
EECS 583 – Class 11

Instruction Scheduling

University of Michigan

October 10, 2018

- 1 -

Announcements & Reading Material
 Reminder: HW 2 due Friday

» If you are stuck, catch up on piazza posts/answers

» Then talk to Ze

 Class project meetings

» Meeting signup sheet available next Wednes in class

» Think about partners/topic!

 Today’s class

» “The Importance of Prepass Code Scheduling for Superscalar and

Superpipelined Processors,” P. Chang et al., IEEE Transactions

on Computers, 1995, pp. 353-370.

 Next class (next Wednes, Monday is fall break)

» “Iterative Modulo Scheduling: An Algorithm for Software

Pipelining Loops”, B. Rau, MICRO-27, 1994, pp. 63-74.

- 2 -

From Last Time: Data Dependences

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 3 -

From Last Time: More Dependences

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control (C1)

if (r1 != 0)

 r2 = load(r1)

- 4 -

From Last Time: Dependence Graph

 Represent dependences between

operations in a block via a DAG

» Nodes = operations

» Edges = dependences

 Single-pass traversal required to

insert dependences

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

rf

rf
rf

rf
rf

rf

ra

ma

ma

mo

Instructions 1-4 have 0 cycle

control dependence to instruction 5

56 1 cycle control dependence

- 5 -

Simplified Dependence Edge Latencies
 Edge latency = minimum number of cycles necessary

between initiation of the predecessor and successor in
order to satisfy the dependence

 Register flow dependence, a  b

» Latency of instruction a

 Register anti dependence, a  b

» 1 cycle

 Register output dependence, a  b

» 1 cycle

 Memory dependence (memory flow, memory anti,
memory output)

» 1 cycle

 Control dependence

» a  branch: 0 cycle

» Branch  a: 1 cycle

- 6 -

Class Problem

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

 sync 1

store: 1

 sync 1

1. Draw dependence graph

2. Label edges with type and

latencies

- 7 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 8 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 9 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 10 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 11 -

Class Problem

1

2

5

4 3

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

- 12 -

Operation Priority

 Priority – Need a mechanism to decide which ops to

schedule first (when you have multiple choices)

 Common priority functions

» Height – Distance from exit node

 Give priority to amount of work left to do

» Slackness – inversely proportional to slack

 Give priority to ops on the critical path

» Register use – priority to nodes with more source operands and

fewer destination operands

 Reduces number of live registers

» Uncover – high priority to nodes with many children

 Frees up more nodes

» Original order – when all else fails

- 13 -

Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

9 8

2
2

1

2 2

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1

2

3

4

5

6

7

8

9

10

10

1
1

8, 8

7

1 0, 1

0, 5

1

2

- 14 -

List Scheduling (aka Cycle Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 time = -1

 while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

 op can be scheduled at current time? (are the resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED/READY sets

 No, continue

- 15 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

9 8

2
2

1

2 2

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

1 0, 1

0, 5

1

2

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

- 16 -

List Scheduling (Operation Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 while (UNSCHEDULED not empty)

» op = operation in UNSCHEDULED with highest priority

» For time = estart to some deadline

 Op can be scheduled at current time? (are resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

 No, continue

» Deadline reached w/o scheduling op? (could not be scheduled)
 Yes, unplace all conflicting ops at op.estart, add them to

UNSCHEDULED

 Schedule op at estart

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

- 17 -

Homework Problem – Operation Scheduling

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

6 5

8

10

9m

2

2

1 1

1 1

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,4 5,5

6,6

1

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

- 18 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 19 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 20 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 21 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 22 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 23 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

 y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 24 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 25 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 26 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 27 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

 an exception when op1

 is taken

- 28 -

Restricted Speculation Model

 Most processors have 2 classes

of opcodes

» Potentially exception causing

 load, store, integer divide,

floating-point

» Never excepting

 Integer add, multiply, etc.

 Overflow is detected, but

does not terminate program

execution

 Restricted model

» R2 only applies to potentially

exception causing operations

» Can freely speculate all never

exception ops (still limited by

R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4  6 and

4 8

- 29 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

- 30 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 31 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

