
EECS 583 – Class 12

Superblock Scheduling

Software Pipelining Intro

University of Michigan

October 17, 2018

- 1 -

Announcements + Reading Material
 Project discussion meetings

» No class next week (Oct 22 & 24)

» Each group meets 15 mins with Ze and I

» Signup today in class, signup sheet on my door (4633 BBB) if you miss class or

can’t decide on a timeslot

» Be prompt, show up a few minutes early as back-to-back meetings

 Project proposals

» Due Wednesday, Oct 31, 11:59pm

» 1 paragraph summary of what you plan to work on

 Topic, approach, objective

 1-2 references

» Email to me and Ze, cc your group members

 Today’s class reading

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B.

Rau, MICRO-27, 1994, pp. 63-74.

 Next next Monday’s reading

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M.

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

- 2 -

Homework Problem From Last Time – Answer

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

6 5

8

10

9m

2

2

1 1

1 1

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,4 5,5

6,6

1

RU_map

time ALU MEM

0 X

1 X

2 X

3 X X

4 X

5 X

6 X

7 X

8 X

Schedule
Time Placed

0 2

1 1

2 4

3 3, 9

4 6

5 7

6 5

7 8

8 10

Op priority

1 6

2 7

3 4

4 5

5 2

6 3

7 3

8 2

9 3

10 1

- 3 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 4 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 5 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 6 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 7 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 8 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

 y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 9 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 10 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 11 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 12 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

 an exception when op1

 is taken

- 13 -

Restricted Speculation Model

 Most processors have 2

classes of opcodes

» Potentially exception

causing

 load, store, integer

divide, floating-point

» Never excepting

 Integer add, multiply,

etc.

 Overflow is detected, but

does not terminate

program execution

 Restricted model

» R2 only applies to

potentially exception

causing operations

» Can freely speculate all

never exception ops (still

limited by R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4 6 and

4 8

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

{r5}

- 14 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

- 15 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 16 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

- 17 -

Sentinel Speculation Model

 Ignoring all speculative exceptions

is painful

» Debugging issue (is a program ever

fully correct?)

 Also, handling of all fixable

exceptions for speculative ops can

be slow

» Extra page faults

 Sentinel speculation

» Mark speculative ops (opcode bit)

» Exceptions for speculative ops are

noted, but not handed immediately

(return garbage value)

» Check for exception conditions in

the “home block” of speculative

potentially excepting ops

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 18 -

Delaying Speculative Exceptions

 3 things needed

» Record exceptions

» Check for exceptions

» Regenerate exception

 Re-execute ops including

dependent ops

 Terminate execution or process

exception

 Recording them

» Extend every register with an extra

bit

 Exception tag (or NAT bit)

 Reg data is garbage when set

 Bit is set when either

 Speculative op causes exception

 Speculative op has a NAT’d

source operand (exception

propagation)

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 19 -

Delaying Speculative Exceptions (2)

 Check for exceptions

» Test NAT bit of appropriate

register (last register in dependence

chain) in home block

» Explicit checks

 Insert new operation to check NAT

» Implicit checks

 Non-speculative use of register

automatically serves as NAT check

 Regenerate exception

» Figure out the exact cause

» Handle if possible

» Check with NAT condition

branches to “recovery code”

» Compiler generates the recovery

code specific to each check

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check NAT(z)

4: *w = z

- 20 -

Delaying Speculative Exceptions (3)

2’: y = *x

3’: z = y + 4

1: branch x == 0

branch NAT(z) fixup

4: *w = z

2’’: y = *x

3’’: z = y + 4

jump done

fixup:

done:

Recovery code

In recovery code, the exception condition

will be regenerated as the excepting op

is re-executed with the same inputs

If the exception can be handled, it is, all

dependent ops are re-executed, and execution

is returned to point after the check

If the exception is a program error,

execution is terminated in the recovery

code

Recovery code consists of chain

of operations starting with a

potentially excepting speculative

op up to its corresponding check

- 21 -

Implicit vs Explicit Checks

 Explicit

» Essentially just a conditional branch

» Nothing special needs to be added to the processor

» Problems

 Code size

 Checks take valuable resources

 Implicit

» Use existing instructions as checks

» Removes problems of explicit checks

» However, how do you specify the address of the recovery block?,
how is control transferred there?

» Hardware table

 Indexed by PC

 Indicates where to go when NAT is set

 IA-64 uses explicit checks

- 22 -

Homework Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Move ops 5, 6, 8 as far up in the SB

as possible assuming sentinel speculation

support and register renaming

2. Insert the necessary checks and

recovery code (assume ld, st, and div

can cause exceptions)

- 23 -

Change Focus to Scheduling Loops

for (j=0; j<100; j++)

 b[j] = a[j] * 26

r1 = _a

r2 = _b

r9 = r1 * 4

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Loop:

Most of program execution

time is spent in loops

Problem: How do we achieve

compact schedules for loops

- 24 -

Basic Approach – List Schedule the Loop Body

1 2 3 n Iteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 6

2 2

3 -

4 -

5 3, 5, 7

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 6 * n

- 25 -

Unroll Then Schedule Larger Body

1,2 3,4 5,6 n-1,n Iteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, cmpp = 1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 1’, 6, 4’

2 2, 6’

3 2’

4 -

5 3, 5, 7

6 3’,5’,7’

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 7 * n/2

- 26 -

Problems With Unrolling

 Code bloat

» Typical unroll is 4-16x

» Use profile statistics to only unroll “important” loops

» But still, code grows fast

 Barrier after across unrolled bodies

» I.e., for unroll 2, can only overlap iterations 1 and 2, 3 and 4, …

 Does this mean unrolling is bad?

» No, in some settings its very useful

 Low trip count

 Lots of branches in the loop body

» But, in other settings, there is room for improvement

- 27 -

Overlap Iterations Using Pipelining

1 2 3 n Iteration

time

1

2

3

n

With hardware pipelining, while one instruction is

in fetch, another is in decode, another in execute.

Same thing here, multiple iterations are processed

simultaneously, with each instruction in a separate

stage. 1 iteration still takes the same time, but time

to complete n iterations is reduced!

- 28 -

A

B A

C B A

D C B A

 D C B A

 …

 D C B A

 D C B

 D C

 D

A Software Pipeline

A

B

C

D

Loop body

with 4 ops

Prologue -

fill the

pipe

Epilogue -

drain the

pipe

Kernel –

steady

state

time

Steady state: 4 iterations executed

simultaneously, 1 operation from each

iteration. Every cycle, an iteration starts

and finishes when the pipe is full.

- 29 -

Creating Software Pipelines

 Lots of software pipelining techniques out there

 Modulo scheduling

» Most widely adopted

» Practical to implement, yields good results

 Conceptual strategy

» Unroll the loop completely

» Then, schedule the code completely with 2 constraints

 All iteration bodies have identical schedules

 Each iteration is scheduled to start some fixed number of cycles later than

the previous iteration

» Initiation Interval (II) = fixed delay between the start of successive

iterations

» Given the 2 constraints, the unrolled schedule is repetitive (kernel)

except the portion at the beginning (prologue) and end (epilogue)

 Kernel can be re-rolled to yield a new loop

- 30 -

Creating Software Pipelines (2)

 Create a schedule for 1 iteration of the loop such that

when the same schedule is repeated at intervals of II

cycles

» No intra-iteration dependence is violated

» No inter-iteration dependence is violated

» No resource conflict arises between operation in same or distinct

iterations

 We will start out assuming Itanium-style hardware

support, then remove it later

» Rotating registers

» Predicates

» Software pipeline loop branch

- 31 -

Terminology

Iter 1

Iter 2

Iter 3

II

time

Initiation Interval (II) = fixed delay

between the start of successive iterations

Each iteration can be divided

into stages consisting of II cycles

each

Number of stages in 1 iteration

is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

To Be Continued …

