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Announcements + Reading Material 
 Project discussion meetings 

» No class next week (Oct 22 & 24) 

» Each group meets 15 mins with Ze and I 

» Signup today in class, signup sheet on my door (4633 BBB) if you miss class or 

can’t decide on a timeslot 

» Be prompt, show up a few minutes early as back-to-back meetings 

 Project proposals 

» Due Wednesday, Oct 31, 11:59pm 

» 1 paragraph summary of what you plan to work on 

 Topic, approach, objective  

 1-2 references 

» Email to me and Ze, cc your group members 

 Today’s class reading 

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. 

Rau, MICRO-27, 1994, pp. 63-74. 

 Next next Monday’s reading 

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M. 

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992. 
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Homework Problem From Last Time – Answer 

1m 

2 

Machine: 2 issue, 1 memory port, 1 ALU 

Memory port = 2 cycles, pipelined 

ALU = 1 cycle 

2m 

4m 

7 

3 

6 5 

8 

10 

9m 

2 

2 

1 1 

1 1 

1 

2 

1. Calculate height-based priorities 

2. Schedule using Operation scheduler 
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RU_map 

time  ALU  MEM 

0                     X 

1                     X 

2                     X 

3          X        X 

4          X 

5          X 

6          X 

7          X 

8          X 

Schedule 
Time Placed 

0 2 

1 1 

2 4 

3 3, 9 

4 6 

5 7 
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7 8 

8 10 

Op priority 

1 6 

2 7 

3 4 

4 5 

5 2 

6 3 

7 3 

8 2 

9 3 

10 1 
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Generalize Beyond a Basic Block 

 Superblock  

» Single entry 

» Multiple exits (side exits) 

» No side entries 

 Schedule just like a BB 

» Priority calculations needs change 

» Dealing with control deps 
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Lstart in a Superblock 

 Not a single Lstart any more 

» 1 per exit branch (Lstart is a vector!) 

» Exit branches have probabilities 
1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 
op Estart Lstart0 Lstart1 

1   

2  

3  

4  

5  

6  

1 
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Operation Priority in a Superblock 

 Priority – Dependence height and speculative yield 

» Height from op to exit * probability of exit 

» Sum up across all exits in the superblock 

1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 

op Lstart0 Lstart1 Priority 

1   

2  

3  

4  

5  

6  

1 

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1)) 
valid late times for op 
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Dependences in a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

* Data dependences 

shown, all are reg flow 

except 1 6 is reg anti 

 

* Dependences define 

precedence ordering of 

operations to ensure 

correct execution 

semantics 

 

* What about control 

dependences? 

 

* Control dependences 

define precedence of 

ops with respect to 

branches 

Superblock 

Note: Control flow in red bold 
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Conservative Approach to Control Dependences 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock 
* Make branches 

barriers, nothing 

moves above or below 

branches 

 

* Schedule each BB in 

SB separately 

 

* Sequential schedules 

 

* Whole purpose of a 

superblock is lost 

Note: Control flow in red bold 
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Upward Code Motion Across Branches 

 Restriction 1a (register op) 

» The destination of op is not in 

liveout(br) 

» Wrongly kill a live value 

 Restriction 1b (memory op) 

» Op does not modify the memory 

» Actually live memory is what 

matters, but that is often too hard to 

determine 

 Restriction 2 

» Op must not cause an exception that 

may terminate the program execution 

when br is taken 

» Op is executed more often than it is 

supposed to (speculated) 

» Page fault or cache miss are ok 

 Insert control dep when either 

restriction is violated 

 

 

… 

if (x > 0) 

    y = z / x 

… 

1: branch x <= 0 

2: y = z / x  

control flow graph 
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Downward Code Motion Across Branches 

 Restriction 1 (liveness) 

» If no compensation code 

 Same restriction as before, 
destination of op is not liveout 

» Else, no restrictions 

 Duplicate operation along both 
directions of branch if 
destination is liveout 

 Restriction 2 (speculation) 

» Not applicable, downward 
motion is not speculation 

 Again, insert control dep when the 
restrictions are violated 

 Part of the philosphy of 
superblocks is no compensation 
code inseration hence R1 is 
enforced! 

 

 

… 

a = b * c 

if (x > 0) 

     

else 

… 

1: a = b * c 

2: branch x <= 0 

control flow graph 
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Add Control Dependences to a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock Assumed liveout sets 

{r1} 

{r2} 

{r5} 

Notes: All branches are control 

dependent on one another. 

If no compensation, all ops dependent 

on last branch 

All ops 

have cdep 

to op 9! 
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

Draw the dependence graph 
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Relaxing Code Motion Restrictions 

 Upward code motion is generally 

more effective 

» Speculate that an op is useful (just 

like an out-of-order processor with 

branch pred) 

» Start ops early, hide latency, overlap 

execution, more parallelism 

 Removing restriction 1 

» For register ops – use register 

renaming 

» Could rename memory too, but 

generally not worth it 

 Removing restriction 2 

» Need hardware support (aka 

speculation models) 

 Some ops don’t cause exceptions 

 Ignore exceptions 

 Delay exceptions 

 

1: branch x <= 0 

2: y = z / x  

R1: y is not in liveout(1) 

R2: op 2 will never cause 

       an exception when op1 

       is taken 
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Restricted Speculation Model 

 Most processors have 2 

classes of opcodes 

» Potentially exception 

causing 

 load, store, integer 

divide, floating-point 

» Never excepting 

 Integer add, multiply, 

etc. 

 Overflow is detected, but 

does not terminate 

program execution 

 Restricted model 

» R2 only applies to 

potentially exception 

causing operations 

» Can freely speculate all 

never exception ops (still 

limited by R1 however) 

1 

2 

3 

5 

6 

4 

7 

8 

9 

We assumed 

restricted 

speculation  

when this 

graph was  

drawn. 

 

This is why 

there is no  

cdep between  

4  6 and 

4 8 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

{r1} 

{r2} 

{r5} 
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General Speculation Model 

 2 types of exceptions 

» Program terminating (traps) 

 Div by 0, illegal address 

» Fixable (normal and handled 
at run time) 

 Page fault, TLB miss 

 General speculation 

» Processor provides non-
trapping versions of all 
operations (div, load, etc) 

» Return some bogus value (0) 
when error occurs 

» R2 is completely ignored, 
only R1 limits speculation 

» Speculative ops converted 
into non-trapping version 

» Fixable exceptions handled as 
usual for non-trapping ops 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Remove 

edge from 

4 to 7 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

{r1} 

{r2} 
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Programming Implications of General Spec 

 Correct  program 

» No problem at all 

» Exceptions will only result 

when branch is taken 

» Results of excepting 

speculative operation(s) will 

not be used for anything 

useful (R1 guarantees this!) 

 Program debugging 

» Non-trapping ops make this 

almost impossible 

» Disable general speculation 

during program debug phase 

 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

4: *w = z  
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

1. Starting with the graph assuming restricted 

speculation, what edges can be removed if 

general speculation support is provided? 

2. With more renaming, what dependences could 

be removed? 
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Sentinel Speculation Model 

 Ignoring all speculative exceptions 

is painful 

» Debugging issue (is a program ever 

fully correct?) 

 Also, handling of all fixable 

exceptions for speculative ops can 

be slow 

» Extra page faults 

 Sentinel speculation 

» Mark speculative ops (opcode bit) 

» Exceptions for speculative ops are 

noted, but not handed immediately 

(return garbage value) 

» Check for exception conditions in 

the “home block” of speculative 

potentially excepting ops 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check exception 

4: *w = z  
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Delaying Speculative Exceptions 

 3 things needed 

» Record exceptions 

» Check for exceptions 

» Regenerate exception 

 Re-execute ops including 

dependent ops 

 Terminate execution or process 

exception 

 Recording them 

» Extend every register with an extra 

bit 

 Exception tag (or NAT bit) 

 Reg data is garbage when set 

 Bit is set when either 

 Speculative op causes exception 

 Speculative op has a NAT’d 

source operand (exception 

propagation) 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check exception 

4: *w = z  
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Delaying Speculative Exceptions (2) 

 Check for exceptions 

» Test NAT bit of appropriate 

register (last register in dependence 

chain) in home block 

» Explicit checks 

 Insert new operation to check NAT 

» Implicit checks 

 Non-speculative use of register 

automatically serves as NAT check 

 Regenerate exception 

» Figure out the exact cause 

» Handle if possible 

» Check with NAT condition 

branches to “recovery code” 

» Compiler generates the recovery 

code specific to each check 

 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check NAT(z) 

4: *w = z  
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Delaying Speculative Exceptions (3) 

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

branch NAT(z) fixup 

4: *w = z  

2’’: y = *x 

3’’: z = y + 4 

jump done 

fixup: 

done: 

Recovery code 

In recovery code, the exception condition 

will be regenerated as the excepting op 

is re-executed with the same inputs 

 

If the exception can be handled, it is, all 

dependent ops are re-executed,  and execution 

is returned to point after the check 

 

If the exception is a program error,  

execution is terminated in the recovery 

code 

Recovery code consists of chain 

of operations starting with a 

potentially excepting speculative 

op up to its corresponding check  
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Implicit vs Explicit Checks 

 Explicit 

» Essentially just a conditional branch 

» Nothing special needs to be added to the processor 

» Problems 

 Code size 

 Checks take valuable resources 

 Implicit 

» Use existing instructions as checks 

» Removes problems of explicit checks 

» However, how do you specify the address of the recovery block?, 
how is control transferred there? 

» Hardware table 

 Indexed by PC 

 Indicates where to go when NAT is set 

 IA-64 uses explicit checks 
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Homework Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

1. Move ops 5, 6, 8 as far up in the SB 

as possible assuming sentinel speculation 

support and register renaming 

2. Insert the necessary checks and 

recovery code (assume ld, st, and div 

can cause exceptions) 
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Change Focus to Scheduling Loops 

for (j=0; j<100; j++) 

    b[j] = a[j] * 26 

r1 = _a 

r2 = _b 

r9 = r1 * 4 

 

 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Loop: 

Most of program execution 

time is spent in loops 

 

Problem:  How do we achieve 

compact schedules for loops 
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Basic Approach – List Schedule the Loop Body 

1 2 3 n Iteration 

time 

Schedule each iteration 

resources: 4 issue, 2 alu, 1 mem, 1 br 

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1 

time ops 

0 1, 4 

1 6 

2 2 

3 - 

4 - 

5 3, 5, 7 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Total time = 6 * n 
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Unroll Then Schedule Larger Body 

1,2 3,4 5,6 n-1,n Iteration 

time 

Schedule each iteration 

resources: 4 issue, 2 alu, 1 mem, 1 br 

latencies: add=1, cmpp = 1, mpy=3, ld = 2, st = 1, br = 1 

time ops 

0 1, 4 

1 1’, 6, 4’ 

2 2, 6’ 

3 2’ 

4 - 

5 3, 5, 7 

6 3’,5’,7’ 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Total time = 7 * n/2 
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Problems With Unrolling 

 Code bloat 

» Typical unroll is 4-16x 

» Use profile statistics to only unroll “important” loops 

» But still, code grows fast 

 Barrier after across unrolled bodies 

» I.e., for unroll 2, can only overlap iterations 1 and 2, 3 and 4, … 

 Does this mean unrolling is bad? 

» No, in some settings its very useful 

 Low trip count 

 Lots of branches in the loop body 

» But, in other settings, there is room for improvement 
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Overlap Iterations Using Pipelining 

1 2 3 n Iteration 

time 

1 

2 

3 

n 

With hardware pipelining, while one instruction is 

in fetch, another is in decode, another in execute.  

Same thing here, multiple iterations are processed 

simultaneously, with each instruction in a separate 

stage.  1 iteration still takes the same time, but time 

to complete n iterations is reduced! 
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A 

B    A 

C    B    A 

 

D    C    B    A 

       D    C    B    A 

         … 

              D    C    B    A 

 

                     D   C     B 

                           D    C 

                                  D 

A Software Pipeline 

A 

B 

C 

D 

Loop body 

with 4 ops 

Prologue - 

fill the 

pipe 

Epilogue - 

drain the 

pipe 

Kernel – 

steady 

state 

time 

Steady state: 4 iterations executed 

simultaneously, 1 operation from each 

iteration.  Every cycle, an iteration starts 

and finishes when the pipe is full. 
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Creating Software Pipelines 

 Lots of software pipelining techniques out there 

 Modulo scheduling 

» Most widely adopted 

» Practical to implement, yields good results 

 Conceptual strategy 

» Unroll the loop completely 

» Then, schedule the code completely with 2 constraints 

 All iteration bodies have identical schedules 

 Each iteration is scheduled to start some fixed number of cycles later than 

the previous iteration 

» Initiation Interval (II) = fixed delay between the start of successive 

iterations 

» Given the 2 constraints, the unrolled schedule is repetitive (kernel) 

except the portion at the beginning (prologue) and end (epilogue) 

 Kernel can be re-rolled to yield a new loop 
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Creating Software Pipelines (2) 

 Create a schedule for 1 iteration of the loop such that 

when the same schedule is repeated at intervals of II 

cycles 

» No intra-iteration dependence is violated 

» No inter-iteration dependence is violated 

» No resource conflict arises between operation in same or distinct 

iterations 

 We will start out assuming Itanium-style hardware 

support, then remove it later 

» Rotating registers 

» Predicates 

» Software pipeline loop branch 
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Terminology 

Iter 1 

Iter 2 

Iter 3 

II 

time 

Initiation Interval (II) = fixed delay 

between the start of successive iterations 
 

Each iteration can be divided 

into stages consisting of II cycles 

each 

 

Number of stages in 1 iteration 

is termed the stage count (SC) 

 

Takes SC-1 cycles to fill/drain the pipe 



To Be Continued … 


