "Revisiting the Sequential Programming Model for Multi-Core," M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc 40th IEEE/ACM International Symposium on Microarchitecture, December 2007.

Midterm Exam

* When
» Wednesday, Nov 14, 2018, 10:40-12:20
* Where
» This room
* What to expect
» Open notes (bring whatever you like), but no laptops
» Apply techniques we discussed in class
» Reason about solving compiler problems - how/why things are done
» A couple of thinking problems
» No LLVM code
» Reasonably long so don't get stuck on a single problem

Midterm Exam - Continued

* 3 exams (F11-F13) are posted on the course website
» Note - Past exams may not accurately predict future exams!!
* No regular class next Monday (Nov 12)
» Scott will hold group office hours in class (2246 SRB), so come with your questions
* Office hours
» Ze: Tue, Thurs, Fri: 2-4pm
» Scott: after class Mon or Wed
* Studying
» Yes, you should study even though its open notes
- Lots of material that you have likely forgotten from early this semester
- Refresh your memories
- No memorization required, but you need to be familiar with the material to finish the exam
» Go through lecture notes, especially the examples!
» If you are confused on a topic, go through the reading
» Go through the practice exams (Don't look at the answer) as the final step

Exam Topics

* Control flow analysis
» Control flow graphs, Dom/pdom, Loop detection
» Trace selection, superblocks
* Predicated execution
» Control dependence analysis, if-conversion
* Dataflow analysis
» Liveness, reaching defs, DU/UD chains, available defs/exprs
» Static single assignment
* Optimizations
» Classical: Dead code elim, constant/copy prop, CSE, LICM, induction variable strength reduction
» ILP optimizations - unrolling, tree height reduction, induction/accumulator expansion
» Speculative optimization - like HW2

Exam Topics - Continued

* Acyclic scheduling
» Dependence graphs, Estart/Lstart/Slack, list scheduling
» Code motion across branches, speculation, exceptions
» Can ignore sentinel scheduling
* Software pipelining
» DSA form, ResMII, RecMII, modulo scheduling
» Make sure you can modulo schedule a loop!
» Execution control with LC, ESC
* Register allocation
» Live ranges, graph coloring
* Can ignore automatic parallelization (next class)

Class Problem - Answers in Red

latencies: $\mathrm{add}=1, \mathrm{mpy}=3, \mathrm{ld}=2, \mathrm{st}=1, \mathrm{br}=1$

$$
\begin{gathered}
\text { for }(j=0 ; j<100 ; j++) \\
\quad b[j]=a[j] * 26
\end{gathered}
$$

$$
\mathrm{LC}=99
$$

$$
\text { Loop: } \quad 1: r 3=\operatorname{load}(\mathrm{r} 1)
$$

$$
2: r 4=r 3 * 26
$$

$$
3: \text { store }(\mathrm{r} 2, \mathrm{r} 4)
$$

$$
4: \mathrm{rl}=\mathrm{rl}+4
$$

$$
5: r 2=r 2+4
$$

7: brlc Loop

How many resources of each type are required to achieve an $\mathrm{I}=1$ schedule?
For $\mathrm{II}=1$, each operation needs a dedicated resource, so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined, how many resources of each type are required to achieve $\mathrm{II}=1$
Instead of 1 ALU to do the multiplies, 3 are needed, and instead of 1 MEM to do the loads, 2 are needed. Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate the $\mathrm{I}=1$ modulo schedule.
See next few slides

Problem continued

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Dependence graph (same as example in class)
DSA converted code below (same as example in class)

$$
\mathrm{LC}=99
$$

$$
\begin{array}{l|l}
\text { Loop: } & \text { 1: } \mathrm{r} 3[-1]=\operatorname{load}(\mathrm{r} 1[0]) \\
\text { 2: } \mathrm{r} 4[-1]=\mathrm{r} 3[-1] * 26 \\
\text { 3: store }(\mathrm{r} 2[0], \mathrm{r} 4[-1]) \\
\text { 4: r1[-1] }=\mathrm{r} 1[0]+4 \\
\text { 5: } 2[-1]=\mathrm{r} 2[0]+4 \\
\text { remap r1, } 2, \mathrm{r} 2, \mathrm{r} 4 \\
\text { 7: brlc Loop }
\end{array}
$$

Problem continued

resources: 3 alu, 2 mem, 1 br
latencies: $\mathrm{add}=1, \mathrm{mpy}=3, \mathrm{ld}=2, \mathrm{st}=1, \mathrm{br}=1$

$$
\mathrm{LC}=99
$$

Loop: | $1: r 3[-1]=\operatorname{load}(\mathrm{r} 1[0])$ |
| :--- |
| $2: \mathrm{r} 4[-1]=\mathrm{r} 3[-1] * 26$ |
| $3:$ store $(\mathrm{r} 2[0], \mathrm{r} 4[-1])$ |
| $4: \mathrm{r} 1[-1]=\mathrm{r} 1[0]+4$ |
| $5: \mathrm{r} 2[-1]=\mathrm{r} 2[0]+4$ |
| remap r1, r2, r3, r4 |
| $7:$ brlc Loop |

Scheduling steps:
Schedule brlc at time II-1
Schedule op1 at time 0
Schedule op4 at time 0
Schedule op2 at time 2
Schedule op3 at time 5
Schedule op5 at time 5
Schedule op7 at time 5

MRT

Problem continued

The final loop consists of a single MultiOp containing 6 operations, each predicated on the appropriate staging predicate. Note register allocation still needs to be performed.
$\mathrm{LC}=99$
Loop:
$\mathrm{r} 3[-1]=\operatorname{load}(\mathrm{r} 1[0])$ if $\mathrm{p} 1[0]$; $\mathrm{r} 4[-1]=\mathrm{r} 3[-1] * 26$ if $\mathrm{p} 1[2]$; store $(\mathrm{r} 2[0], \mathrm{r} 4[-1])$ if $\mathrm{p} 1[5] ; \mathrm{r} 1[-1]=\mathrm{r} 1[0]+4$ if $\mathrm{p} 1[0] ; \mathrm{r} 2[-1]=\mathrm{r} 2[0]+4$ if $\mathrm{p} 1[5]$; brf Loop

Register Allocation: Problem Definition

\% Through optimization, assume an infinite number of virtual registers
» Now, must allocate these infinite virtual registers to a limited supply of hardware registers
» Want most frequently accessed variables in registers

- Speed, registers much faster than memory
- Direct access as an operand
» Any VR that cannot be mapped into a physical register is said to be spilled
* Questions to answer
» What is the minimum number of registers needed to avoid spilling?
» Given n registers, is spilling necessary
» Find an assignment of virtual registers to physical registers
» If there are not enough physical registers, which virtual registers get spilled?

Live Range

* Value $=$ definition of a register
* Live range $=$ Set of operations
» 1 more or values connected by common uses
» A single VR may have several live ranges
* Live ranges are constructed by taking the intersection of reaching defs and liveness
» Initially, a live range consists of a single definition and all ops in a function in which that definition is live

Example - Constructing Live Ranges

Merging Live Ranges

* If 2 live ranges for the same VR overlap, they must be merged to ensure correctness
» LRs replaced by a new LR that is the union of the LRs
» Multiple defs reaching a common use
» Conservatively, all LRs for the same VR could be merged
- Makes LRs larger than need be, but done for simplicity
- We will not assume this

Example - Merging Live Ranges

\{liveness \}, \{rdefs \}

LR1 for def $1=\{1,3,4\}$
LR2 for def $2=\{2,4\}$
LR3 for def $5=\{5,7,8\}$
LR4 for def $6=\{6,7,8\}$

Merge LR1 and LR2, LR3 and LR4

LR5 $=\{1,2,3,4\}$
LR6 $=\{5,6,7,8\}$

Class Problem

Interference

\% Two live ranges interfere if they share one or more ops in common
» Thus, they cannot occupy the same physical register
» Or a live value would be lost

* Interference graph
» Undirected graph where
- Nodes are live ranges
- There is an edge between 2 nodes if the live ranges interfere
» What's not represented by this graph
- Extent of interference between the LRs
- Where in the program is the interference

Example - Interference Graph

Graph Coloring

* A graph is n-colorable if every node in the graph can be colored with one of the n colors such that 2 adjacent nodes do not have the same color
» Model register allocation as graph coloring
» Use the fewest colors (physical registers)
» Spilling is necessary if the graph is not n-colorable where n is the number of physical registers
* Optimal graph coloring is NP-complete for $\mathrm{n}>2$
» Use heuristics proposed by compiler developers
- "Register Allocation Via Coloring", G. Chaitin et al, 1981
- "Improvement to Graph Coloring Register Allocation", P. Briggs et al, 1989
» Observation - a node with degree < n in the interference can always be successfully colored given its neighbors colors

Coloring Algorithm

* 1. While any node, x , has < n neighbors
» Remove x and its edges from the graph
» Push x onto a stack
* 2. If the remaining graph is non-empty
» Compute cost of spilling each node (live range)
- For each reference to the register in the live range
- Cost += (execution frequency * spill cost)
» Let $\mathrm{NB}(\mathrm{x})=$ number of neighbors of x
» Remove node x that has the smallest $\operatorname{cost}(x) / N B(x)$
- Push x onto a stack (mark as spilled)
» Go back to step 1
* While stack is non-empty
» Pop x from the stack
» If x's neighbors are assigned fewer than R colors, then assign x any unsigned color, else leave x uncolored

Example - Finding Number of Needed Colors

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes
Try n=2, no again, cannot remove any nodes
Try n=3,
Remove B
Then can remove A, C
Then can remove D, E
Thus it is 3-colorable

Example - Do a 3-Coloring

$$
\begin{aligned}
\operatorname{lr}(\mathrm{a}) & =\{1,2,3,4,5,6,7,8\} \\
\operatorname{refs}(\mathrm{a})=\{1,6,8\} & \\
\operatorname{lr}(\mathrm{b}) & =\{2,3,4,6\} \\
\operatorname{refs}(\mathrm{b})=\{2,4,6\} & \text { Profile freqs } \\
\operatorname{lr}(\mathrm{c}) & =\{1,2,3,4,5,6,7,8,9\} \\
\operatorname{refs}(\mathrm{c})=\{3,4,7\} & 3,4,5=75 \\
\operatorname{lr}(\mathrm{~d})=\{4,5\} & 6,7=25 \\
\operatorname{refs}(\mathrm{~d})=\{4,5\} & 8,9=100 \\
\operatorname{lr}(\mathrm{e})=\{5,7,8\} & \\
\operatorname{refs}(\mathrm{e})=\{5,7,8\} & \text { Assume each } \\
\operatorname{lr}(\mathrm{f})=\{6,7\} & \text { Spill requires } \\
\operatorname{refs}(\mathrm{f})=\{6,7\} & 1 \text { operation }
\end{aligned}
$$

	a	b	c	d	e	f	g
cost	225	200	175	150	200	50	200
neighbors	6	4	5	4	3	4	2
cost/n	37.5	50	35	37.5	66.7	12.5	100

Example - Do a 3-Coloring (2)

Remove all nodes < 3 neighbors
Stack
g
So, g can be removed

Example - Do a 3-Coloring (3)

Now must spill a node
Choose one with the smallest

Stack
f (spilled)
g
cost/ $\mathrm{NB} \rightarrow \mathrm{f}$ is chosen

Example - Do a 3-Coloring (4)

Remove all nodes < 3 neighbors
So, e can be removed

Example - Do a 3-Coloring (5)

Now must spill another node
Choose one with the smallest cost/NB $\rightarrow \mathrm{c}$ is chosen

Stack
c (spilled)
e
f (spilled)
g

Example - Do a 3-Coloring (6)

Remove all nodes <3 neighbors	$\underline{\text { Stack }}$
So, a, b, d can be removed	d
	a
	$\mathrm{c}($ spilled $)$
e	
	f (spilled)
g	

Example - Do a 3-Coloring (7)

```
Stack
d
b
a
c (spilled)
e
f (spilled)
g
```


Have 3 colors: red, green, blue, pop off the stack assigning colors only consider conflicts with non-spilled nodes already popped off stack
$\mathrm{d} \rightarrow$ red
$\mathrm{b} \rightarrow$ green (cannot choose red)
$\mathrm{a} \rightarrow$ blue (cannot choose red or green)
$\mathrm{c} \rightarrow$ no color (spilled)
e \rightarrow green (cannot choose red or blue)
$\mathrm{f} \rightarrow$ no color (spilled)
$\mathrm{g} \rightarrow$ red (cannot choose blue)

Example - Do a 3-Coloring (8)

Class Problem

do a 2-coloring
compute cost matrix draw interference graph color graph

Class Problem - Answer

Class Problem Answer (continued)

1. Remove all nodes degree <2, remove node 2

2. Cannot remove any nodes, so choose node 4 to spill
stack
2

3. Remove all nodes degree <2, remove 1 and 3
4. Assign colors: $1=$ red, $3=$ blue, $4=$ spill, 2 = blue
