
EECS 583 – Class 10

Finish Optimization

Intro. to Code Generation

University of Michigan

October 8, 2018

- 1 -

Reading Material + Announcements

 Today’s class

» “Machine Description Driven Compilers for EPIC Processors”,

B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-

98-40, 1998.

 Next class

» “The Importance of Prepass Code Scheduling for Superscalar and

Superpipelined Processors,” P. Chang et al., IEEE Transactions

on Computers, 1995, pp. 353-370.

 Reminder: HW 2

» Due this Friday, You should have started by now

» Talk to Ze if you are stuck

 Class project ideas

» Meeting signup sheet available next Wednes in class

» Think about partners/topic!

- 2 -

Class Problem 3 - Solution

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

1. r10 = r1 * r2

2. r11 = r10 + r3

3. r12 = r11 + r4

4. r13 = r12 – r5

5. r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

 Account for latency and arrival times

Expression after back substitution

r14 = r1 * r2 + r3 + r4 - r5 + r6

Want to perform operations on r1,r2,r3,r6 first

due to operand arrival times

t1 = r1 * r2

t2 = r3 + r6

The multiply will take 3 cycles, so combine t2

with r4 and then r5, and then finally t1

t3 = t2 + r4

t4 = t3 – r5

r14 = t1 + t4

Equivalently, the fully parenthesized expression

r14 = ((r1 * r2) + (((r3 + r6) + r4) - r5))

- 3 -

Optimizing Unrolled Loops

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

Not possible!

loop:

unroll 3 times

- 4 -

Register Renaming on Unrolled Loop

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 5 -

Register Renaming is Not Enough!

 Still not much overlap possible

 Problems

» r2, r4, r6 sequentialize the

iterations

» Need to rename these

 2 specialized renaming optis

» Accumulator variable

expansion (r6)

» Induction variable expansion

(r2, r4)

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 6 -

Accumulator Variable Expansion

 Accumulator variable

» x = x + y or x = x – y

» where y is loop variant!!

 Create n-1 temporary

accumulators

 Each iteration targets a

different accumulator

 Sum up the accumulator

variables at the end

 May not be safe for floating-

point values

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r16 = r16 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 7 -

Induction Variable Expansion

 Induction variable

» x = x + y or x = x – y

» where y is loop invariant!!

 Create n-1 additional induction

variables

 Each iteration uses and

modifies a different induction

variable

 Initialize induction variables to

init, init+step, init+2*step, etc.

 Step increased to n*original

step

 Now iterations are completely

independent !!

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 12

r4 = r4 + 12

r11 = load(r12)

r13 = load(r14)

r15 = r11 * r13

r16 = r16 + r15

r12 = r12 + 12

r14 = r14 + 12

r21 = load(r22)

r23 = load(r24)

r25 = r21 * r23

r26 = r26 + r25

r22 = r22 + 12

r24 = r24 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

r12 = r2 + 4, r22 = r2 + 8

r14 = r4 + 4, r24 = r4 + 8

- 8 -

Better Induction Variable Expansion

 With base+displacement

addressing, often don’t need

additional induction variables

» Just change offsets in each

iterations to reflect step

» Change final increments to n

* original step

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r11 = load(r2+4)

r13 = load(r4+4)

r15 = r11 * r13

r16 = r16 + r15

r21 = load(r2+8)

r23 = load(r4+8)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 12

r4 = r4 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 9 -

Homework Problem

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

- 10 -

Homework Problem - Answer

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400)

 goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

r1 = load(r2)

r5 = r1 + 3

r6 = r6 + r5

r2 = r2 + 4

r11 = load(r2)

r15 = r11 + 3

r6 = r6 + r15

r2 = r2 + 4

r21 = load(r2)

r25 = r21 + 3

r6 = r6 + r25

r2 = r2 + 4

if (r2 < 400)

 goto loop

loop:

after renaming and

tree height reduction

r1 = load(r2)

r5 = r1 + 3

r6 = r6 + r5

r11 = load(r2+4)

r15 = r11 + 3

r16 = r16 + r15

r21 = load(r2+8)

r25 = r21 + 3

r26 = r26 + r25

r2 = r2 + 12

if (r2 < 400)

 goto loop

r6 = r6 + r16

r6 = r6 + r26

r16 = r26 = 0

loop:

after acc and

ind expansion

- 11 -

Course Project – Time to Start Thinking About This

 Mission statement: Design and implement something
“interesting” in a compiler
» LLVM preferred, but others are fine

» Groups of 2-4 people (1 or 5 persons is possible in some cases)

» Extend existing research paper or go out on your own

 Topic areas (Not in any priority order)
» Automatic parallelization/SIMDization

» High level synthesis/FPGAs

» Approximate computing

» Memory system optimization

» Reliability

» Energy

» Security

» Dynamic optimization

» Optimizing for GPUs

- 12 -

Course Projects – Timetable

 Now

» Start thinking about potential topics, identify group members

 Oct 22-26 (week after fall break): Project discussions

» No class that week

» Ze and I will meet with each group, slot signups in class Wed Oct 17

» Ideas/proposal discussed at meeting

» Short written proposal (a paragraph plus some references) due

Wednesday, Oct 31 from each group, submit via email

 Nov 12 – End of semester: Research presentations

» Each group present a research paper related to their project (15 mins + 5

mins Q&A) – more later on content of presentation

 Late Nov

» Quick discussion with each group on progress, slots after class

 Dec 12-17: Project demos

» Each group, 20 min slot - Presentation/Demo/whatever you like

» Turn in short report on your project

- 13 -

Sample Project Ideas (Traditional)
 Memory system

» Cache profiler for LLVM IR – miss rates, stride determination

» Data cache prefetching, cache bypassing, scratch pad memories

» Data layout for improved cache behavior

» Advanced loads – move up to hide latency

 Control/Dataflow optimization

» Superblock formation

» Make an LLVM optimization smarter with profile data

» Implement optimization not in LLVM

 Reliability

» AVF profiling, vulnerability analysis

» Selective code duplication for soft error protection

» Low-cost fault detection and/or recovery

» Efficient soft error protection on GPUs/SIMD

- 14 -

Sample Project Ideas (Traditional cont)
 Energy

» Minimizing instruction bit flips

» Deactivate parts of processor (FUs, registers, cache)

» Use different processors (e.g., big.LITTLE)

 Security

» Efficient taint/information flow tracking

» Automatic mitigation methods – obfuscation for side channels

» Preventing control flow exploits

 Dealing with pointers

» Memory dependence analysis – try to improve on LLVM

» Using dependence speculation for optimization or code

reordering

- 15 -

Sample Project Ideas (Parallelism)

 Optimizing for GPUs

» Dumb OpenCL/CUDA smart OpenCL/CUDA – selection of

threads/blocks and managing on-chip memory

» Reducing uncoalesced memory accesses – measurement of

uncoalesced accesses, code restructuring to reduce these

» Matlab CUDA/OpenCL

» Kernel partitioning across multiple GPUs

 Parallelization/SIMDization

» DOALL loop parallelization, dependence breaking

transformations

» DSWP parallelization

» Access-execute program decomposition

- 16 -

More Project Ideas

 Dynamic optimization (Dynamo, LLVM, Dalvik VM)

» Run-time DOALL loop parallelization

» Run-time program analysis for reliability/security

» Run-time profiling tools (cache, memory dependence, etc.)

 Binary optimizer

» Arm binary to LLVM IR, de-register allocation

 High level synthesis

» Custom instructions - finding most common instruction patterns,

constrained by inputs/outputs

» Int/FP precision analysis, Float to fixed point

» Custom data path synthesis

» Customized memory systems (e.g., sparse data structs)

- 17 -

And Yet a Few More

 Approximate computing

» New approximation optimizations (lookup tables, loop

perforation, tiling)

» Impact of local approximation on global program outcome

» Program distillation - create a subset program with equivalent

memory/branch behavior

 Machine learning

» Using ML to guide optimizations (e.g., unroll factors)

» Using ML to guide optimization choices (which optis/order)

 Remember, don’t be constrained by my suggestions, you

can pick other topics!

- 18 -

Code Generation

 Map optimized “machine-independent” assembly to final
assembly code

 Input code

» Classical optimizations

» ILP optimizations

» Formed regions (sbs, hbs), applied if-conversion (if appropriate)

 Virtual physical binding

» 2 big steps

» 1. Scheduling

 Determine when every operation executions

 Create MultiOps

» 2. Register allocation

 Map virtual physical registers

 Spill to memory if necessary

- 19 -

Scheduling Operations

 Need information about the processor

» Number of resources, latencies, encoding limitations

» For example:

 2 issue slots, 1 memory port, 1 adder/multiplier

 load = 2 cycles, add = 1 cycle, mpy = 3 cycles; all fully pipelined

 Each operand can be register or 6 bit signed literal

 Need ordering constraints amongst operations

» What order defines correct program execution?

 Given multiple operations that can be scheduled, how do you pick the

best one?

» Is there a best one? Does it matter?

» Are decisions final?, or is this an iterative process?

 How do we keep track of resources that are busy/free

» Reservation table: Resources x time

- 20 -

More Stuff to Worry About

 Model more resources

» Register ports, output busses

» Non-pipelined resources

 Dependent memory operations

 Multiple clusters

» Cluster = group of FUs connected to a set of register files such that an

FU in a cluster has immediate access to any value produced within the

cluster

» Multicluster = Processor with 2 or more clusters, clusters often

interconnected by several low-bandwidth busses

 Bottom line = Non-uniform access latency to operands

 Scheduler has to be fast

» NP complete problem

» So, need a heuristic strategy

 What is better to do first, scheduling or register allocation?

- 21 -

Schedule Before or After Register Allocation?

r1 = load(r10)

r2 = load(r11)

r3 = r1 + 4

r4 = r1 – r12

r5 = r2 + r4

r6 = r5 + r3

r7 = load(r13)

r8 = r7 * 23

store (r8, r6)

R1 = load(R1)

R2 = load(R2)

R5 = R1 + 4

R1 = R1 – R3

R2 = R2 + R1

R2 = R2 + R5

R5 = load(R4)

R5 = R5 * 23

store (R5, R2)

physical registers virtual registers

Too many artificial ordering constraints if schedule after allocation!!!!

But, need to schedule after allocation to bind spill code

Solution, do both! Prepass schedule, register allocation, postpass schedule

- 22 -

Data Dependences

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 23 -

More Dependences

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

» Note, control flow (C0) is not a dependence

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control (C1)

if (r1 != 0)

 r2 = load(r1)

- 24 -

Dependence Graph

 Represent dependences between operations in a block via

a DAG

» Nodes = operations

» Edges = dependences

 Single-pass traversal required to

insert dependences

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

- 25 -

Dependence Edge Latencies

 Edge latency = minimum number of cycles necessary
between initiation of the predecessor and successor in
order to satisfy the dependence

 Register flow dependence, a b

» Latest_write(a) – Earliest_read(b) (earliest_read typically 0)

 Register anti dependence, a b

» Latest_read(a) – Earliest_write(b) + 1 (latest_read typically equal
to earliest_write, so anti deps are 1 cycle)

 Register output dependence, a b

» Latest_write(a) – Earliest_write(b) + 1 (earliest_write typically
equal to latest_write, so output deps are 1 cycle)

 Negative latency

» Possible, means successor can start before predecessor

» We will only deal with latency >= 0, so MAX any latency with 0

- 26 -

Dependence Edge Latencies (2)

 Memory dependences, a b (all types, flow, anti,
output)

» latency = latest_serialization_latency(a) –
earliest_serialization_latency(b) + 1 (generally this is 1)

 Control dependences

» branch b

 Op b cannot issue until prior branch completed

 latency = branch_latency

» a branch

 Op a must be issued before the branch completes

 latency = 1 – branch_latency (can be negative)

 conservative, latency = MAX(0, 1-branch_latency)

- 27 -

Class Problem

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

 sync 1

store: 1

 sync 1

1. Draw dependence graph

2. Label edges with type and

latencies

- 28 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 29 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 30 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 31 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 32 -

Class Problem

1

2

5

4 3

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

- 33 -

Operation Priority

 Priority – Need a mechanism to decide which ops to

schedule first (when you have multiple choices)

 Common priority functions

» Height – Distance from exit node

 Give priority to amount of work left to do

» Slackness – inversely proportional to slack

 Give priority to ops on the critical path

» Register use – priority to nodes with more source operands and

fewer destination operands

 Reduces number of live registers

» Uncover – high priority to nodes with many children

 Frees up more nodes

» Original order – when all else fails

- 34 -

Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

9 8

2
2

1

2 2

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1

2

3

4

5

6

7

8

9

10

10

1
1

8, 8

7

1 0, 1

0, 5

1

2

To Be Continued…

