
RESEARCH STATEMENT
Lin Ma (lin.ma@cs.cmu.edu)

Database management systems (DBMSs) are a critical component in almost every modern data-intensive application.
But these systems are hard: they are hard to con�gure, hard to optimize, and hard to maintain because they have com-
plex functionalities that are needed to support large datasets and complicated queries. A successful DBMS deployment
demands careful management of resource allocations, knob con�gurations, and physical design choices. It is impossible
for humans to tailor each system based on the corresponding application. �e problem has only became worse because
the proliferation of the cloud has made the number of databases in the world increase signi�cantly in the last decade.

A DBMS that autonomously manages itself and removes the need for human administration has been the “holy grail”
of database research in the last 50 years. But nobody has achieved to build such a system yet. �e work in this area has
either been advisory tools that make recommendations to humans or semi-automated cloud services that are reactionary
to workload shi�s and focus on one system aspect at a time. �ese methods do not enable full autonomy because they
cannot take a comprehensive viewpoint of the administration process like a human. With the recent advancement of
machine learning (ML), arti�cial intelligence (AI), and hardware technologies, we now have the opportunity to build such
autonomous DBMSs that approach or even surpass human abilities.

My research focuses on designing new database system architectures for autonomous operations leveraging ML and AI
to remove the human administration impediments. A real autonomous DBMS needs to control all system aspects while
also be reliable and maintainable. My approach combines both (1) principled architecture designs that ensure system
e�ciency and extensibility and (2) ML algorithms that are best suited for the particular sub-problem. As my work on a
new self-driving DBMS shows, a modularized system architecture facilitated by ML enables e�cient and holistic control
while generating explainable actions. But existing ML algorithms may not always satisfy the practical requirements of
autonomous DBMS operations. �us, it is also necessary to be�er understand how to apply ML techniques appropriately
and innovate new algorithms and models, as my collaboration with Microso� Research demonstrates.

I now discuss my current research projects that validate my vision to combine ML techniques with innovative system
design to support autonomous DBMS operations. I then present the future directions that I want to pursue.

Self-Driving Database Systems
I spent the majority of my PhD time on developing a self-driving DBMS [11], called NoisePage [2]. My design of
NoisePage’s architecture takes inspiration from self-driving vehicles. A simpli�ed self-driving car architecture consists
of (1) a perception system, (2) mobility models, and (3) a decision-making system. �e perception system observes the
vehicle’s surrounding environment and estimates the potential state, such as other vehicles’ movements. �e mobility
models approximate a vehicle’s behavior in response to control actions. Lastly, the decision-making system uses the
perception and the models’ estimates to select actions to accomplish the driving objectives. NoisePage’s self-driving
architecture consists of three frameworks with analogs to self-driving cars: (1) workload forecasting, (2) behavior mod-
eling, and (3) action planning. �e forecasting system is how the DBMS observes and predicts the application’s future
workload. �e DBMS then uses these forecasts with its behavior models to predict the impact of self-driving actions
(e.g., changing knobs, creating indexes) relative to the target objective function (e.g., latency, throughput). �e DBMS’s
planning system selects actions that improve this objective function. I now further discuss each of these frameworks.

Self-driving DBMSs should automatically choose when to apply which actions without any human intervention.
Achieving this ability requires predicting the workload in the future so that the system can determine the proper time
window to make changes. For example, the system should schedule expensive changes (e.g., creating an index) when
the workload volume is low to avoid a�ecting normal workload operations. However, forecasting database workloads is
challenging because modern DBMS applications may execute millions of queries per day. �ese queries can have varying
pa�erns (e.g., daily transactional-analytical cycles), and building forecasting models for all of them can be expensive. I
developed a framework to succinctly forecast the workload for self-driving DBMSs, called�eryBot 5000 (QB5000) [1].
QB5000 continuously clusters queries based on their arrival rate temporal pa�erns and seamlessly handles di�erent
workload pa�erns and shi�s. It then builds an ensemble of time-series forecasting models to predict query clusters’
various arrival pa�erns. �e key advantage of our approach over previous forecasting methods is that the data we use
to train our models is independent of the hardware and the database design. �us, the DBMS does not have to rebuild
the models if its hardware or con�guration se�ings change. �e results that I published in SIGMOD demonstrate that
QB5000 can e�ciently forecast the expected future workload with minimal accuracy loss [5].

A self-driving DBMS also needs models to predict and explain the behavior of potential actions (e.g., changing knobs,
creating an index) given the forecasted workload for its decision-making. �is is similar to how self-driving cars use

1/4



mobility models to estimate the e�ect of their actions, such as turning the steering wheel. Existing DBMS modeling
techniques are either (1) “clear-box” analytical methods that are di�cult to migrate to a new DBMS and require onerous
redesign under system updates, or (2) “opaque-box” ML methods that are expensive to train and di�cult to generalize
across workloads (e.g., when the database size changes). I proposed a behavior modeling framework, calledModelBot 2
(MB2) [8], that decomposes a DBMS’s internal architecture into small, independent operating units (OUs) (e.g., building
a hash table, �ushing log records). MB2 then automatically selects the best ML method to train an OU-model for each
OU that predicts its runtime, resource consumption, and performance impact for the current DBMS state. Compared to
common opaque-box methods that use a monolithic model for the entire DBMS, these OU-models have smaller input
dimensions, require less training time, and provide performance insight to each DBMS component. MB2 also provides
a principled method for data generation and training that allows the system to use the same set of OU-models trained
o�ine for any dataset or workload online. Compared to existing DBMS modeling techniques, our results published in
SIGMOD show that MB2 is up to 25× more accurate in predicting the DBMS performance for a given state, especially
providing be�er generalization across varying workloads. �ese OU-models also provide explanations on the self-driving
actions’ cost and bene�t expectations.

Lastly, a self-driving DBMS needs to determine the sequence of actions to apply given the workload forecasts and
behavior predictions to complete the autonomous optimization. �e action sequence may span short and long horizons,
and �nding the best sequence among various potential actions over these horizons is an expensive constrained optimiza-
tion problem with an exponential search space. �e action planning also relies on the behavior models to estimate the
actions’ impact. And these model inferences may incur high overhead, which poses more challenges to the planning
e�cacy. I developed an action planning framework for self-driving DBMSs, called PilotBot 0 (PB0), leveraging control
theory and recent advances in AI. PB0 uses the receding horizon control scheme to plan an action sequence optimized for
varying horizons. It also adapts the Monte Carlo tree search (MCTS) method to approximate the complex optimization
problem. Furthermore, PB0 uses a two-level caching design to accelerate the model inference and reduce the planning
cost. Our initial results show that PB0 chooses actions that result in up to 55% be�er performance than existing planning
methods for DBMSs [7].

Developing a self-driving architecture from the ground up is a challenging system engineering process [3, 12]. In
addition to leading the team at CMU working on the above projects, I have also been involved in many other facets of
NoisePage’s development. �ese projects include a JIT-compiled query engine [9, 10], a uni�ed transaction management
framework [14], and an indexing technique with a low memory footprint [13]. I believe these experiences have prepared
me with valuable system development and engineering skills to pursue my future research goals.

Other Projects

ML-enhanced Cloud Database Systems
Despite the promising results of using ML to enhance DBMS performances, one common challenge that limits the prac-
ticality of these ML methods is that they may not generalize well when the DBMS deploys them on a new workload. In
many database applications, the data distribution seen a�er deployment may di�er from that of the training data due to
the system complexity andworkload diversity, which can result in huge prediction errors. In collaboration withMicroso�
Research, I developed a method to address this challenge for cloud DBMSs by collecting additional training data for the
target workload encountered in deployment. My approach leverages the cloud’s ability to create a database copy and
collect new labels on the copy to improve the model generalization. �e key insight is to narrow down the data collec-
tion space to the prediction tasks requested during the deployment and use active learning techniques to choose the best
labels to collect with minimal overhead. I developed a novel active learning algorithm, called Holistic Active Learner
(HAL) [6], tailored to the unique requirements of learning tasks in ML-enhanced databases: robust, cost-sensitive, and
batch-friendly. I evaluated HAL using workload data from the Microso� Azure SQL database. �e results that I published
in SIGMOD show that HAL reduces the prediction error of ML models on the target workload by 75% only using about
100 additionally collected labels.

Modern Storage Hardware for In-Memory Database Systems
I have also explored methods to utilize modern storage hardware for in-memory DBMSs. In-memory DBMSs outperform
disk-oriented systems on many workloads because they eliminate legacy components that inhibit performance, such as
bu�er pool management. But the speedup comes with the restriction that the database needs to �t in memory. To over-
come this limitation, some in-memory DBMSs can move cold data out of volatile DRAM to secondary storage. Although

2/4



there have been several implementations proposed for this type of cold data storage, there has not been a thorough eval-
uation of the design decisions in implementing this technique. Such decisions include policies for when to evict tuples
and how to bring them back when they are needed. Furthermore, the performance characteristics of the storage device
can impact the e�ectiveness of these policies. In collaboration with Intel Labs, I explored cold-data-storage policies for
an in-memory DBMS with �ve di�erent storage technologies, including the new Optane persistent memory storage de-
vice provided by Intel. Our results published in DAMON shows that tailoring the policy for the storage technology’s
characteristics improves system throughput by up to 3× over a generic con�guration [4].

Future Research
I want to continue to investigate how to make autonomous DBMSs reach the ability of humans and satisfy the scalability
needs of modern DBMS deployments. I am also interested in developing automated methods for discovering new system
optimization techniques that are beyond what humans can devise. For example, recent AI systems have made winning
moves that “no human ever would” in Go games and generated hypotheses that human experts have not thought about
in cancer reoccurrence. Achieving such goals will likely involve collaborative innovations from many areas of computer
science, such as databases, machine learning, so�ware engineering, and human-computer interaction (HCI).

Robustness and Scalability of Autonomous Database Systems
My previous work has shown the feasibility of building a single-node self-driving DBMS. �ere are still open research
problems on how to make these autonomous systems more robust for real-world deployments. For example, it would be
desirable to monitor errors (e.g., inaccurate model predictions) in the deployment and incorporate the feedback into the
system’s control. However, there are many design decisions that require further investigation, such as how to determine
the feedback granularity and how to properly combine the knowledge in the previous models with this new information.

Cloud platforms provide DBMSs the opportunity to scale resources on demand. �us, it is bene�cial if a self-driving
DBMS can automatically perform such scaling and control multiple nodes together. �e workload forecasting and be-
havior modeling frameworks that I developed provide the necessary information for the system to make such decisions
considering all system aspects holistically. But coordinating the decisions from all nodes in a distributed DBMS can result
in an action search space orders of magnitude larger than the individual ones. It remains an unsolved challenge how the
nodes in a distributed DBMS should reach a collective decision and what the proper system architecture should be.

Lastly, I want to explore the role of humans in future intelligent so�ware systems. Traditional DBMS metrics, such
as page access statistics and transaction status summaries, may not be su�cient to communicate to a human about
the optimization decision made by the system. Likewise, it is unclear how a self-driving DBMS should incorporate
directions from humans in its decision-making logic. Properly addressing such challenges requires collaboration between
the database and HCI communities.

System Architectures for New Pricing Models
I am also interested in designing DBMS architectures that account for the new pricing models of the database services in
the cloud. Existing DBMSs try to optimize performance metrics (e.g., throughput or latency) by using all the hardware
resources available. But there are new pricing models for database services, especially for the so�ware-as-a-service and
serverless applications in the cloud: the cloud provides virtually unlimited resources, and vendors charge users by the
system’s resource consumption, such as IOPS, CPU time, and memory size.

�ese newmodels bring interesting challenges for DBMSs: the systemwill need to support various optimization goals,
such as reducing the query latency while minimizing the monetary cost based on the pricing model. Furthermore, there
are exciting opportunities to revisit the canonical database techniques and develop new DBMS architectures tailored
for these resource-centered pricing models. I believe we can improve the system e�ciency with less cost by jointly
considering the system architecture design and autonomous optimizations facilitated by ML.

Automated Optimizations for Data Pipelines
DBMSs are not the center of the universe anymore. Modern data-intensive applications are built as pipelines comprised
of many data services. For example, an application may need multiple ingestion services to acquire data from di�erent
sources. It might also need storage and processing services to combine, clean, normalize, and transform this data. Lastly,
there can be di�erent consumer services of the data, such as business intelligence and ML applications. Collectively

3/4



optimizing the systems of all the services in a data pipeline may have signi�cant performance bene�ts, but it is extremely
di�cult for humans to reason about all these systems’ interactions with various con�gurations.

Given this, I am interested in exploring automated techniques that co-optimize the systems across a data pipeline. �is
is a challenging task since these systems have independent behavior without a uni�ed architecture. I want to investigate
the interaction pa�ern among these systems and create a global self-driving platform for data pipelines that leverages
succinct modeling abstractions, powerful ML algorithms, and e�cient architecture designs.

References
[1] �eryBot 5000. h�ps://github.com/malin1993ml/�eryBot5000, 2019.

[2] NoisePage. h�ps://noise.page/, 2021.

[3] Ma�hew Butrovich, Wan Shen Lim, Lin Ma, John Rollinson, William Zhang, Yu Xia, and Andrew Pavlo. Tastes
great! less �lling! high performance and accurate training data collection for self-driving database management
systems. Under submission to SIGMOD, 2021.

[4] Lin Ma, Joy Arulraj, Sam Zhao, Andrew Pavlo, Subramanya R Dulloor, Michael J Giardino, Je� Parkhurst, Jason L
Gardner, Kshitij Doshi, and Stanley Zdonik. Larger-than-memory data management on modern storage hardware
for in-memory oltp database systems. In Proceedings of the 12th International Workshop on Data Management on
New Hardware, page 9, 2016.

[5] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geo�rey J Gordon. �ery-based
workload forecasting for self-driving database management systems. In Proceedings of the 2018 International Con-
ference on Management of Data, pages 631–645, 2018.

[6] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. Active learning for ml enhanced database systems. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 175–191, 2020.

[7] Lin Ma, William Zhang, Jie Jiao, Ma�hew Butrovich, Wan Shen Lim, and Andrew Pavlo. Pb0: Randomized action
planning for self-driving database management systems. In preparation for submission, 2021.

[8] Lin Ma, William Zhang, Jie Jiao, WuwenWang, Ma�hew Butrovich, Wan Shen Lim, Prashanth Menon, and Andrew
Pavlo. Mb2: Decomposed behavior modeling for self-driving database management systems. In Proceedings of the
2021 International Conference on Management of Data, pages 1248–1261, 2021.

[9] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C Mowry, and Andrew Pavlo. Permutable compiled queries:
dynamically adapting compiled queries without recompiling. Proceedings of the VLDB Endowment, 14(2):101–113,
2020.

[10] Amadou Ngom, Prashanth Menon, Ma�hew Butrovich, Lin Ma, Wan Shen Lim, Todd C Mowry, and Andrew Pavlo.
Filter representation in vectorized query execution. In Proceedings of the 17th International Workshop on Data Man-
agement on New Hardware (DaMoN 2021), pages 1–7, 2021.

[11] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth Menon, Todd C Mowry,
Ma�hew Perron, Ian �ah, et al. Self-driving database management systems. In Conference on Innovative Data
Systems Research, 2017.

[12] Andrew Pavlo, Ma�hew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim, Dana Van Aken, andWilliam Zhang.
Make your database system dream of electric sheep: towards self-driving operation. Proceedings of the VLDB En-
dowment, 14(12):3211–3221, 2021.

[13] Huanchen Zhang, David GAndersen, Andrew Pavlo, Michael Kaminsky, LinMa, and Rui Shen. Reducing the storage
overhead of main-memory oltp databases with hybrid indexes. In Proceedings of the 2016 International Conference
on Management of Data, pages 1567–1581, 2016.

[14] Ling Zhang et al. Everything is a transaction: Unifying logical concurrency control and physical data structure
maintenance in database management systems. In Conference on Innovative Data Systems Research, 2021.

4/4

https://github.com/malin1993ml/QueryBot5000
https://noise.page/

