
Control Flow 1:
Control Flow Graph, Dominators

EECS 483 – Lecture 19
University of Michigan
Monday, November 13, 2006

- 1 -

Exam 1 Results

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
xa

m
 s

co
re

Average: 119 Stdev: 17.8 High: 147

- 2 -

From Last Time: Memory Alignment

Cannot arbitrarily pack variables into
memory Need to worry about alignment
Golden rule – Address of a variable is
aligned based on the size of the variable
» Char is byte aligned (any addr is fine)
» Short is halfword aligned (LSB of addr must

be 0)
» Int is word aligned (2 LSBs of addr must be 0)
» This rule is for C/C++, other languages may

have a slightly different rules

- 3 -

From Last Time: Structure Alignment

Each field is layed out in the order it is
declared using Golden Rule for aligning
Identify largest field
» Starting address of overall struct is aligned

based on the largest field
» Size of overall struct is a multiple of the largest

field
» Reason for this is so can have an array of

structs

- 4 -

From Last Time: Class Problem

short a[100]; size = 200, halfword aligned, maps to addrs 1000 - 1199
char b; size = 1, byte aligned, maps to addr 1200
int c; size = 4, word aligned, maps to addrs 1204-1207
double d; size = 8, double aligned, maps to addrs, 1208-1215
short e; size = 2, halfword aligned, maps to addrs, 1216-1217
struct { max field = int, thus must be word aligned, start at addr 1220

char f; size = 1, byte aligned, maps to addr, 1220
int g[1]; size = 4, word aligned, maps to addrs, 1224-1227
char h[2]; size = 2, byte aligned, maps to addrs 1228-1229

} i; overall size of struct must be multiple of 4, thus pad out to1231

How many bytes of memory does the following sequence of C
declarations require (int = 4 bytes) ? Assume we start at a word
aligned address, say 1000

Total size = 232 bytes

- 5 -

Reading

Generally over the next few weeks we will
focus on Chs 9/10 of the Red Dragon book
Today’s class material:
» 9.4
» 10.1, 10.4

- 6 -

Compiler Backend Introduction

Work at the assembly level
2 major concerns
» How to make the code go faster

Machine independent opti
Machine dependent opti
Analyze program, understand its behavior, then
transform it to a more efficient form

» Map program onto real hardware
Deal with limitations of processor
Virtual to physical binding (resource binding)

» Code size is 3rd concern, but not that important

- 7 -

Compiler Backend Structure
Control flow analysis

Control flow optimization

Dataflow analysis
Dataflow optimization

Instruction Scheduling

Register Allocation

Instruction Selection

Machine Code Emission/Opti

Improve code
quality (machine
independent opti

Virtual to physical
mapping and
machine dependent
opti

Branching structure

Computation
instructions

Bind instrs to
physical resources

Bind virtual regs
to physical regs

Bind instrs to
physical realizations

- 8 -

Compiler Backend IR
Low Level IR (intermediate representation)
» Machine independent assembly code

Instruction set for abstract machine

» r1 = r2 + r3 or equivalently add r1, r2, r3
Opcode
Operands

Virtual registers – infinite number of these
Special registers – stack pointer, pc, etc.
Literals – compile-time constants (no limit on
size of these)
Symbolic names – start of array, branch targets

- 9 -

Control Flow
Control transfer = branch (taken or fall-through)
Control flow
» Branching behavior of an application
» What sequences of instructions can be executed

Execution Dynamic control flow
» Direction of a particular instance of a branch
» Predict, speculate, squash, etc.

Compiler Static control flow
» Not executing the program
» Input not known, so what could happen, worst case

- 10 -

Basic Block (BB)
Group operations into units with equivalent
execution conditions
Defn: Basic block – a sequence of consecutive
operations in which flow of control enters at the
beginning and leaves at the end without halt or
possibility of branching except at the end
» Straight-line sequence of instructions
» If one operation is executed in a BB, they all are

Finding BB’s
» The first operation starts a BB
» Any operation that is the target of a branch starts a BB
» Any operation that immediately follows a branch

starts a BB

- 11 -

Class Problem

L1: r7 = load(r8)
L2: r1 = r2 + r3
L3: beq r1, 0, L10
L4: r4 = r5 * r6
L5: r1 = r1 + 1
L6: beq r1 100 L2
L7: beq r2 100 L10
L8: r5 = r9 + 1
L9: r7 = r7 & 3
L10: r9 = load (r3)
L11: store(r9, r1)

Remember: 2 main rules:
* Rule 1: Each branch
ends a basic block
* Rule 2: Each branch
target starts a basic block

Identify the BBs in this
code sequence:

- 12 -

Control Flow Graph (CFG)
Defn Control Flow Graph –
Directed graph, G = (V,E)
where each vertex V is a basic
block and there is an edge E,
v1 (BB1) v2 (BB2) if BB2
can immediately follow BB1
in some execution sequence
» A BB has an edge to all blocks

it can branch to
» Standard representation used by

many compilers
» Often have 2 pseudo vertices

entry node
exit node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 13 -

CFG Example

x = z – 2;
y = 2 * z;
if (c) {

x = x + 1;
y = y + 1;

}
else {

x = x – 1;
y = y – 1;

}
z = x + y

x = z – 2;
y = 2 * z;
if (c) B2 else B3

x = x + 1;
y = y + 1;
goto B4

z = z + y

x = x – 1;
y = y – 1;

then
(fallthrough)

else
(taken)

B1

B2 B3

B4

- 14 -

Another CFG Example
L1: r7 = load(r8)
L2: r1 = r2 + r3
L3: beq r1, 0, L10
L4: r4 = r5 * r6
L5: r1 = r1 + 1
L6: beq r1 100 L2
L7: beq r2 100 L10
L8: r5 = r9 + 1
L9: r7 = r7 & 3
L10: r9 = load (r3)
L11: store(r9, r1)

1

2

3

4

5

6

1

2

3

4

5

6

- 15 -

Weighted CFG
Profiling – Run the application
on 1 or more sample inputs,
record some behavior
» Control flow profiling**

edge profile
block profile

» Path profiling

Annotate control flow profile
onto a CFG weighted CFG
Optimize more effectively with
profile info!!
» Optimize for the common case
» Make educated guess

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

20

10 10

10 10

15 5

15 5

20

- 16 -

Control Flow Analysis
Determining properties of the program branch
structure
» Static properties Not executing the code
» Properties that exist regardless of the run-time branch

directions
» Use CFG
» Optimize efficiency of control flow structure

Determine instruction execution properties
» Global optimization of computation operations
» Discuss this later

- 17 -

Dominator
Defn: Dominator – Given a CFG(V, E, Entry,
Exit), a node x dominates a node y, if every path
from the Entry block to y contains x
3 properties of dominators
» Each BB dominates itself
» If x dominates y, and y dominates z, then x dominates z
» If x dominates z and y dominates z, then either x

dominates y or y dominates x

Intuition
» Given some BB, which blocks are guaranteed to have

executed prior to executing the BB

- 18 -

Dominator Examples

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 19 -

Dominator Analysis
Compute dom(BBi) = set of BBs
that dominate BBi
Initialization
» Dom(entry) = entry
» Dom(everything else) = all nodes

Iterative computation
» while change, do

change = false
for each BB (except the entry BB)

tmp(BB) = BB + {intersect of Dom
of all predecessor BB’s}
if (tmp(BB) != dom(BB))

dom(BB) = tmp(BB)
change = true

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 20 -

Immediate Dominator
Defn: Immediate
dominator (idom)– Each
node n has a unique
immediate dominator m
that is the last dominator
of n on any path from the
initial node to n
» Closest node that

dominates

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 21 -

Class Problem

BB1

BB2

BB4

BB3

BB5

BB6

BB7

Entry

Exit

Calculate the
DOM set for
each BB

Also identify
the iDOM
for each BB

- 22 -

Post Dominator

Reverse of dominator
Defn: Post Dominator – Given a CFG(V,
E, Entry, Exit), a node x post dominates a
node y, if every path from y to the Exit
contains x
Intuition
» Given some BB, which blocks are guaranteed

to have executed after executing the BB

- 23 -

Post Dominator Examples

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 24 -

Post Dominator Analysis
Compute pdom(BBi) = set of
BBs that post dominate BBi
Initialization
» Pdom(exit) = exit
» Pdom(everything else) = all nodes

Iterative computation
» while change, do

change = false
for each BB (except the exit BB)

tmp(BB) = BB + {intersect of
pdom of all successor BB’s}
if (tmp(BB) != pdom(BB))

pdom(BB) = tmp(BB)
change = true

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 25 -

Immediate Post Dominator
Defn: Immediate post
dominator (ipdom) –
Each node n has a unique
immediate post
dominator m that is the
first post dominator of n
on any path from n to the
Exit
» Closest node that post

dominates
» First breadth-first

successor that post
dominates a node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 26 -

Class Problem

BB1

BB2

BB4

BB3

BB5

BB6

BB7

Entry

Exit

Calculate the
PDOM set for
each BB

- 27 -

Why Do We Care About Dominators?
Loop detection – next subject
Dominator
» Guaranteed to execute before
» Redundant computation – an op can

only be redundant if it is computed in
a dominating BB

» Most global optimizations use
dominance info

Post dominator
» Guaranteed to execute after
» Make a guess (ie 2 pointers do not

point to the same locn)
» Check they really do not point to one

another in the post dominating BB

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 28 -

Natural Loops

Cycle suitable for optimization
» Discuss opti later

2 properties:
» Single entry point called the header

Header dominates all blocks in the loop
» Must be one way to iterate the loop (ie at least

1 path back to the header from within the
loop) called a backedge

Backedge detection
» Edge, x y where the target (y) dominates the

source (x)

- 29 -

Backedge Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1 dom(1) = E,1

dom(2) = E,1,2

dom(4) = E,1,2,3,4

dom(3) = E,1,2,3

dom(5) = E,1,2,3,5

dom(6) = E,1,2,6

BE = target dominates
source
E 1 : No
1 2 : No
2 3 : No
2 6 : No
3 4 : No
3 5 : No
4 3 : Yes
4 5 : No
5 3 : Yes
5 6 : No
6 2 : Yes
6 X : No
In this example, BE = edge from higher BB to lower BB, not always this easy!

	Control Flow 1:�Control Flow Graph, Dominators
	Exam 1 Results
	From Last Time: Memory Alignment
	From Last Time: Structure Alignment
	From Last Time: Class Problem
	Reading
	Compiler Backend Introduction
	Compiler Backend Structure
	Compiler Backend IR
	Control Flow
	Basic Block (BB)
	Class Problem
	Control Flow Graph (CFG)
	CFG Example
	Another CFG Example
	Weighted CFG
	Control Flow Analysis
	Dominator
	Dominator Examples
	Dominator Analysis
	Immediate Dominator
	Class Problem
	Post Dominator
	Post Dominator Examples
	Post Dominator Analysis
	Immediate Post Dominator
	Class Problem
	Why Do We Care About Dominators?
	Natural Loops
	Backedge Example

