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Emerging ML-Enhanced Databases
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ML-Enhanced Database Example
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ML-Enhanced Database Example
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Simulated Model Training and Deployment
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What’s wrong?

Collect Data

Standard Benchmarks 
and Available Workloads

Deploy (simulated)

Error: 32%

Train

Training Error: 2%
Validation Error: 5%



Challenge: Data Distribution Shift
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ML assumes same training-test distribution

Key barrier to productionize ML for databases

Test data distribution varies heavily in production databases
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Solution: Collect More Data in Deployments
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• Acquire labels from replicas (b-instances) without impacting the normal 
operation

• The “target test data” is often derivable for a specific workload

Insight: actively collect data for individual database deployments

Reduces 75% error by executing ~100 queries
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Active Data Collection Platform
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Active Learning
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Typical
AL:

• Long and successful history in database crowdsourcing

AL strategy selects the best training data from a pool 
of unlabeled data

P1

Model Input

P2

Model Output

P1 is cheaper than P2: 70%
P2 is cheaper than P1: 30%

Uncertainty: 30%

Most common
w(x):

uncertainty
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Holistic AL Challenges
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Cost-sensitive
Drastically different labeling
costs, especially with index 

creations

Batch-friendly
Expensive model 

retraining

Robust
Noisy uncertainty signal 

under significant 
distribution shift



Holistic AL Challenges
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AL Strategy Robust Cost-sensitive Batch-friendly

Uncertainty

Cost Y

Hybrid Y

RBMAL Y

ROUND Y Y

SIMILAR Y Y

Labeling Noise
[Hass, D., et al. VLDB 2015]Fertile area of future research



Holistic Active Learner (HAL) for ADCP
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Biased sampling: robust
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• Per “cost unit’’ uncertainty
Cost weighting: cost-sensitive

Redundancy rejection: batch friendly



Evaluation
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• Hold out each workload as the target production database, and round robin

• 30K plans, 1M plan pairs

14 workloads include industrial standard benchmarks (e.g., TPC-
DS) and customer workloads

Different ML tasks, budget sizes, models, features, cost types, 
or no cost estimation

• Total budget of 150x average estimate plan cost
Multiple AL iterations with evenly split budget for each iteration



Baselines
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Optimizer

Random

• Random + Uncertainty

• [Hass, D., et al. VLDB 2015]
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Results
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Takeaway
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Addressing the training/deployment distribution shift is 
crucial for ML-enhanced databases

A practical solution to actively collect training data during 
deployment using replicas and HAL

• Better address the holistic AL challenges

• Better use the training data during deployments

Fertile area of future research
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