
EECS 583 – Class 15

Register Allocation

University of Michigan

November 5, 2018

- 1 -

Announcements + Reading Material

 Signup for paper presentation today in class

» Available days: Nov 21, Nov 26, Nov 28, Dec 3, Dec 5

» No class: Nov 19 (class after exam), Dec 10 (last class)

» Signup sheet posted on my door if you do not sign up today

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G. Chaitin,

Proc. 1982 SIGPLAN Symposium on Compiler Construction, 1982.

 Next class reading

» “Automatic Thread Extraction with Decoupled Software Pipelining,” G. Ottoni,

R. Rangan, A. Stoler, and D. I. August, Proceedings of the 38th IEEE/ACM

International Symposium on Microarchitecture, Nov. 2005.

» “Revisiting the Sequential Programming Model for Multi-Core,” M. J. Bridges,

N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc 40th IEEE/ACM

International Symposium on Microarchitecture, December 2007.

- 2 -

Midterm Exam

 When

» Wednesday, Nov 14, 2018, 10:40-12:20

 Where

» This room

 What to expect

» Open notes (bring whatever you like), but no laptops

» Apply techniques we discussed in class

» Reason about solving compiler problems – how/why things are done

» A couple of thinking problems

» No LLVM code

» Reasonably long so don’t get stuck on a single problem

- 3 -

Midterm Exam – Continued

 3 exams (F11-F13) are posted on the course website

» Note – Past exams may not accurately predict future exams!!

 No regular class next Monday (Nov 12)

» Scott will hold group office hours in class (2246 SRB), so come with your questions

 Office hours

» Ze: Tue, Thurs, Fri: 2-4pm

» Scott: after class Mon or Wed

 Studying

» Yes, you should study even though its open notes

 Lots of material that you have likely forgotten from early this semester

 Refresh your memories

 No memorization required, but you need to be familiar with the material to finish the

exam

» Go through lecture notes, especially the examples!

» If you are confused on a topic, go through the reading

» Go through the practice exams (Don’t look at the answer) as the final step

- 4 -

Exam Topics

 Control flow analysis

» Control flow graphs, Dom/pdom, Loop detection

» Trace selection, superblocks

 Predicated execution

» Control dependence analysis, if-conversion

 Dataflow analysis

» Liveness, reaching defs, DU/UD chains, available defs/exprs

» Static single assignment

 Optimizations

» Classical: Dead code elim, constant/copy prop, CSE, LICM, induction

variable strength reduction

» ILP optimizations - unrolling, tree height reduction,

induction/accumulator expansion

» Speculative optimization – like HW2

- 5 -

Exam Topics - Continued

 Acyclic scheduling

» Dependence graphs, Estart/Lstart/Slack, list scheduling

» Code motion across branches, speculation, exceptions

» Can ignore sentinel scheduling

 Software pipelining

» DSA form, ResMII, RecMII, modulo scheduling

» Make sure you can modulo schedule a loop!

» Execution control with LC, ESC

 Register allocation

» Live ranges, graph coloring

 Can ignore automatic parallelization (next class)

- 6 -

Class Problem – Answers in Red

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

For II=1, each operation needs a dedicated resource,

so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Instead of 1 ALU to do the multiplies, 3 are needed,

and instead of 1 MEM to do the loads, 2 are needed.

Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate

the II=1 modulo schedule.

See next few slides

- 7 -

Problem continued

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 1

MII = MAX(1,1) = 11: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Dependence graph (same as example in class)

0,0

0,0

DSA converted code below (same

as example in class)

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Priorities

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0

- 8 -

Problem continued

resources: 3 alu, 2 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

alu0 alu1 m2 br

MRT
0 X

0 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

m1alu2

Scheduling steps:

Schedule brlc at time II-1

Schedule op1 at time 0

Schedule op4 at time 0

Schedule op2 at time 2

Schedule op3 at time 5

Schedule op5 at time 5

Schedule op7 at time 5

1

1

X X X X X

4 2 3 5

4

2

3 5 7

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6

- 9 -

Problem continued

r3[-1] = load(r1[0]) if p1[0]; r4[-1] = r3[-1] * 26 if p1[2]; store (r2[0], r4[-1]) if p1[5]; r1[-1] = r1[0] + 4 if p1[0]; r2[-1] = r2[0] + 4 if p1[5]; brf Loop

Loop:

LC = 99

The final loop consists of a single MultiOp containing 6 operations,

each predicated on the appropriate staging predicate. Note register allocation

still needs to be performed.

- 10 -

Register Allocation: Problem Definition

 Through optimization, assume an infinite number of
virtual registers

» Now, must allocate these infinite virtual registers to a limited
supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to
be spilled

 Questions to answer

» What is the minimum number of registers needed to avoid
spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers
get spilled?

- 11 -

Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

 Live ranges are constructed by taking the intersection of

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in

a function in which that definition is live

- 12 -

Example – Constructing Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live

- 13 -

Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 =

= r1

- 14 -

Example – Merging Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}

- 15 -

Class Problem

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

Compute the LRs

a) for each def

b) merge overlapping

- 16 -

Interference

 Two live ranges interfere if they share one or more ops in

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference

- 17 -

Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}

- 18 -

Graph Coloring

 A graph is n-colorable if every node in the graph can be

colored with one of the n colors such that 2 adjacent

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et

al, 1989

» Observation – a node with degree < n in the interference can

always be successfully colored given its neighbors colors

- 19 -

Coloring Algorithm

 1. While any node, x, has < n neighbors

» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty

» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost += (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty

» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x
any unsigned color, else leave x uncolored

- 20 -

Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable

- 21 -

Example – Do a 3-Coloring

a

g

c

f

d

b

e

a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

refs(c) = {3,4,7}

lr(d) = {4,5}

refs(d) = {4,5}

lr(e) = {5,7,8}

refs(e) = {5,7,8}

lr(f) = {6,7}

refs(f) = {6,7}

lr{g} = {8,9}

refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation

- 22 -

Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g

- 23 -

Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e

- 24 -

Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed

- 25 -

Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB c is chosen

a

c d

b

- 26 -

Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null

- 27 -

Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d red

b green (cannot choose red)

a blue (cannot choose red or green)

c no color (spilled)

e green (cannot choose red or blue)

f no color (spilled)

g red (cannot choose blue)

- 28 -

Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d red

b green

a blue

c no color

e green

f no color

g red

Notes: no spills in the blocks

executed 100 times. Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled

- 29 -

Class Problem

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

10 90

1

199

do a 2-coloring

compute cost matrix

draw interference graph

color graph

- 30 -

Class Problem – Answer

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

10 90

1

199

do a 2-coloring

compute cost matrix

draw interference graph

color graph
LR1(x) = {2,3,4,5,6,7,8,9}

LR2(y) = {1,2}

LR3(y) = {4,5,6,7,8,9}

LR4(z) = {3,4,5,6,7,8,9,10}

2

1

4

3

Interference graph

1 2 3 4

cost 201 2 210 91

nbors 3 1 2 2

c/n 67 2 105 45.5

- 31 -

Class Problem Answer (continued)

2

1

4

3

1. Remove all nodes degree < 2,

remove node 2

1

4

3

2. Cannot remove any nodes, so choose

node 4 to spill

stack

2

1

3

3. Remove all nodes degree < 2,

remove 1 and 3

stack

4 (spill)

2

stack

1

3

4 (spill)

2

4. Assign colors: 1 = red, 3 = blue, 4 = spill,

2 = blue

