Active Learning for ML-Enhanced Database Systems

Lin Ma, Bailu Ding, Sudipto Das, Adith Swaminathan Carnegie Mellon University Microsoft Research

Emerging ML-Enhanced Databases

Many academic contributions

503

Query Run-time Prediction Query Optimization

Index Recommendation Autonomous Administration

Challenge at deployments

ML-Enhanced Database Example

ML Model:

• [Ding, B., et al. SIGMOD 2019]

ML-Enhanced Database Example

Simulated Model Training and Deployment

What's wrong?

Challenge: Data Distribution Shift

ML assumes same training-test distribution

Test data distribution varies heavily in production databases

Key barrier to productionize ML for databases

Solution: Collect More Data in Deployments

Insight: actively collect data for individual database deployments

- Acquire labels from replicas (b-instances) without impacting the normal operation
- The "target test data" is often derivable for a specific workload

Reduces 75% error by executing ~100 queries

Active Data Collection Platform

Active Learning

AL strategy selects the best training data from a pool of unlabeled data

Long and successful history in database crowdsourcing

Most common w(x): uncertainty P1 P2

Model Output

P1 is cheaper than P2: **70%** P2 is cheaper than P1: **30%**

Uncertainty: 30%

Holistic AL Challenges

Robust

Noisy uncertainty signal under significant distribution shift

Cost-sensitive

Drastically different labeling costs, especially with index creations

Batch-friendly

Expensive model retraining

Holistic AL Challenges

Fertile area of future research

Holistic Active Learner (HAL) for ADCP

Cost weighting: cost-sensitive

• Per "cost unit" uncertainty

Redundancy rejection: batch friendly

Evaluation

14 workloads include industrial standard benchmarks (e.g., TPC-DS) and customer workloads

- Hold out each workload as the target production database, and round robin
- 30K plans, 1M plan pairs

Multiple AL iterations with evenly split budget for each iteration

• Total budget of 150x average estimate plan cost

Different ML tasks, budget sizes, models, features, cost types, or no cost estimation

Baselines

Optimizer

Random

Uncertainty

Hybrid

- Random + Uncertainty
- [Hass, D., et al. VLDB 2015]

Budget: 50x average query cost per iteration

Takeaway

Addressing the training/deployment distribution shift is crucial for ML-enhanced databases

A practical solution to actively collect training data during deployment using replicas and HAL

Fertile area of future research

- Better address the holistic AL challenges
- Better use the training data during deployments

lin.ma@cs.cmu.edu