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Workload Forecasting

* When, how many, and what queries will arrive
Prediction Horizon
D Goals:

\ 4 1. Good Accuracy
v 2. Major Patterns
3. Cost vs. Accuracy

Prediction Interval



Challenges

* Support for dynamic workloads

* Support large query volumes
= Millions / Day

* Support different arrival rate patterns
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QueryBot 5000

SQL Workload Trace
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Step #1 - Pre-Processor

* Templatization

SELECT * FROM foo WHERE id = |SIGMOD
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SELECT * FROM foo WHERE 1id =

* Semantics equivalence check

Millions = Thousands



Step #2 - Clusterer

* Possible Similarity Features

= Physical Feature

" [ogical Feature

= Arrival Rate Feature
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Arrival Rate History
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Coverage of the Largest Clusters
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A few large clusters exhibit major patterns
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Step #3 - Forecaster

 Different models have different properties

= [inear Regression (LR), ARMA, Kernel Regression (KR),
Recurrent Neural Network (RNN), FNN, PSRNN
" Properties: Linear, Memory, Kernel

* Ensemble: combine different models

LR+RNN has the best average accuracy
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Prediction Results
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Prediction Results for Spikes
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Example: Automatic Index Building
* Integrate QB5000 with MySQL

e Start wit

n only primary indexes

e Same Inc

ex suggestion algorithm to build 20 indexes -

= RETROSPECT: Build all indexes at once with sample history
= PREDICT: Build indexes one at a time using the forecasting
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Example: Automatic Index Building
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Takeaways

* Workload forecasting on combinations of horizons/intervals

* Reduce the forecasting cost with minimal lost of accuracy
= Templatization
» (Clustering on arrival rate feature

* Hybrid forecasting method
= Capture major database workload patterns
" Maintaining good average accuracy
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END

lin.ma@cs.cmu.edu

https://github.com/malin1993ml/QueryBot5000
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Input Space For Kernel Regression
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Related Work

 Resource Demand Prediction

* Performance Modeling and Diagnosis
* Next SQL/Transaction Prediction
* Workload Shift Detection

* Workload Compression
* Run-time Metrics Prediction (e.g. latency)
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