
EECS 583 – Class 12

Superblock Scheduling

Software Pipelining Intro

University of Michigan

October 17, 2018

- 1 -

Announcements + Reading Material
 Project discussion meetings

» No class next week (Oct 22 & 24)

» Each group meets 15 mins with Ze and I

» Signup today in class, signup sheet on my door (4633 BBB) if you miss class or

can’t decide on a timeslot

» Be prompt, show up a few minutes early as back-to-back meetings

 Project proposals

» Due Wednesday, Oct 31, 11:59pm

» 1 paragraph summary of what you plan to work on

 Topic, approach, objective

 1-2 references

» Email to me and Ze, cc your group members

 Today’s class reading

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B.

Rau, MICRO-27, 1994, pp. 63-74.

 Next next Monday’s reading

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M.

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

- 2 -

Homework Problem From Last Time – Answer

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

6 5

8

10

9m

2

2

1 1

1 1

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,4 5,5

6,6

1

RU_map

time ALU MEM

0 X

1 X

2 X

3 X X

4 X

5 X

6 X

7 X

8 X

Schedule
Time Placed

0 2

1 1

2 4

3 3, 9

4 6

5 7

6 5

7 8

8 10

Op priority

1 6

2 7

3 4

4 5

5 2

6 3

7 3

8 2

9 3

10 1

- 3 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 4 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 5 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 6 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 7 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 8 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

 y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 9 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 10 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 11 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 12 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

 an exception when op1

 is taken

- 13 -

Restricted Speculation Model

 Most processors have 2

classes of opcodes

» Potentially exception

causing

 load, store, integer

divide, floating-point

» Never excepting

 Integer add, multiply,

etc.

 Overflow is detected, but

does not terminate

program execution

 Restricted model

» R2 only applies to

potentially exception

causing operations

» Can freely speculate all

never exception ops (still

limited by R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4  6 and

4 8

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

{r5}

- 14 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

- 15 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 16 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

- 17 -

Sentinel Speculation Model

 Ignoring all speculative exceptions

is painful

» Debugging issue (is a program ever

fully correct?)

 Also, handling of all fixable

exceptions for speculative ops can

be slow

» Extra page faults

 Sentinel speculation

» Mark speculative ops (opcode bit)

» Exceptions for speculative ops are

noted, but not handed immediately

(return garbage value)

» Check for exception conditions in

the “home block” of speculative

potentially excepting ops

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 18 -

Delaying Speculative Exceptions

 3 things needed

» Record exceptions

» Check for exceptions

» Regenerate exception

 Re-execute ops including

dependent ops

 Terminate execution or process

exception

 Recording them

» Extend every register with an extra

bit

 Exception tag (or NAT bit)

 Reg data is garbage when set

 Bit is set when either

 Speculative op causes exception

 Speculative op has a NAT’d

source operand (exception

propagation)

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 19 -

Delaying Speculative Exceptions (2)

 Check for exceptions

» Test NAT bit of appropriate

register (last register in dependence

chain) in home block

» Explicit checks

 Insert new operation to check NAT

» Implicit checks

 Non-speculative use of register

automatically serves as NAT check

 Regenerate exception

» Figure out the exact cause

» Handle if possible

» Check with NAT condition

branches to “recovery code”

» Compiler generates the recovery

code specific to each check

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check NAT(z)

4: *w = z

- 20 -

Delaying Speculative Exceptions (3)

2’: y = *x

3’: z = y + 4

1: branch x == 0

branch NAT(z) fixup

4: *w = z

2’’: y = *x

3’’: z = y + 4

jump done

fixup:

done:

Recovery code

In recovery code, the exception condition

will be regenerated as the excepting op

is re-executed with the same inputs

If the exception can be handled, it is, all

dependent ops are re-executed, and execution

is returned to point after the check

If the exception is a program error,

execution is terminated in the recovery

code

Recovery code consists of chain

of operations starting with a

potentially excepting speculative

op up to its corresponding check

- 21 -

Implicit vs Explicit Checks

 Explicit

» Essentially just a conditional branch

» Nothing special needs to be added to the processor

» Problems

 Code size

 Checks take valuable resources

 Implicit

» Use existing instructions as checks

» Removes problems of explicit checks

» However, how do you specify the address of the recovery block?,
how is control transferred there?

» Hardware table

 Indexed by PC

 Indicates where to go when NAT is set

 IA-64 uses explicit checks

- 22 -

Homework Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Move ops 5, 6, 8 as far up in the SB

as possible assuming sentinel speculation

support and register renaming

2. Insert the necessary checks and

recovery code (assume ld, st, and div

can cause exceptions)

- 23 -

Change Focus to Scheduling Loops

for (j=0; j<100; j++)

 b[j] = a[j] * 26

r1 = _a

r2 = _b

r9 = r1 * 4

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Loop:

Most of program execution

time is spent in loops

Problem: How do we achieve

compact schedules for loops

- 24 -

Basic Approach – List Schedule the Loop Body

1 2 3 n Iteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 6

2 2

3 -

4 -

5 3, 5, 7

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 6 * n

- 25 -

Unroll Then Schedule Larger Body

1,2 3,4 5,6 n-1,n Iteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, cmpp = 1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 1’, 6, 4’

2 2, 6’

3 2’

4 -

5 3, 5, 7

6 3’,5’,7’

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 7 * n/2

- 26 -

Problems With Unrolling

 Code bloat

» Typical unroll is 4-16x

» Use profile statistics to only unroll “important” loops

» But still, code grows fast

 Barrier after across unrolled bodies

» I.e., for unroll 2, can only overlap iterations 1 and 2, 3 and 4, …

 Does this mean unrolling is bad?

» No, in some settings its very useful

 Low trip count

 Lots of branches in the loop body

» But, in other settings, there is room for improvement

- 27 -

Overlap Iterations Using Pipelining

1 2 3 n Iteration

time

1

2

3

n

With hardware pipelining, while one instruction is

in fetch, another is in decode, another in execute.

Same thing here, multiple iterations are processed

simultaneously, with each instruction in a separate

stage. 1 iteration still takes the same time, but time

to complete n iterations is reduced!

- 28 -

A

B A

C B A

D C B A

 D C B A

 …

 D C B A

 D C B

 D C

 D

A Software Pipeline

A

B

C

D

Loop body

with 4 ops

Prologue -

fill the

pipe

Epilogue -

drain the

pipe

Kernel –

steady

state

time

Steady state: 4 iterations executed

simultaneously, 1 operation from each

iteration. Every cycle, an iteration starts

and finishes when the pipe is full.

- 29 -

Creating Software Pipelines

 Lots of software pipelining techniques out there

 Modulo scheduling

» Most widely adopted

» Practical to implement, yields good results

 Conceptual strategy

» Unroll the loop completely

» Then, schedule the code completely with 2 constraints

 All iteration bodies have identical schedules

 Each iteration is scheduled to start some fixed number of cycles later than

the previous iteration

» Initiation Interval (II) = fixed delay between the start of successive

iterations

» Given the 2 constraints, the unrolled schedule is repetitive (kernel)

except the portion at the beginning (prologue) and end (epilogue)

 Kernel can be re-rolled to yield a new loop

- 30 -

Creating Software Pipelines (2)

 Create a schedule for 1 iteration of the loop such that

when the same schedule is repeated at intervals of II

cycles

» No intra-iteration dependence is violated

» No inter-iteration dependence is violated

» No resource conflict arises between operation in same or distinct

iterations

 We will start out assuming Itanium-style hardware

support, then remove it later

» Rotating registers

» Predicates

» Software pipeline loop branch

- 31 -

Terminology

Iter 1

Iter 2

Iter 3

II

time

Initiation Interval (II) = fixed delay

between the start of successive iterations

Each iteration can be divided

into stages consisting of II cycles

each

Number of stages in 1 iteration

is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

To Be Continued …

