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Announcements + Reading Material 
 Project discussion meetings 

» No class next week (Oct 22 & 24) 

» Each group meets 15 mins with Ze and I 

» Signup today in class, signup sheet on my door (4633 BBB) if you miss class or 

can’t decide on a timeslot 

» Be prompt, show up a few minutes early as back-to-back meetings 

 Project proposals 

» Due Wednesday, Oct 31, 11:59pm 

» 1 paragraph summary of what you plan to work on 

 Topic, approach, objective  

 1-2 references 

» Email to me and Ze, cc your group members 

 Today’s class reading 

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. 

Rau, MICRO-27, 1994, pp. 63-74. 

 Next next Monday’s reading 

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M. 

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992. 
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Homework Problem From Last Time – Answer 

1m 

2 

Machine: 2 issue, 1 memory port, 1 ALU 

Memory port = 2 cycles, pipelined 

ALU = 1 cycle 

2m 

4m 

7 

3 
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10 

9m 

2 

2 

1 1 

1 1 

1 

2 

1. Calculate height-based priorities 

2. Schedule using Operation scheduler 
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Time Placed 
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Op priority 
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10 1 
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Generalize Beyond a Basic Block 

 Superblock  

» Single entry 

» Multiple exits (side exits) 

» No side entries 

 Schedule just like a BB 

» Priority calculations needs change 

» Dealing with control deps 
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Lstart in a Superblock 

 Not a single Lstart any more 

» 1 per exit branch (Lstart is a vector!) 

» Exit branches have probabilities 
1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 
op Estart Lstart0 Lstart1 

1   

2  

3  

4  

5  

6  

1 
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Operation Priority in a Superblock 

 Priority – Dependence height and speculative yield 

» Height from op to exit * probability of exit 

» Sum up across all exits in the superblock 

1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 

op Lstart0 Lstart1 Priority 

1   

2  

3  

4  

5  

6  

1 

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1)) 
valid late times for op 
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Dependences in a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

* Data dependences 

shown, all are reg flow 

except 1 6 is reg anti 

 

* Dependences define 

precedence ordering of 

operations to ensure 

correct execution 

semantics 

 

* What about control 

dependences? 

 

* Control dependences 

define precedence of 

ops with respect to 

branches 

Superblock 

Note: Control flow in red bold 
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Conservative Approach to Control Dependences 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock 
* Make branches 

barriers, nothing 

moves above or below 

branches 

 

* Schedule each BB in 

SB separately 

 

* Sequential schedules 

 

* Whole purpose of a 

superblock is lost 

Note: Control flow in red bold 
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Upward Code Motion Across Branches 

 Restriction 1a (register op) 

» The destination of op is not in 

liveout(br) 

» Wrongly kill a live value 

 Restriction 1b (memory op) 

» Op does not modify the memory 

» Actually live memory is what 

matters, but that is often too hard to 

determine 

 Restriction 2 

» Op must not cause an exception that 

may terminate the program execution 

when br is taken 

» Op is executed more often than it is 

supposed to (speculated) 

» Page fault or cache miss are ok 

 Insert control dep when either 

restriction is violated 

 

 

… 

if (x > 0) 

    y = z / x 

… 

1: branch x <= 0 

2: y = z / x  

control flow graph 
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Downward Code Motion Across Branches 

 Restriction 1 (liveness) 

» If no compensation code 

 Same restriction as before, 
destination of op is not liveout 

» Else, no restrictions 

 Duplicate operation along both 
directions of branch if 
destination is liveout 

 Restriction 2 (speculation) 

» Not applicable, downward 
motion is not speculation 

 Again, insert control dep when the 
restrictions are violated 

 Part of the philosphy of 
superblocks is no compensation 
code inseration hence R1 is 
enforced! 

 

 

… 

a = b * c 

if (x > 0) 

     

else 

… 

1: a = b * c 

2: branch x <= 0 

control flow graph 
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Add Control Dependences to a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock Assumed liveout sets 

{r1} 

{r2} 

{r5} 

Notes: All branches are control 

dependent on one another. 

If no compensation, all ops dependent 

on last branch 

All ops 

have cdep 

to op 9! 
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

Draw the dependence graph 
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Relaxing Code Motion Restrictions 

 Upward code motion is generally 

more effective 

» Speculate that an op is useful (just 

like an out-of-order processor with 

branch pred) 

» Start ops early, hide latency, overlap 

execution, more parallelism 

 Removing restriction 1 

» For register ops – use register 

renaming 

» Could rename memory too, but 

generally not worth it 

 Removing restriction 2 

» Need hardware support (aka 

speculation models) 

 Some ops don’t cause exceptions 

 Ignore exceptions 

 Delay exceptions 

 

1: branch x <= 0 

2: y = z / x  

R1: y is not in liveout(1) 

R2: op 2 will never cause 

       an exception when op1 

       is taken 
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Restricted Speculation Model 

 Most processors have 2 

classes of opcodes 

» Potentially exception 

causing 

 load, store, integer 

divide, floating-point 

» Never excepting 

 Integer add, multiply, 

etc. 

 Overflow is detected, but 

does not terminate 

program execution 

 Restricted model 

» R2 only applies to 

potentially exception 

causing operations 

» Can freely speculate all 

never exception ops (still 

limited by R1 however) 

1 

2 

3 

5 

6 

4 

7 

8 

9 

We assumed 

restricted 

speculation  

when this 

graph was  

drawn. 

 

This is why 

there is no  

cdep between  

4  6 and 

4 8 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

{r1} 

{r2} 

{r5} 
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General Speculation Model 

 2 types of exceptions 

» Program terminating (traps) 

 Div by 0, illegal address 

» Fixable (normal and handled 
at run time) 

 Page fault, TLB miss 

 General speculation 

» Processor provides non-
trapping versions of all 
operations (div, load, etc) 

» Return some bogus value (0) 
when error occurs 

» R2 is completely ignored, 
only R1 limits speculation 

» Speculative ops converted 
into non-trapping version 

» Fixable exceptions handled as 
usual for non-trapping ops 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Remove 

edge from 

4 to 7 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

{r1} 

{r2} 
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Programming Implications of General Spec 

 Correct  program 

» No problem at all 

» Exceptions will only result 

when branch is taken 

» Results of excepting 

speculative operation(s) will 

not be used for anything 

useful (R1 guarantees this!) 

 Program debugging 

» Non-trapping ops make this 

almost impossible 

» Disable general speculation 

during program debug phase 

 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

4: *w = z  
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

1. Starting with the graph assuming restricted 

speculation, what edges can be removed if 

general speculation support is provided? 

2. With more renaming, what dependences could 

be removed? 
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Sentinel Speculation Model 

 Ignoring all speculative exceptions 

is painful 

» Debugging issue (is a program ever 

fully correct?) 

 Also, handling of all fixable 

exceptions for speculative ops can 

be slow 

» Extra page faults 

 Sentinel speculation 

» Mark speculative ops (opcode bit) 

» Exceptions for speculative ops are 

noted, but not handed immediately 

(return garbage value) 

» Check for exception conditions in 

the “home block” of speculative 

potentially excepting ops 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check exception 

4: *w = z  
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Delaying Speculative Exceptions 

 3 things needed 

» Record exceptions 

» Check for exceptions 

» Regenerate exception 

 Re-execute ops including 

dependent ops 

 Terminate execution or process 

exception 

 Recording them 

» Extend every register with an extra 

bit 

 Exception tag (or NAT bit) 

 Reg data is garbage when set 

 Bit is set when either 

 Speculative op causes exception 

 Speculative op has a NAT’d 

source operand (exception 

propagation) 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check exception 

4: *w = z  
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Delaying Speculative Exceptions (2) 

 Check for exceptions 

» Test NAT bit of appropriate 

register (last register in dependence 

chain) in home block 

» Explicit checks 

 Insert new operation to check NAT 

» Implicit checks 

 Non-speculative use of register 

automatically serves as NAT check 

 Regenerate exception 

» Figure out the exact cause 

» Handle if possible 

» Check with NAT condition 

branches to “recovery code” 

» Compiler generates the recovery 

code specific to each check 

 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

check NAT(z) 

4: *w = z  
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Delaying Speculative Exceptions (3) 

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

branch NAT(z) fixup 

4: *w = z  

2’’: y = *x 

3’’: z = y + 4 

jump done 

fixup: 

done: 

Recovery code 

In recovery code, the exception condition 

will be regenerated as the excepting op 

is re-executed with the same inputs 

 

If the exception can be handled, it is, all 

dependent ops are re-executed,  and execution 

is returned to point after the check 

 

If the exception is a program error,  

execution is terminated in the recovery 

code 

Recovery code consists of chain 

of operations starting with a 

potentially excepting speculative 

op up to its corresponding check  
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Implicit vs Explicit Checks 

 Explicit 

» Essentially just a conditional branch 

» Nothing special needs to be added to the processor 

» Problems 

 Code size 

 Checks take valuable resources 

 Implicit 

» Use existing instructions as checks 

» Removes problems of explicit checks 

» However, how do you specify the address of the recovery block?, 
how is control transferred there? 

» Hardware table 

 Indexed by PC 

 Indicates where to go when NAT is set 

 IA-64 uses explicit checks 
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Homework Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

1. Move ops 5, 6, 8 as far up in the SB 

as possible assuming sentinel speculation 

support and register renaming 

2. Insert the necessary checks and 

recovery code (assume ld, st, and div 

can cause exceptions) 
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Change Focus to Scheduling Loops 

for (j=0; j<100; j++) 

    b[j] = a[j] * 26 

r1 = _a 

r2 = _b 

r9 = r1 * 4 

 

 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Loop: 

Most of program execution 

time is spent in loops 

 

Problem:  How do we achieve 

compact schedules for loops 
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Basic Approach – List Schedule the Loop Body 

1 2 3 n Iteration 

time 

Schedule each iteration 

resources: 4 issue, 2 alu, 1 mem, 1 br 

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1 

time ops 

0 1, 4 

1 6 

2 2 

3 - 

4 - 

5 3, 5, 7 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Total time = 6 * n 
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Unroll Then Schedule Larger Body 

1,2 3,4 5,6 n-1,n Iteration 

time 

Schedule each iteration 

resources: 4 issue, 2 alu, 1 mem, 1 br 

latencies: add=1, cmpp = 1, mpy=3, ld = 2, st = 1, br = 1 

time ops 

0 1, 4 

1 1’, 6, 4’ 

2 2, 6’ 

3 2’ 

4 - 

5 3, 5, 7 

6 3’,5’,7’ 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

6: p1 = cmpp (r1 < r9) 

7: brct p1 Loop 

Total time = 7 * n/2 
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Problems With Unrolling 

 Code bloat 

» Typical unroll is 4-16x 

» Use profile statistics to only unroll “important” loops 

» But still, code grows fast 

 Barrier after across unrolled bodies 

» I.e., for unroll 2, can only overlap iterations 1 and 2, 3 and 4, … 

 Does this mean unrolling is bad? 

» No, in some settings its very useful 

 Low trip count 

 Lots of branches in the loop body 

» But, in other settings, there is room for improvement 



- 27 - 

Overlap Iterations Using Pipelining 

1 2 3 n Iteration 

time 

1 

2 

3 

n 

With hardware pipelining, while one instruction is 

in fetch, another is in decode, another in execute.  

Same thing here, multiple iterations are processed 

simultaneously, with each instruction in a separate 

stage.  1 iteration still takes the same time, but time 

to complete n iterations is reduced! 
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A 

B    A 

C    B    A 

 

D    C    B    A 

       D    C    B    A 

         … 

              D    C    B    A 

 

                     D   C     B 

                           D    C 

                                  D 

A Software Pipeline 

A 

B 

C 

D 

Loop body 

with 4 ops 

Prologue - 

fill the 

pipe 

Epilogue - 

drain the 

pipe 

Kernel – 

steady 

state 

time 

Steady state: 4 iterations executed 

simultaneously, 1 operation from each 

iteration.  Every cycle, an iteration starts 

and finishes when the pipe is full. 
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Creating Software Pipelines 

 Lots of software pipelining techniques out there 

 Modulo scheduling 

» Most widely adopted 

» Practical to implement, yields good results 

 Conceptual strategy 

» Unroll the loop completely 

» Then, schedule the code completely with 2 constraints 

 All iteration bodies have identical schedules 

 Each iteration is scheduled to start some fixed number of cycles later than 

the previous iteration 

» Initiation Interval (II) = fixed delay between the start of successive 

iterations 

» Given the 2 constraints, the unrolled schedule is repetitive (kernel) 

except the portion at the beginning (prologue) and end (epilogue) 

 Kernel can be re-rolled to yield a new loop 
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Creating Software Pipelines (2) 

 Create a schedule for 1 iteration of the loop such that 

when the same schedule is repeated at intervals of II 

cycles 

» No intra-iteration dependence is violated 

» No inter-iteration dependence is violated 

» No resource conflict arises between operation in same or distinct 

iterations 

 We will start out assuming Itanium-style hardware 

support, then remove it later 

» Rotating registers 

» Predicates 

» Software pipeline loop branch 
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Terminology 

Iter 1 

Iter 2 

Iter 3 

II 

time 

Initiation Interval (II) = fixed delay 

between the start of successive iterations 
 

Each iteration can be divided 

into stages consisting of II cycles 

each 

 

Number of stages in 1 iteration 

is termed the stage count (SC) 

 

Takes SC-1 cycles to fill/drain the pipe 



To Be Continued … 


