Control Flow II:
D dominators, Loop Detection

EECS 483 – Lecture 20
University of Michigan
Wednesday, November 15, 2006
Announcements and Reading

- Simon’s office hours on Thurs (11/16)
 - Moved to 10am-12pm, 4817 CSE
 - Exam 1 problem 11 was incorrectly graded
 - Follow set for B should contain z
 - See Simon to get your points back

- Project 3/4 – postponed until Monday
 - Group formation for Project 3/4

- Today’s class material:
 - 10.4, end of 10.9 (dominator algorithm)
Defn Control Flow Graph – Directed graph, $G = (V,E)$ where each vertex V is a basic block and there is an edge E, $v1 (BB1) \rightarrow v2 (BB2)$ if BB2 can immediately follow BB1 in some execution sequence

- A BB has an edge to all blocks it can branch to
- Standard representation used by many compilers
- Often have 2 pseudo vertices
 - entry node
 - exit node
Control Flow Analysis

- Determining properties of the program branch structure
 - Static properties \(\rightarrow\) Not executing the code
 - Properties that exist regardless of the run-time branch directions
 - Use CFG
 - Optimize efficiency of control flow structure

- Determine instruction execution properties
 - Global optimization of computation operations
 - Discuss this later
Dominator

- **Defn: Dominator** – Given a CFG(V, E, Entry, Exit), a node x dominates a node y, if every path from the Entry block to y contains x

- **3 properties of dominators**
 - Each BB dominates itself
 - If x dominates y, and y dominates z, then x dominates z
 - If x dominates z and y dominates z, then either x dominates y or y dominates x

- **Intuition**
 - Given some BB, which blocks are guaranteed to have executed prior to executing the BB
Dominator Examples

Entry

BB1

BB2 BB3

BB4

BB5 BB6

BB7

Exit

Entry

BB1

BB2

BB4

BB6

Exit

Entry

BB1

BB2

BB3

BB4

BB5

BB6

Exit
Dominator Analysis

- Compute \(\text{dom}(\text{BB}i) = \text{set of BBs that dominate BB}i \)
- Initialization
 - \(\text{Dom(entry)} = \text{entry} \)
 - \(\text{Dom(everything else)} = \text{all nodes} \)
- Iterative computation
 - while change, do
 - change = false
 - for each BB (except the entry BB)
 - \(\text{tmp(BB)} = \text{BB} + \{\text{intersect of Dom of all predecessor BB's}\} \)
 - if (\(\text{tmp(BB)} \neq \text{dom(BB)} \))
 - \(\text{dom(BB)} = \text{tmp(BB)} \)
 - change = true
Immediate Dominator

- **Defn: Immediate dominator (idom)** – Each node n has a unique immediate dominator m that is the last dominator of n on any path from the initial node to n
 - Closest node that dominates
Class Problem

Calculate the DOM set for each BB

Also identify the iDOM for each BB
Post Dominator

- Reverse of dominator
- **Defn: Post Dominator** – Given a CFG(V, E, Entry, Exit), a node x post dominates a node y, if every path from y to the Exit contains x

- Intuition
 » Given some BB, which blocks are guaranteed to have executed after executing the BB
Post Dominator Examples

```
Entry

BB1

BB2    BB3

BB4

BB5    BB6

BB7

Exit

```

```
Entry

BB1

BB2

BB3

BB4

BB5

BB6

Exit

```
Post Dominator Analysis

- Compute $\text{pdom}(\text{BB}_i) = \text{set of BBs that post dominate BB}_i$

- Initialization
 - $\text{Pdom}(\text{exit}) = \text{exit}$
 - $\text{Pdom}(\text{everything else}) = \text{all nodes}$

- Iterative computation
 - while change, do
 - change = false
 - for each BB (except the exit BB)
 - $\text{tmp}(\text{BB}) = \text{BB} + \{\text{intersect of } \text{pdom} \text{ of all successor BB’s}\}$
 - if ($\text{tmp}(\text{BB}) \neq \text{pdom}(\text{BB})$)
 - $\text{pdom}(\text{BB}) = \text{tmp}(\text{BB})$
 - change = true
Immediate Post Dominator

- **Defn:** Immediate post dominator (ipdom) – Each node n has a unique immediate post dominator m that is the first post dominator of n on any path from n to the Exit
 - Closest node that post dominates
 - First breadth-first successor that post dominates a node
Calculate the PDOM set for each BB
Why Do We Care About Dominators?

- Loop detection – next subject
- Dominator
 - Guaranteed to execute before
 - Redundant computation – an op can only be redundant if it is computed in a dominating BB
 - Most global optimizations use dominance info
- Post dominator
 - Guaranteed to execute after
 - Make a guess (ie 2 pointers do not point to the same locn)
 - Check they really do not point to one another in the post dominating BB
Natural Loops

- Cycle suitable for optimization
 » Discuss opti later

- 2 properties:
 » Single entry point called the header
 • Header dominates all blocks in the loop
 » Must be one way to iterate the loop (ie at least 1 path back to the header from within the loop) called a backedge

- Backedge detection
 » Edge, $x \rightarrow y$ where the target (y) dominates the source (x)
Backedge Example

BE = target dominates source

E → 1 : No
1 → 2 : No
2 → 3 : No
2 → 6 : No
3 → 4 : No
3 → 5 : No
4 → 3 : Yes
4 → 5 : No
5 → 3 : Yes
5 → 6 : No
6 → 2 : Yes
6 → X : No

In this example, BE = edge from higher BB to lower BB, not always this easy!
Loop Detection

- Identify all backedges using dominance info
- Each backedge \((x \rightarrow y)\) defines a loop
 - Loop header is the backedge target \((y)\)
 - Loop BB – basic blocks that comprise the loop
 - All predecessor blocks of \(x\) for which control can reach \(x\) without going through \(y\) are in the loop
- Merge loops with the same header
 - I.e., a loop with 2 continues
 - \(\text{LoopBackedge} = \text{LoopBackedge}_1 + \text{LoopBackedge}_2\)
 - \(\text{LoopBB} = \text{LoopBB}_1 + \text{LoopBB}_2\)
- Important property
 - Header dominates all LoopBB
Loop Detection Example

Loop detection: 3 steps:
- Identify backedges
- Compute LoopBB
- Merge loops with the same header

Loop1: defined by 6 \rightarrow 2
 LoopBB = 2,3,4,5,6
Loop2: defined by 4 \rightarrow 3
 LoopBB = 3,4
Loop3: defined by 5 \rightarrow 3
 LoopBB = 3,4,5

Merge loops 2,3
 LoopBB = 3,4,5
 Backedges = 4 \rightarrow 3, 5 \rightarrow 3
Class Problem

Find the loops

What are the header(s)?

What are the backedge(s)?
Important Parts of a Loop

- Header, LoopBB
- Backedges, BackedgeBB
- Exitedges, ExitBB
 - For each LoopBB, examine each outgoing edge
 - If the edge is to a BB not in LoopBB, then it's an exit
- Preheader (Preloop)
 - New block before the header (falls through to header)
 - Whenever you invoke the loop, preheader executed
 - Whenever you iterate the loop, preheader NOT executed
 - All edges entering header
 - Backedges – no change, All others - retarget to preheader
- Postheader (Postloop) - analogous
ExitBB/Preheader Example

Blue loop: BB6
Yellow loop: Exit

Note, preheader for blue loop is contained in yellow loop
Characteristics of a Loop

- **Nesting** (generally within a procedure scope)
 - Inner loop – Loop with no loops contained within it
 - Outer loop – Loop contained within no other loops
 - Nesting depth
 - \(\text{depth(outer loop)} = 1 \)
 - \(\text{depth} = \text{depth(parent or containing loop)} + 1 \)

- **Trip count** (average trip count)
 - How many times (on average) does the loop iterate
 - for \((I=0; I<100; I++)\) \(\rightarrow\) trip count = 100
 - Ave trip count = \(\text{weight(header)} / \text{weight(preheader)}\)
Trip Count Calculation Example

Calculate the trip counts for all the loops in the graph

Blue loop:
\[w(\text{header}) = w(\text{BB3}) = 1240 + 60 + 700 = 2000 \]
\[w(\text{preheader}) = w(\text{BB2}) = 60 \] (why not 100???)
avg trip count = \(\frac{2000}{60} = 33.3 \)

Yellow loop:
\[w(\text{header}) = w(\text{BB2}) = 80 + 20 = 100 \]
\[w(\text{preheader}) = w(\text{BB1}) = 20 \]
avg trip count = \(\frac{100}{20} = 5 \)
Loop Induction Variables

- **Induction variables** are variables such that every time they change value, they are incremented/decremented by some constant.

- **Basic induction variable** – induction variable whose only assignments within a loop are of the form $j = j +/\!/- C$, where C is a constant.

- **Primary induction variable** – basic induction variable that controls the loop execution (for $i=0; i<100; i++$), i (virtual register holding i) is the primary induction variable.

- **Derived induction variable** – variable that is a linear function of a basic induction variable.
Class Problem

Identify the basic, primary, and derived inductions variables in this loop.

<table>
<thead>
<tr>
<th></th>
<th>Loop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1 = 0</td>
<td>r2 = r1 * 4</td>
</tr>
<tr>
<td>r7 = &A</td>
<td>r4 = r7 + 3</td>
</tr>
<tr>
<td></td>
<td>r7 = r7 + 1</td>
</tr>
<tr>
<td></td>
<td>r1 = load(r2)</td>
</tr>
<tr>
<td></td>
<td>r3 = load(r4)</td>
</tr>
<tr>
<td></td>
<td>r9 = r1 * r3</td>
</tr>
<tr>
<td></td>
<td>r10 = r9 >> 4</td>
</tr>
<tr>
<td></td>
<td>store (r10, r2)</td>
</tr>
<tr>
<td></td>
<td>r1 = r1 + 4</td>
</tr>
<tr>
<td></td>
<td>blt r1 100 Loop</td>
</tr>
</tbody>
</table>
Reducible Flow Graphs

- A flow graph is reducible if and only if we can partition the edges into 2 disjoint groups often called forward and back edges with the following properties:
 - The forward edges form an acyclic graph in which every node can be reached from the Entry.
 - The back edges consist only of edges whose destinations dominate their sources.
- More simply – Take a CFG, remove all the backedges (x\rightarrow y\text{ where } y \text{ dominates } x), you should have a connected, acyclic graph.
Irreducible Flow Graph Example

* In C/C++, it's not possible to create an irreducible flow graph without using goto's
* Cyclic graphs that are NOT natural loops cannot be optimized by the compiler

L1: x = x + 1
if (x) {
 L2: y = y + 1
 if (y > 10) goto L3
} else {
 L3: z = z + 1
 if (z > 0) goto L2
}