
EECS 583 – Class 11

Instruction Scheduling

University of Michigan

October 10, 2018

- 1 -

Announcements & Reading Material
 Reminder: HW 2 due Friday

» If you are stuck, catch up on piazza posts/answers

» Then talk to Ze

 Class project meetings

» Meeting signup sheet available next Wednes in class

» Think about partners/topic!

 Today’s class

» “The Importance of Prepass Code Scheduling for Superscalar and

Superpipelined Processors,” P. Chang et al., IEEE Transactions

on Computers, 1995, pp. 353-370.

 Next class (next Wednes, Monday is fall break)

» “Iterative Modulo Scheduling: An Algorithm for Software

Pipelining Loops”, B. Rau, MICRO-27, 1994, pp. 63-74.

- 2 -

From Last Time: Data Dependences

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 3 -

From Last Time: More Dependences

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control (C1)

if (r1 != 0)

 r2 = load(r1)

- 4 -

From Last Time: Dependence Graph

 Represent dependences between

operations in a block via a DAG

» Nodes = operations

» Edges = dependences

 Single-pass traversal required to

insert dependences

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

rf

rf
rf

rf
rf

rf

ra

ma

ma

mo

Instructions 1-4 have 0 cycle

control dependence to instruction 5

56 1 cycle control dependence

- 5 -

Simplified Dependence Edge Latencies
 Edge latency = minimum number of cycles necessary

between initiation of the predecessor and successor in
order to satisfy the dependence

 Register flow dependence, a b

» Latency of instruction a

 Register anti dependence, a b

» 1 cycle

 Register output dependence, a b

» 1 cycle

 Memory dependence (memory flow, memory anti,
memory output)

» 1 cycle

 Control dependence

» a branch: 0 cycle

» Branch a: 1 cycle

- 6 -

Class Problem

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

 sync 1

store: 1

 sync 1

1. Draw dependence graph

2. Label edges with type and

latencies

- 7 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 8 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 9 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 10 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 11 -

Class Problem

1

2

5

4 3

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

- 12 -

Operation Priority

 Priority – Need a mechanism to decide which ops to

schedule first (when you have multiple choices)

 Common priority functions

» Height – Distance from exit node

 Give priority to amount of work left to do

» Slackness – inversely proportional to slack

 Give priority to ops on the critical path

» Register use – priority to nodes with more source operands and

fewer destination operands

 Reduces number of live registers

» Uncover – high priority to nodes with many children

 Frees up more nodes

» Original order – when all else fails

- 13 -

Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

9 8

2
2

1

2 2

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1

2

3

4

5

6

7

8

9

10

10

1
1

8, 8

7

1 0, 1

0, 5

1

2

- 14 -

List Scheduling (aka Cycle Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 time = -1

 while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

 op can be scheduled at current time? (are the resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED/READY sets

 No, continue

- 15 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

9 8

2
2

1

2 2

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

1 0, 1

0, 5

1

2

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

- 16 -

List Scheduling (Operation Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 while (UNSCHEDULED not empty)

» op = operation in UNSCHEDULED with highest priority

» For time = estart to some deadline

 Op can be scheduled at current time? (are resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

 No, continue

» Deadline reached w/o scheduling op? (could not be scheduled)
 Yes, unplace all conflicting ops at op.estart, add them to

UNSCHEDULED

 Schedule op at estart

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

- 17 -

Homework Problem – Operation Scheduling

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

6 5

8

10

9m

2

2

1 1

1 1

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,4 5,5

6,6

1

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

- 18 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 19 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 20 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 21 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 22 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 23 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

 y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 24 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 25 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 26 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 27 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

 an exception when op1

 is taken

- 28 -

Restricted Speculation Model

 Most processors have 2 classes

of opcodes

» Potentially exception causing

 load, store, integer divide,

floating-point

» Never excepting

 Integer add, multiply, etc.

 Overflow is detected, but

does not terminate program

execution

 Restricted model

» R2 only applies to potentially

exception causing operations

» Can freely speculate all never

exception ops (still limited by

R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4 6 and

4 8

- 29 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

- 30 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 31 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

