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Announcements & Reading Material 
 Reminder: HW 2 due Friday 

» If you are stuck, catch up on piazza posts/answers 

» Then talk to Ze 

 Class project meetings 

» Meeting signup sheet available next Wednes in class 

» Think about partners/topic! 

 Today’s class  

» “The Importance of Prepass Code Scheduling for Superscalar and 

Superpipelined Processors,” P. Chang et al., IEEE Transactions 

on Computers, 1995, pp. 353-370. 

 Next class (next Wednes, Monday is fall break) 

» “Iterative Modulo Scheduling: An Algorithm for Software 

Pipelining Loops”, B. Rau, MICRO-27, 1994, pp. 63-74. 
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From Last Time: Data Dependences 

 Data dependences 

» If 2 operations access the same register, they are dependent 

» However, only keep dependences to most recent 

producer/consumer as other edges are redundant 

» Types of data dependences 

 

Flow Output Anti 

r1 = r2 + r3 

 

 

r4 = r1 * 6 

r1 = r2 + r3 

 

 

r1 = r4 * 6 

r1 = r2 + r3 

 

 

r2 = r5 * 6 
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From Last Time: More Dependences 

 Memory dependences 

» Similar as register, but through memory 

» Memory dependences may be certain or maybe 

 Control dependences 

» We discussed this earlier 

» Branch determines whether an operation is executed or not 

» Operation must execute after/before a branch 

Mem-flow Mem-output Mem-anti 

store (r1, r2) 

 

 

r3 = load(r1) 

store (r1, r2) 

 

 

store (r1, r3) 

r2 = load(r1) 

 

 

store (r1, r3) 

Control (C1) 

if (r1 != 0) 

 

 

    r2 = load(r1) 



- 4 - 

From Last Time: Dependence Graph 

 Represent dependences between 

operations in a block via a DAG 

» Nodes = operations 

» Edges = dependences 

 Single-pass traversal required to  

insert dependences 

 Example 

1: r1 = load(r2) 

2: r2 = r1 + r4 

3: store (r4, r2) 

4: p1 = cmpp (r2 < 0) 

5: branch if p1 to BB3 

6: store (r1, r2) 

1 

2 

5 

4 

3 

6 
BB3: 

rf 

rf 
rf 

rf 
rf 

rf 

ra 

ma 

ma 

mo 

Instructions 1-4 have 0 cycle 

control dependence to instruction 5 

 

56 1 cycle control dependence 
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Simplified Dependence Edge Latencies 
 Edge latency = minimum number of cycles necessary 

between initiation of the predecessor and successor in 
order to satisfy the dependence 

 Register flow dependence, a  b 

» Latency of instruction a 

 Register anti dependence, a  b 

» 1 cycle 

 Register output dependence, a  b 

» 1 cycle 

 Memory dependence (memory flow, memory anti, 
memory output) 

» 1 cycle 

 Control dependence 

» a  branch: 0 cycle 

» Branch  a: 1 cycle 
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Class Problem 

1. r1 = load(r2) 

2. r2 = r2 + 1 

3. store (r8, r2) 

4. r3 = load(r2) 

5. r4 = r1 * r3 

6. r5 = r5 + r4 

7. r2 = r6 + 4 

8. store (r2, r5) 

machine model 

 

latencies 

 

add:    1 

mpy:    3 

load:   2 

           sync 1 

store: 1 

           sync 1 

1. Draw dependence graph 

2. Label edges with type and 

latencies 
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Dependence Graph Properties - Estart 

 Estart = earliest start time, (as soon as possible - ASAP) 

» Schedule length with infinite resources (dependence height) 

» Estart = 0 if node has no predecessors 

» Estart = MAX(Estart(pred) + latency) for each predecessor node 

» Example 
1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 

3 

2 

1 

3 
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Lstart 

 Lstart = latest start time, ALAP  

» Latest time a node can be scheduled s.t. sched length not 

increased beyond infinite resource schedule length 

» Lstart = Estart if node has no successors 

» Lstart = MIN(Lstart(succ) - latency) for each successor node 

» Example 1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 
3 

2 

1 

3 
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Slack 

 Slack =  measure of the scheduling freedom 

» Slack = Lstart – Estart for each node 

» Larger slack means more mobility 

» Example 

1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 
3 

2 

1 

3 
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Critical Path 

 Critical operations = Operations with slack = 0 

» No mobility, cannot be delayed without extending the schedule 

length of the block 

» Critical path = sequence of critical operations from node with no 

predecessors to exit node, can be multiple crit paths 

1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 

3 

2 

1 

3 
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Class Problem 

1 

2 

5 

4 3 

6 

9 

7 

1 
2 

1 

3 

3 

1 

1 
1 

8 

2 

2 

1 

2 

Node Estart Lstart Slack 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Critical path(s) =  
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Operation Priority 

 Priority – Need a mechanism to decide which ops to 

schedule first (when you have multiple choices) 

 Common priority functions 

» Height – Distance from exit node 

 Give priority to amount of work left to do 

» Slackness – inversely proportional to slack 

 Give priority to ops on the critical path 

» Register use – priority to nodes with more source operands and 

fewer destination operands 

 Reduces number of live registers  

» Uncover – high priority to nodes with many children 

 Frees up more nodes 

» Original order – when all else fails 
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Height-Based Priority 

 Height-based is the most common 

» priority(op) = MaxLstart – Lstart(op) + 1 

2 

3 

5 

4 

6 

9 8 

2 
2 

1 

2 2 

2 
1 

2 

0, 0 

2, 2 2, 3 

4, 4 

6, 6 

4, 7 7, 7 

op priority 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

10 

1 
1 

8, 8 

7 

1 0, 1 

0, 5 

1 

2 
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List Scheduling (aka Cycle Scheduler) 

 Build dependence graph, calculate priority 

 Add all ops to UNSCHEDULED set 

 time = -1 

 while (UNSCHEDULED is not empty) 

» time++ 

» READY = UNSCHEDULED ops whose incoming dependences 

have been satisfied 

» Sort READY using priority function 

» For each op in READY (highest to lowest priority) 

 op can be scheduled at current time? (are the resources free?) 

 Yes, schedule it, op.issue_time = time 

 Mark resources busy in RU_map relative to issue time 

 Remove op from UNSCHEDULED/READY sets 

 No, continue 
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Cycle Scheduling Example 

RU_map 

time  ALU  MEM 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2m 

3m 

5m 

4 

6 

9 8 

2 
2 

1 

2 2 

2 
1 

2 

0, 0 

2, 2 2, 3 

4, 4 

6, 6 

4, 7 7, 7 

10 

1 
1 

8, 8 

7m 

1 0, 1 

0, 5 

1 

2 

Schedule 

time  Ready   Placed 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

op   priority 

1 8 

2 9 

3 7 

4 6 

5 5 

6 3 

7 4 

8 2 

9 2 

10 1 
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List Scheduling (Operation Scheduler) 

 Build dependence graph, calculate priority 

 Add all ops to UNSCHEDULED set 

 while (UNSCHEDULED not empty) 

» op = operation in UNSCHEDULED with highest priority 

» For time = estart to some deadline 

 Op can be scheduled at current time? (are resources free?) 

 Yes, schedule it, op.issue_time = time 

 Mark resources busy in RU_map relative to issue time 

 Remove op from UNSCHEDULED 

 No, continue 

» Deadline reached w/o scheduling op? (could not be scheduled) 
 Yes, unplace all conflicting ops at op.estart, add them to 

UNSCHEDULED 

 Schedule op at estart 

 Mark resources busy in RU_map relative to issue time 

 Remove op from UNSCHEDULED 
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Homework Problem – Operation Scheduling 

1m 

2 

Machine: 2 issue, 1 memory port, 1 ALU 

Memory port = 2 cycles, pipelined 

ALU = 1 cycle 

2m 

4m 

7 

3 

6 5 

8 

10 

9m 

2 

2 

1 1 

1 1 

1 

2 

1. Calculate height-based priorities 

2. Schedule using Operation scheduler 

0,1 

2,3 

3,5 
3,4 

4,4 

2,2 

0,0 

0,4 5,5 

6,6 

1 

RU_map 

time  ALU  MEM 

0 

1 
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Schedule 

time  Ready   Placed 
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Generalize Beyond a Basic Block 

 Superblock  

» Single entry 

» Multiple exits (side exits) 

» No side entries 

 Schedule just like a BB 

» Priority calculations needs change 

» Dealing with control deps 
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Lstart in a Superblock 

 Not a single Lstart any more 

» 1 per exit branch (Lstart is a vector!) 

» Exit branches have probabilities 
1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 
op Estart Lstart0 Lstart1 

1   

2  

3  

4  

5  

6  

1 
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Operation Priority in a Superblock 

 Priority – Dependence height and speculative yield 

» Height from op to exit * probability of exit 

» Sum up across all exits in the superblock 

1 

2 

4 

1 

3 

1 

3 

5 

6 

Exit0 (25%) 

Exit1 (75%) 

1 

2 

1 

op Lstart0 Lstart1 Priority 

1   

2  

3  

4  

5  

6  

1 

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1)) 
valid late times for op 
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Dependences in a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

* Data dependences 

shown, all are reg flow 

except 1 6 is reg anti 

 

* Dependences define 

precedence ordering of 

operations to ensure 

correct execution 

semantics 

 

* What about control 

dependences? 

 

* Control dependences 

define precedence of 

ops with respect to 

branches 

Superblock 

Note: Control flow in red bold 
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Conservative Approach to Control Dependences 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r3 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock 
* Make branches 

barriers, nothing 

moves above or below 

branches 

 

* Schedule each BB in 

SB separately 

 

* Sequential schedules 

 

* Whole purpose of a 

superblock is lost 

Note: Control flow in red bold 



- 23 - 

Upward Code Motion Across Branches 

 Restriction 1a (register op) 

» The destination of op is not in 

liveout(br) 

» Wrongly kill a live value 

 Restriction 1b (memory op) 

» Op does not modify the memory 

» Actually live memory is what 

matters, but that is often too hard to 

determine 

 Restriction 2 

» Op must not cause an exception that 

may terminate the program execution 

when br is taken 

» Op is executed more often than it is 

supposed to (speculated) 

» Page fault or cache miss are ok 

 Insert control dep when either 

restriction is violated 

 

 

… 

if (x > 0) 

    y = z / x 

… 

1: branch x <= 0 

2: y = z / x  

control flow graph 
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Downward Code Motion Across Branches 

 Restriction 1 (liveness) 

» If no compensation code 

 Same restriction as before, 
destination of op is not liveout 

» Else, no restrictions 

 Duplicate operation along both 
directions of branch if 
destination is liveout 

 Restriction 2 (speculation) 

» Not applicable, downward 
motion is not speculation 

 Again, insert control dep when the 
restrictions are violated 

 Part of the philosphy of 
superblocks is no compensation 
code inseration hence R1 is 
enforced! 

 

 

… 

a = b * c 

if (x > 0) 

     

else 

… 

1: a = b * c 

2: branch x <= 0 

control flow graph 
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Add Control Dependences to a Superblock 

1: r1 = r2 + r3 

2: r4 = load(r1) 

3: p1 = cmpp(r2 == 0) 

4: branch p1 Exit1 

5: store (r4, -1) 

6: r2 = r2 – 4 

7: r5 = load(r2) 

8: p2 = cmpp(r5 > 9) 

9: branch p2 Exit2 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Superblock Assumed liveout sets 

{r1} 

{r2} 

{r5} 

Notes: All branches are control 

dependent on one another. 

If no compensation, all ops dependent 

on last branch 

All ops 

have cdep 

to op 9! 
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

Draw the dependence graph 
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Relaxing Code Motion Restrictions 

 Upward code motion is generally 

more effective 

» Speculate that an op is useful (just 

like an out-of-order processor with 

branch pred) 

» Start ops early, hide latency, overlap 

execution, more parallelism 

 Removing restriction 1 

» For register ops – use register 

renaming 

» Could rename memory too, but 

generally not worth it 

 Removing restriction 2 

» Need hardware support (aka 

speculation models) 

 Some ops don’t cause exceptions 

 Ignore exceptions 

 Delay exceptions 

 

1: branch x <= 0 

2: y = z / x  

R1: y is not in liveout(1) 

R2: op 2 will never cause 

       an exception when op1 

       is taken 
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Restricted Speculation Model 

 Most processors have 2 classes 

of opcodes 

» Potentially exception causing 

 load, store, integer divide, 

floating-point 

» Never excepting 

 Integer add, multiply, etc. 

 Overflow is detected, but 

does not terminate program 

execution 

 Restricted model 

» R2 only applies to potentially 

exception causing operations 

» Can freely speculate all never 

exception ops (still limited by 

R1 however) 

1 

2 

3 

5 

6 

4 

7 

8 

9 

We assumed 

restricted 

speculation  

when this 

graph was  

drawn. 

 

This is why 

there is no  

cdep between  

4  6 and 

4 8 
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General Speculation Model 

 2 types of exceptions 

» Program terminating (traps) 

 Div by 0, illegal address 

» Fixable (normal and handled 
at run time) 

 Page fault, TLB miss 

 General speculation 

» Processor provides non-
trapping versions of all 
operations (div, load, etc) 

» Return some bogus value (0) 
when error occurs 

» R2 is completely ignored, 
only R1 limits speculation 

» Speculative ops converted 
into non-trapping version 

» Fixable exceptions handled as 
usual for non-trapping ops 

1 

2 

3 

5 

6 

4 

7 

8 

9 

Remove 

edge from 

4 to 7 
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Programming Implications of General Spec 

 Correct  program 

» No problem at all 

» Exceptions will only result 

when branch is taken 

» Results of excepting 

speculative operation(s) will 

not be used for anything 

useful (R1 guarantees this!) 

 Program debugging 

» Non-trapping ops make this 

almost impossible 

» Disable general speculation 

during program debug phase 

 

1: branch x == 0 

2: y = *x 

3: z = y + 4 

4: *w = z  

2’: y = *x 

3’: z = y + 4 

1: branch x == 0 

4: *w = z  
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Class Problem 

1: r1 = r7 + 4 

2: branch p1 Exit1 

3: store (r1, -1) 

4: branch p2 Exit2 

5: r2 = load(r7) 

6: r3 = r2 – 4 

7: branch p3 Exit3 

8: r4 = r3 / r8 

{r4} 

{r1} 

{r4, r8} 

{r2} 

1. Starting with the graph assuming restricted 

speculation, what edges can be removed if 

general speculation support is provided? 

2. With more renaming, what dependences could 

be removed? 


