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ABSTRACT
Autonomous database management systems (DBMSs) aim to op-
timize themselves automatically without human guidance. They
rely on machine learning (ML) models that predict their run-time
behavior to evaluate whether a candidate configuration is benefi-
cial without the expensive execution of queries. However, the high
cost of collecting the training data to build these models makes
them impractical for real-world deployments. Furthermore, these
models are instance-specific and thus require retraining whenever
the DBMS’s environment changes. State-of-the-art methods spend
over 93% of their time running queries for training versus tuning.

To mitigate this problem, we present the Boot framework for
automatically accelerating training data collection in DBMSs. Boot
utilizes macro- and micro-acceleration (MMA) techniques that mod-
ify query execution semantics with approximate run-time telemetry
and skip repetitive parts of the training process. To evaluate Boot,
we integrated it into a database gym for PostgreSQL. Our experi-
mental evaluation shows that Boot reduces training collection times
by up to 268× with modest degradation in model accuracy. These
results also indicate that our MMA-based approach scales with
dataset size and workload complexity.
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1 INTRODUCTION
Database management systems (DBMSs) are difficult to configure
and optimize due to shifts in workloads, database contents, and
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run-time environments. Researchers have spent decades developing
methods for automated DBMS configuration (e.g., physical design,
knob settings). Recent years have seen a surge of interest in ap-
plying machine learning (ML) to this problem, including query
performance prediction [34, 37, 64], query optimization [35], index
recommendation [12, 14], knob tuning [29], and partitioning [21].

The high-level goal unifying these efforts is the development
of an autonomous DBMS that operates without human guidance
(i.e., a self-driving DBMS [42, 43]). Given a target objective func-
tion (e.g., latency, throughput, cost), a self-driving DBMS aims to
autonomously configure, tune, and optimize itself as its database
contents and workload evolve. Because it is prohibitively expensive
to identify beneficial configurations through workload execution,
such autonomous DBMSs rely instead on behavior models [34] that
predict the system’s run-time characteristics. For example, a behav-
ior model that uses optimizer statistics to predict a SQL query’s
latency [37] obviates the need to run the query in the general case;
the DBMS validates its predictions through active learning [32].

To build its behavior models, the DBMS requires training data [8]
comprised of database metadata (e.g., optimizer statistics) and run-
time telemetry (e.g., operator latency). The DBMS avoids collecting
training data from production to safeguard its stability [30] and
performance [8]. Instead, database gyms [30] create a simulation
environment for the DBMS to safely develop, build, and evaluateML
models. The DBMS generates training data in a gym by observing
itself as it executes a representative workload, such as a trace of
SQL queries, and constructs its behavior models based on this data.

A tacit assumption pervading existing work on applying ML for
DBMSs is that training data for behavior models is cheap or easy to
obtain. In practice, training data generation is slow and expensive
because it requires the DBMS to execute workloads [22]. We ob-
serve that existing methods spend over 93% of their time preparing,
testing, and evaluating these models [15, 34, 61], which can take
weeks. Despite this, to our knowledge, there have been no efforts
to improve the speed of training data generation for self-driving
DBMSs. Some techniques sidestep this issue by learning cardinality
estimation models from the data for approximate query process-
ing (AQP) [22, 51, 59]. Although AQP speeds up query execution
by estimating results, it does not help with behavior models since
they must observe and predict the DBMS’s run-time characteristics.
Hence, obtaining training data is still a time-consuming bottleneck.
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Another problem is that existing methods often have to retrain
their models from scratch, either because of new environments (e.g.,
software updates [34]) or model invalidation (e.g., due to dataset
growth [37] or workload drift [36]). It is challenging to reuse train-
ing data from other deployments when they differ in database
contents, DBMS versions, hardware, and configurations [30].

Given this, what is needed is a way for the DBMS to generate
training data faster. Because the DBMS generates training data
during query execution, the two processes are coupled: it cannot
produce training data faster than it can run the workload.

We now present the Boot framework that accelerates train-
ing data generation by uncoupling these processes. Boot aims
to efficiently bootstrap a DBMS’s behavior models. To achieve
this, we introduce macro- and micro-acceleration (MMA) tech-
niques that leverage the database gym’s environment to modify the
DBMS’s execution semantics for faster query processing. Macro-
acceleration decides when to execute a query for its telemetry, and
micro-acceleration speeds up execution by adaptively sampling
the DBMS’s run-time behavior. To evaluate Boot, we integrate it
into a database gym based on PostgreSQL. We assess Boot on its
ability to improve training data collection time and the accuracy
of its resulting models on both uniform and complex workloads.
Our results show Boot achieves up to 268× speedup for a modest
increase in model error [62]. We also show that Boot is 3–5× faster
than hand-optimized sampling methods, completing in four days
what the other techniques complete in three weeks.

Our work makes the following contributions: (1) decoupling
training data generation from regular query execution to overcome
the training data bottleneck in achieving DBMS autonomy, (2) pre-
senting MMA for accelerating training data generation, and (3) the
design and implementation of the new drop-in framework Boot
that incorporatesMMA in a PostgreSQL database gym.

2 BACKGROUND AND MOTIVATION
An autonomous DBMS [42, 43] optimizes itself for a target objec-
tive function (e.g., latency). It relies on behavior models [34] to
predict system performance and identify actions to improve its
configuration (e.g., knob settings), but generating the training data
for such models is costly. To elaborate, we first describe how the
database gym [30] builds models. Next, we discuss the training data
generation cost and the exploitable repetition of query execution.

2.1 Database Gym
A database gym [30] is a toolkit for accelerating self-driving DBMS
research by orchestrating the construction and utilization of a sim-
ulated DBMS environment focusing on training data generation. It
first employs workload capture tools [18] to obtain a representative
SQL trace [33]. It then uses the DBMS to simulate itself for a ML
training environment that is isolated from production [30, 65], such
as an offline [34, 48] or a high-availability [32] replica. Cloud ven-
dors optimize their database fleets with similar environments [14].

The gym executes the workload on the simulation DBMS to
collect training data about the system’s run-time behavior. Such
training data contains mappings from input features (e.g., query
plans, optimizer estimates) to output labels (e.g., execution time,
CPU/memory usage). The gym then provides the DBMS with the

Table 1: Model Construction – The dataset collection time
and model training time for recent ML tuning approaches.

Model Collection (h) Training (h) Ratio
QPPNet [37] 300 24 0.93

MB2 [34] 9 0.3 0.97
OpAdviser [61] 40 0.05 0.99

Table 2: Repetitive Queries – The number of queries and
templates in recent workloads used in database tuning.

Benchmark Type # Queries # Templates Repetition
Admissions [37] Real 2546M 4060 627k×
BusTracker [34] Real 1223M 334 3.66M×

MOOC [33] Real 95M 885 107k×
TPC-H [37] Synthetic 20000 22 909×

DSB [15] Synthetic 11440 52 220×
Stack [35] Synthetic 5000 25 200×

training data for building behavior models (i.e., learning functions
of the inputs that predict outputs). The DBMSmay construct models
using bespoke methods (e.g., neural unit [37], operating unit [34])
or automated ML methods using a model ensemble (AutoML) [30].

After training the behavior models, the gym coordinates the
DBMS’s action planning [43] to discover better configurations. A
naïve method is for the gym to apply a candidate configuration,
replay the workload, and then measure whether the objective im-
proved. However, such an approach is infeasible because the replay
cost compounds with a large number of actions [30]. Therefore, the
DBMS depends on its behavior models to estimate its performance
under new configurations without running the workload [37, 60].

Unlike other ML domains that dismiss data collection as a one-
time cost (e.g., researchers share LLM model weights because train-
ing data does not change [3]), an autonomous DBMS needs training
data specific to its workload and configuration. Reusing models
from other deployments is challenging because the database’s con-
tents, hardware, and system configuration [30] influence data labels.
Additionally, even if the DBMS already has models, they may be
invalidated because of dataset growth [37], workload drift [36], soft-
ware updates [34], schema changes [50], or hardware upgrades [30].
This means that collecting the training data necessary [8] to build
such models is the most time-consuming part of this process.

2.2 The Cost of Training Data Generation
In practice, a DBMS spends most of its time in the modeling process
on executing queries to generate training data [29, 35, 39, 48, 50,
57, 58, 63]. To better understand this problem, we measured how
long state-of-the-art DBMS modeling methods spend on collecting
data versus training. Table 1 shows that these methods spend over
90% of their time executing queries on the DBMS.

Despite this, there have been no attempts to optimize training
data generation for autonomous DBMSs. Prior work reduces in-
strumentation overhead [8] or employs active learning to sample
workloads [32, 49], but no technique increases query execution
speed. Training data generation differs from regular query execu-
tion because it concerns telemetry (e.g., timing information) and
not results (i.e., returned tuples). Because a DBMS does not need
to produce exact results during this process, it can speed up collec-
tion if it can infer a query’s telemetry without fully executing it.
This acceleration is possible because queries in a workload can be
repetitive, and the operations within a query may also be repetitive.
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Figure 1: Architecture – An overview of Boot’s internal components and execution flow. The MA component decides whether
to execute a query, and the µA component accelerates the execution of a specific query.

2.3 Exploiting Workload Repetition
Table 2 demonstrates query repetition in real-world traces and syn-
thetic workloads: the DBMS repeatedly executes the same query
templates with different input parameters. Additionally, the DBMS
utilizes a limited number of operator types when formulating a
query plan. The repetition of an operator’s behavior during execu-
tion is even more frequent than with the entire queries. Yet some
repetition is necessary because the query’s plan and behavior may
change depending on parameters and configurations [24].

Query Repetition: What is needed is a way to determine when
and why the DBMS should execute a query again so that it can exe-
cute fewer queries. In the training data context, the DBMS should
re-execute a query if it has substantially different run-time teleme-
try from its past invocations. But the DBMS is collecting training
data to bootstrap its models offline, so it has no models to predict a
query’s characteristics. Therefore, the DBMS must decide whether
to re-execute a query based solely on its optimizer estimates and
statistics, limiting the available techniques [10]. By skipping queries
that do not exhibit new behavior, the DBMS executes fewer queries
and thus reduces training data generation time.

Operator Repetition: There are also redundant and unneces-
sary parts of a query’s plan that the DBMS can drop. This speedup
is important for queries that take a long time to complete because of
bad configurations. For example, a query that runs slowly because
of missing indexes will not get faster halfway through execution.
Thus, it is important to reduce the time spent executing operators
after they have become predictable; that is, the DBMS should spend
the majority of its time exercising “useful” operators.

Each query operator is independent as its behavior only depends
on its input tuples. The DBMS relies on this independence to build
models from plan telemetry (e.g., EXPLAIN ANALYZE) [34, 37]. Our
key insight is that integrating such modeling assumptions ear-
lier into training data generation enables early query termination.
For example, a sequential scan retrieves tuples by reading from
buffer pool pages; the only variation from a telemetry perspective
is whether obtaining the tuple involves a disk read. Once the DBMS
observes both classes of sequential scan behavior (i.e., with and
without disk fetch), it does not need to keep executing the scan.

3 OVERVIEW
Our analysis above shows that data generation routines are a bot-
tleneck for ML-based automation for DBMSs because it takes too
long to execute queries. But a DBMS does not need to compute the
correct result for each query in these training scenarios. Instead,

SELECT nation, o_year, SUM(amount) as sum_profit FROM (
SELECT n_name as nation, EXTRACT(YEAR FROM o_orderdate) AS o_year,

l_extendedprice*(1-l_discount)-ps_supplycost*l_quantity AS amount
FROM part, supplier, lineitem, partsupp, orders, nation
WHERE s_suppkey = l_suppkey AND ps_suppkey = l_suppkey
AND ps_partkey = l_partkey AND p_partkey = l_partkey
AND o_orderkey = l_orderkey AND s_nationkey = n_nationkey
AND p_name LIKE '%[COLOR]%'

) AS profit GROUP BY nation,o_year ORDER BY nation, o_year DESC;

Listing 1: TPC-H Q9

the goal is to exercise the system to produce telemetry about its
behavior as if it was executing in production.

Given this, we present the Boot framework for accelerating
training data generation. The high-level idea of Boot is to exploit
workload repetition in two ways while being transparent to the
downstream ML components and without degrading the accuracy
of the ML models. The first method is to execute fewer queries on
the DBMS by identifying redundant queries based on their high-
level semantics and then reusing previously computed training
data instead of running them again (macro-acceleration). For the
remaining queries that the DBMS does execute, Boot injects special
operators into their query plans that (1) dynamically identify re-
dundant computations and then (2) intelligently short-circuits parts
of their plans to make them complete faster (micro-acceleration).

As shown in Figure 1, Boot integrates into a DBMS using two
modules: (1) the Macro-Accelerator (MA) sits in between the
DBMS’s network handler and query planner and (2) the Micro-
Accelerator (µA) is embedded in the DBMS’s execution engine.
Boot’s design does not change the DBMS’s interface for tuning
components. A model training framework still connects to a Boot-
enhanced DBMS over standard APIs (e.g., JDBC, ODBC) to execute
a workload and collect training data. As such, Boot drops into ex-
isting modeling pipelines without any code change. But since Boot
circumvents the DBMS’s regular query execution, it is unsuitable
for production environments. The gym deploys Boot on an offline
clone of the production DBMS to avoid application errors.

We now provide an overview of Boot’s accelerators. For this and
the detailed descriptions in Sections 4 and 5, we use TPC-H [47]
query Q9 (Listing 1) as a running example. Executing Q9 1000× at
scale factor (SF) 100 on PostgreSQL (v15) takes 17 hrs. Enabling
Boot reduces this time to 1 min with minor degradation in ML
model accuracy. We defer discussing our experiments to Section 7.

3.1 Macro-Accelerator (MA)
Boot’s MA module examines each query request as it arrives at
the DBMS to determine whether executing it would produce novel
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Figure 2:MA Architecture – Overview of Figure 1’sMA.

training data (i.e., increase the diversity of query plans and opera-
tors executed). Novelty is necessary to avoid overfitting models to
queries that access specific tables or with particular patterns.

As shown in Figure 1, when a SQL query arrives, 1 the MA
computes a fingerprint to identify whether it executed the query
before. Since theMA is before the query planning stage, it computes
this fingerprint on raw SQL strings. TheMA strips out constants
from the SQL to produce query templates (similar to prepared
statements); this ensures that multiple invocations of a template
using different input parameters are considered the same query [33].
In the Q9 example in Listing 1, theMA extracts the constant from
the %[COLOR]% input parameter and replaces it with a placeholder.

Next, 2 theMA looks up the query’s fingerprint in a result cache
to determine whether the DBMS executed a similar query with the
same fingerprint. This cache maps each fingerprint to a record that
contains (1) the query’s output and (2) the DBMS telemetry gener-
ated while executing the query. The former is necessary because
some workload replay and benchmarking tools assume the DBMS
returns query results with a particular schema (e.g., typed columns).
If the cache does not contain a matching query, the framework
sends the request along in the DBMS for processing as usual. If the
MA’s cache contains a match, then the MA decides whether the
system will learn anything new from re-executing it or if it should
skip it. For those queries that the MA decides to skip, it returns
the cached result and then records that it saw the query again. We
discuss the MA’s policies for skipping re-execution in Section 4.2.

3.2 Micro-Accelerator (µA)
Any query that bypasses the MA module then goes to the DBMS’s
query planner. At this stage, Boot’s µA module injects its control
methods into the query plan. These components wrap the plan’s
operators to monitor its run-time execution constantly. When the
µA module detects that an operator’s behavior has stabilized, it
messages the corresponding wrapper to modify the operator’s tuple
processing (e.g., produce less output). We designed the µA module
to support any query processing model (e.g., iterator, materialized,
vectorized) and both push- and pull-based execution strategies.

Using the overview diagram in Figure 1 again, 3 the µA em-
beds each physical plan operator (e.g., scans, joins) with a special
wrapper operator that dynamically controls run-time behavior. This
wrapper can adjust the sampling rate of its inner operator to change
the number of tuples emitted. For example, the µA can change a
scan operator to emit only 10% of the tuples it would otherwise
produce. The wrapper can also completely halt an operator’s execu-
tion when certain conditions are satisfied, such as if µA recognizes
that it has enough training data for that operator.

Since the µA may cut off an operator’s execution early, 4 Boot
scales each operator’s telemetry to approximate what it would

Plan Id Count Avg Run-time (s)
P1 95 76
P2 25 66
P3 819 65
P4 61 62

(a) Plan Distribution

60 70 80 90
Run-time (s)

0

25

50

75

C
ou

nt

(b) Plan Run-time

Figure 3: Query Plan Behavior – Distribution of TPC-H Q9’s
plans and run-time across 1000 invocations (without Boot).

have been if the DBMS executed it entirely. For example, suppose
that the µA cuts off an operator after processing only 10% of its
expected rows. If Boot reports the operator’s elapsed time, the
operator appears to process all of its rows 10× faster than it did.
Therefore, Boot scales the reported time by 10× to help prevent the
behavior models from underpredicting queries’ execution times.

The advantage of using a wrapper-based approach that modifies
a query’s physical plan is that it guarantees the DBMS will generate
the same plan with and without Boot enabled. Some DBMSs alter a
plan when using SQL-level sampling (e.g., TABLESAMPLE), producing
different plans and degrading the behavior models’ accuracy.

After the DBMS executes the µA-wrapped plan, it sends the esti-
mated query result and telemetry to theMAmodule. TheMA stores
these in its result cache for future invocations of similar queries.
TheMA and µA modules are independent: if either component is
disabled, the DBMS processes data with its regular non-accelerated
components instead. We show in Section 7.2 that the accelerators
enhance each other’s effects to obtain up to 268× speedup.

4 MACRO-ACCELERATOR (MA)
We discussed in Section 2.3 why a DBMS must rely only on its opti-
mizer when deciding whether to re-execute a query for its telemetry.
Previous work showed, however, that DBMSs cannot achieve query
progress estimates that are both general and robust [10]. There-
fore, the MA module employs a heuristic approach that exploits
query repetition. Figure 2 shows how theMA achieves this with its
Fingerprinter (Section 4.1) and Controller components (Section 4.2).

4.1 Identifying Similar Queries
The MA module’s Fingerprinter assigns identifiers to queries to
combine them for training data generation. Because SQL is declar-
ative, the Fingerprinter has many ways to identify a query (e.g.,
exact SQL text, query template [33], plan shape [37]). However,
unlike regular query execution, exact results do not matter for
training data. As we now illustrate, the Fingerprinter uses a relaxed
comparison method for queries to achieve higher similarity rates.

We execute 1000 instances of Listing 1’s Q9 at SF 100 in 17 hr.
Figure 3b shows the distribution of run-times and plans produced.
Although the DBMS produced four different plans, the execution
time for these plans exhibits clustering around the average run-
time of the most frequent plan (P3). Furthermore, even if the DBMS
never executes the slower plans, such as P1, the DBMS may still
learn enough about their operators from instances in other plans
and queries. For this reason, Fingerprinter groups queries based on
their templates. Doing so may map different query invocations to
one cache entry. But the Fingerprinter’s encoding strategy does not
have to be static: if a query’s parametric behavior is known, the
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Figure 4: Gate – The Gate’s architecture for Listing 1’s query
plan. The orange node is a hash join and the gray nodes are
an index scan feeding into a nested loop join. The table shows
the effect of introducing the Gate.

encoder can map each parameter regime to a different fingerprint
(e.g., replace %[COLOR]%with [RED,PINK] if selectivities are similar).

The Fingerprinter also links changes in the DBMS’s configura-
tion to the validity of previous executions. For example, adding
a new index to a table invalidates the history for all queries that
access that table. The Fingerprinter achieves this invalidation by
including a hash of the DBMS configuration in each fingerprint.
This mechanism enforces an explore/exploit trade-off, although the
invalidation overhead depends on the tuning technique used.

4.2 Adapting to Query Variability
After the Fingerprinter identifies whether theMA module has seen
a query before, the Controller then decides whether it has seen the
query enough times to skip future executions. It uses a feedback-
driven adaptive algorithm based on binary exponential backoff. For
every Fingerprinter entry, the Controller stores a counter (𝑐) that
tracks how often it has seen a query to skip future executions. At
run time when the Controller receives a query, it decrements the
corresponding counter and then does one of the following:

Skip the Query (𝑐>0): The framework does not forward the
query for execution and instead returns a cached result. The Con-
troller exploits the training data environment to synthesize results
that align with historical data. Although many possible strategies
exist (e.g., average the telemetry from previously executed plans,
train a model to output similar telemetry [41]), the Controller de-
faults to repeating the last telemetry observed for that identifier (i.e.,
naïve forecasting [23]). This approach is fast, avoids the overhead
of storing historical plans, and sidesteps environment drift issues.

Execute the Query (𝑐=0): The Controller forwards the query
for execution and analyzes the resulting telemetry. If the plan’s run-
time falls within two standard deviations of the historical mean, the
Controller considers the new execution similar and exponentially
increases the counter until a threshold. Otherwise, it resets the
counter and clears the corresponding execution history.

We illustrate the skipping algorithm by supposing that Q9 always
takes its median run-time (64.8 s) with a threshold of 100 skips. The
number of times that the Controller skips the query in between ex-
ecutions is [1, 2, 4, 8, 16, 32, 64, 100, 100, 100, . . . ], dropping the time
for 1000 executions of Q9 from 18 hr to 16 min. Should a Q9 in-
vocation exhibit new behavior, the Controller resets the skipping
sequence to sample future instances more frequently. This behavior
allows the Controller to adaptively decide a per-query workload
size for training data collection (i.e., number of executions).

We use run-time to measure similarity to avoid storing and
comparing against all executed plans. For each Fingerprinter iden-
tifier, the Controller maintains around 10 KB of state: (1) streaming
Welford mean [53], (2) query plan, and (3) counter. Table 2 shows
that workloads with millions of queries reduce to a few thousand
plans, so MA’s typical total storage overhead is tens of MBs.

5 MICRO-ACCELERATOR (µA)
Skipping queries with macro-acceleration allows the DBMS avoid
executing redundant queries. But the DBMS still needs to execute
each unique query at least once before it can cache its results,
which is still prohibitively expensive. To handle such invocations,
we present micro-acceleration techniques that exploit operator
repetition (Section 2.3) to generate telemetry faster. As with theMA,
the DBMS cannot provide optimal guarantees for using operator
repetition [10] to accelerate telemetry production. Instead, the µA
builds on operator progress estimation [27] to achieve its speedups.

5.1 Stopping Repetitive Operators
The µA module exploits how query processing is performed at an
operator’s granularity (e.g., Volcano [19] model’s GetNext()). For
every operator, the µA’s Gate component wraps this function to
override tuple flow and measure repetition by tracking the rate of
output tuple production.

The challenge with this tuple flow approach is that the DBMS
cannot accurately measure telemetry for individual tuples. The
difficulty arises from timer overhead and resolution: an operator
might take less than 1 𝜇s per tuple. Therefore, the Gate collects
telemetry on batches of tuples instead. For a given operator, it
monitors the time taken to produce each output row and starts a
new tuple batch when both of the following conditions hold: (1)
the current batch contains at least 10% of the optimizer’s estimated
number of output tuples, and (2) the current batch’s accumulated
time is at least 1 s. The Gate considers the operator repetitive once
the total time for its latest batch falls within two standard deviations
of the historical mean. When the operator triggers this threshold,
the Gate stops the operator from processing new input tuples. We
present a sensitivity analysis for these parameters in Section 7.7.

We demonstrate the Gate’s effects on a query plan for Listing 1’s
Q9. We first focus on the highlighted pair of operators in Figure 4
that depicts an index scan under a nested loop join. 1 The index
scan sends tuples to the Gate, which defaults to allowing tuples
to pass through to the nested loop join. It also adds the tuple’s
telemetry to its current batch of tuples. When it creates a new
batch, it checks whether it is similar to the last 20% of batches. If
so, 2 it stops admitting future tuples from the index scan. For this
example, this stops after observing 2.1 M out of a possible 34 M
tuples, reducing the time spent in the index scan from 33 s to 5 s.

5.2 Sampling for Output Reduction
Whereas the Gate stops an operator’s execution, the DBMS may
only need to reduce the operator’s output. Because query results
do not matter for training data, the µA module samples each opera-
tor’s output tuples to reduce run-time up in the query plan while
maintaining representative behavior. It achieves this by installing a
Sampler component on each operator’s output tuple flow.
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Figure 5: Sampler – The Sampler’s architecture for Listing 1’s
query plan. The orange node is a hash join and the gray
nodes are sequential scans. The table shows the effect of
introducing the Sampler in addition to the Gate.

SQL already provides methods for reducing the number of tuples
that certain operators produce. For example, LIMIT reduces the
number of output tuples, and TABLESAMPLE reduces the cardinality
of base relations. However, both of these methods are insufficient
for our needs. LIMIT only applies to the query plan root, so the
DBMS may have already done the work to compute the query (e.g.,
a long-running query that outputs a single tuple). The problemwith
TABLESAMPLE is that the DBMSmay select a different query plan.We
observed degenerate cases where a query’s execution time in Post-
greSQL went from 1 min to two days just by adding TABLESAMPLE!
None of these methods work because the sampling must be hidden
from the optimizer to avoid a change in plan. Moreover, the DBMS
should be able to sample any operator in its plan (as opposed to
only the root or base relations). Therefore, the Sampler exposes a
similar interface as TABLESAMPLE but at the operator level.

To show how the Sampler effects Listing 1’s Q9, we enable it
using Bernoulli sampling at 10% on the operators that produce
the most tuples (i.e., the sequential scans labeled as A, B, and C in
Figure 5). Although it only sampled from these three operators, the
effects on the rest of the query plan are significant: the orange node
(a hash join) goes from producing 1.9 M tuples to 33 k tuples, and
the overall query run-time decreased further from 21.9 s to 6.4 s.

6 ENGINEERING
We now describe how we integrated Boot into a database gym as
an extension for the PostgreSQL DBMS.

MA: We implementMA by hooking into the DBMS’s traffic con-
trol layer. Because PostgreSQL uses the process-per-worker model,
workers cannot easily share their execution history (i.e., queries
executed by one worker are not seen by another). Although Post-
greSQL coordinates state across processes using shared memory,
we avoid this because it interferes with query processing. Instead,
MA manages its cache in an external key-value store (Redis).

µA: We implement µA by wrapping PostgreSQL’s operators.
Specifically, µA overrides every operator’s GetNext(). While Post-
greSQL executes a query, this override constantly analyzes the
plan’s telemetry to decide what to do. It performs its tasks by fur-
ther swapping out the function pointer for the wrapper at run-time.

We initially built Boot as a standalone middleware that inter-
cepted queries and polled the DBMS for its currently executing
plans. We found that PostgreSQL’s existing interfaces did not ex-
pose sufficient control. This model suffers from non-determinism

and creates more work for the DBMS. Integrating Boot directly into
the DBMS improves determinism and efficiency.

7 EVALUATION
We now evaluate the capabilities of Boot to reduce the training
data generation times for autonomous DBMSs. For our analysis,
we integrate Boot into the PostgreSQL (v15) DBMS. We deploy the
DBMS on an Ubuntu 22.04 LTS server with 2×20–core Intel Xeon
Gold 5218R CPUs, 188 GB DRAM, and Samsung PM983 SSD. We
optimize the system’s configuration with PGTune [4].

We define our workloads and experiment configuration in Sec-
tion 7.1. We then perform an end-to-end high-level analysis of
Boot’s modules in Section 7.2. Next, we identify inefficiencies in
training data collection in Section 7.3. We describe how Boot ad-
dresses these inefficiencies with its MA in Section 7.5 and µG in
Section 7.7. Lastly, we investigate sampling as a technique to further
improve Boot’s capabilities in Section 7.8.

7.1 Workloads
We use the database gym [30] to orchestrate the execution of the
following workloads. Figure 7 shows the run-time distributions.
• TPC-H: This benchmark models a business analytics workload
with eight tables and 22 query templates [47]. We chose this
benchmark to represent a workload with a uniform data distri-
bution. We use dbgen [1] to produce a total of 22k queries and
execute them on scale factors 10 (∼19 GB with indexes) and 100
(∼192 GB with indexes).

• DSB: This is Microsoft’s extension of the TPC-DS [46] work-
load that introduces additional challenges (e.g., complex data
distributions, join patterns, skew), with a total of 25 tables and
52 query templates [15]. We use the official generator to pro-
duce a total of 10.4k queries and execute them on scale factors
1 (∼5 GB with indexes) and 10 (∼47 GB with indexes).

• JOB: This benchmark uses IMDB and aims to stress the query
optimizer’s ability to pick a good join order [28]. It represents
the worst-case workload for Boot (i.e., minimal repetition, small
workload size, small dataset, short-running queries). There are
113 query instances and 21 tables (∼8.5 GB with indexes).
We set a per-query timeout of 5 min in all experiments. A time-

out is necessary in a training data environment as the DBMS is
trying to discover better configurations (i.e., it may not be optimally
configured). We discuss timeouts further in Section 7.3.

To build behavior models using these workloads, the DBMS
splits its training data into a train and test dataset as follows: for
TPC-H and JOB, the DBMS trains on 80% of the seeds and tests on
the remaining 20% [37]; for DSB, the DBMS uses separate seeds
for train and test [15]. Next, the DBMS creates behavior models
with AutoGluon [17], a state-of-the-art automated ML framework
that automatically searches over hyperparameters and network
architectures to create a model ensemble (e.g., gradient-boosted
trees [13, 25], random forests, linear models, neural networks).

7.2 Speed-up vs. Accuracy Measurements
We first evaluate Boot’s ability to accelerate a DBMS’s training data
generation process and how it affects the quality of the training
data. Since there are no known techniques for measuring the quality
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Figure 6: Query Run-time Distribution – Breakdown of elapsed time for each workload (without any acceleration).
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Figure 7: Collection Time – The time to generate training data with different modules of Boot active (lower is better).

of the generated data [5], we use behavior model accuracy as a
surrogate metric instead. Thus, this experiment highlights the trade-
off between reducing the execution time of queries versus producing
models that accurately reflect the DBMS’s internal operations.

We run the workloads using Boot under seven configurations:
(1) the default DBMS without acceleration (Orig), (2) only the MA
module enabled (MA), (3) only the µA’s Gate module (µG) enabled,
(4) the MA and µA’s Gate modules enabled (MA+µG), (5) only the
µA’s Sampler module (µS) enabled, (6) the MA and µA’s Sampler
modules enabled (MA+µS), and (7) all modules enabled (All). These
configurations demonstrate the effect of reducing the number of
queries (the MA module) and executing each query faster (the µA’s
modules) in different combinations. We structure our discussions
below around the independent (1) MA, (2) µG, and (3) µS modules,
followed by (4) the combined configurations (MA+µG, MA+µS, All).

We measure the time that the DBMS takes to generate telemetry
for all the queries in a workload (i.e., collection time) as the end-
to-end query latency. To measure model accuracy, we adopt two
metrics from existing work: (1) absolute error [34] and (2) factor
error [37]. Given a query 𝑞 that has an actual latency 𝐴(𝑞) and a
model 𝑀 that predicts 𝑞’s latency as 𝑀 (𝑞), the absolute error is
given by |𝐴(𝑞) −𝑀 (𝑞) | and the factor error is defined as 𝑅(𝑞) =
max

(︂
𝐴(𝑞)
𝑀 (𝑞) ,

𝑀 (𝑞)
𝐴(𝑞)

)︂
. To understand whether these errors are caused

by the models under- or over-predicting, we also visualize the error
distributions of each model as𝑀 (𝑞) −𝐴(𝑞).

Collection Time: Figure 7 shows the collection time for the
training data configurations across the workloads. We observe
that the accelerators always speed up collection time, however, the
extent of their benefit varies depending on workload characteristics.

The results in Figures 7a and 7c show that MA achieves a 13–
37× speedup for the smaller SF workloads. However, increasing
the SF reduces the speedup to 2–3× in Figures 7b and 7d. The first
reason for this is that becauseMA does not increase the speed of
query execution, it cannot help queries that timed out. Figures 6b
and 6d shows more occurrences of such queries at the 300s mark.
The second reason is that MA is more effective for workloads with
lower variability in their query run-time. The standard deviation
(std) of query run-time is lower in Figures 7a and 7c (8.42–29.9 s)
and higher in Figures 7b and 7d (70.4–89.3 s). A reduction in std
benefitsMA because it decides whether to re-execute a query based

on the similarity of its run-time to its previous executions. We
next observe that the MA achieves only 1.1× speedup in Figure 7e
for JOB. We expect this result because most of JOB’s queries are
only executed once (i.e., minimal repetition at the query level). We
investigate theMA further in Sections 7.4 and 7.5.

Figure 7 also shows that while µG improves collection time rela-
tive to Orig, the increase is not as much compared to MA. For DSB,
µG obtains a speedup of 20.3–23.2×, compared to only a 1.18–2.03×
speedup for TPC-H. Such improvement depends on workload com-
plexity because larger query plans introduce more opportunities
for micro-acceleration (e.g., more leaf nodes, longer running oper-
ators). For example, µG sped up DSB’s query001 by 14× (117 s to
8 s), but only achieves a 2× speedup for most TPC-H queries. We
next observe that Figure 7d is the only instance where µG is more
effective than MA. In addition to query complexity, this is because
µA enables the DBMS to completes queries that would otherwise
time out (e.g., all query032 invocations timed out after 300 s with
MA but complete within 10s with µG). Lastly, Figures 7a and 7e
show little improvement with µG alone.Orig’s configurations show
that the DBMS executed the 22k TPC-H queries in 1 day and 113
JOB queries in 8 min, which means the average query duration is
approximately 5 s. Most queries did not run long enough to activate
µG; we test more aggressive hyperparameters in Section 7.7.

These results show that the Sampler alone provides limited im-
provements on the collection time, with speedups ranging from
0.88–1.09× for TPC-H and 2.09–3.05× for DSB. The high degree of
query repetition mutes the Sampler’s benefits for both workloads,
and its sampling overhead makes TPC-H (SF 10) even slower. But
JOB’s low query repetition makes the Sampler the only effective
technique for it. The Sampler obtains a 4.44× speedup because JOB
is dominated by short index scans across multiple queries. These
scans are too short for the Gate to accelerate, but a random sample
of their tuples reduces the work while maintaining representative
behavior. Real workloads are much more repetitive than JOB (e.g.,
60% of Redshift’s daily queries are exactly the same [56]), so other
workloads are more representative of Boot’s performance.

The MA boosts the µS’s limited efficacy by eliminating query
repetition, with the MA+µS configuration obtaining speedups of
3–49× on TPC-H, 4–20× on DSB, and 5× on JOB. In comparison,
theMA+µG combination obtains most of Boot’s benefits for most
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Table 3: Factor Error – The factor error of the model predictions divided into buckets (lower is better).
Factor Error

1.1 ≤ [1.1,2] [2,5] ≥ 5
Orig 94% 6% 0% 0%
MA 50% 50% 0% 0%
µG 82% 18% 0% 0%

MA+µG 43% 55% 1% 0%
µS 25% 52% 22% 0%

MA+µS 4% 60% 33% 3%
All 22% 49% 28% 1%

(a) TPC-H (SF 10)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 82% 18% 0% 0%
MA 44% 51% 6% 0%
µG 10% 38% 33% 19%

MA+µG 9% 33% 37% 21%
µS 18% 69% 14% 0%

MA+µS 11% 69% 20% 0%
All 4% 41% 30% 25%

(b) TPC-H (SF 100)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 18% 45% 18% 19%
MA 16% 61% 17% 6%
µG 15% 64% 13% 8%

MA+µG 16% 57% 17% 11%
µS 21% 59% 15% 5%

MA+µS 18% 57% 16% 9%
All 17% 57% 15% 10%

(c) DSB (SF 1)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 52% 42% 4% 1%
MA 14% 64% 17% 4%
µG 18% 71% 10% 2%

MA+µG 15% 64% 16% 4%
µS 15% 63% 19% 3%

MA+µS 15% 59% 21% 5%
All 6% 53% 35% 7%

(d) DSB (SF 10)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 4% 63% 21% 12%
MA 5% 36% 39% 19%
µG 5% 35% 44% 16%

MA+µG 6% 55% 24% 15%
µS 3% 6% 12% 80%

MA+µS 1% 3% 4% 93%
All 1% 0% 1% 98%

(e) JOB
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Figure 8: Absolute Error – The absolute error of models that are trained on the individual datasets (lower is better). The red
circle shows sample mean and the whiskers extend to 1.5 interquartile range.

workloads. It achieves speedups of 6–52× on TPC-H, 175–226×
on DSB, but only 1.17× for JOB. The Gate is more effective than
the Sampler because it dynamically stops the rest of an operator’s
execution, whereas the latter applies a fixed sampling percentage
to an operator’s output. With all accelerators active, All achieves
the best of both worlds and obtains speedups of 6.2–52×, 154–
268×, and 4.8× on TPC-H, DSB, and JOB respectively. Figure 7d
also demonstrates that the modules enhance each other: while MA
reaches 3×, µG obtains 23× and µS gets 2× speedup, all modules
together obtain 268×. This combination benefits queries that are
long-running or often time out. Using DSB query032 as an example,
suppose the DBMS invokes this query 100 times but they all time
out at 300 s.MA does not help queries that time out, soMA takes
300×100 = 30000 s to complete. µG next reduces the query’s run-
time to 10 s, so µG takes at most 10×100=1000 s. Moreover, because
the query now completes,MA executes exponentially fewer queries
(i.e., 6 instead of 100) and All only takes at most 10×6 = 60 s (over
500× speedup) even before sampling. We examine the time spent in
each operator and discuss additional timeout nuances in Section 7.3.

Absolute Error: Figure 8 shows the behavior models’ absolute
error when using training data from each configuration. The mean
absolute error (MAE) of MA’s models ranges from 1.1–4.6× that of
theOrigmodels. TheMAmodels are comparable to theOrigmodels
because their telemetry was produced under similar conditions (i.e.,
MA only decides whether to execute a query). In contrast, the µG
models are worse than Orig because µG terminates execution early
and scales the telemetry. This reduced accuracy is reflected in µG’s
worse MAE of 7–11× for TPC-H and 1.7× for JOB. The latter is
less affected because the Gate did not activate as much. For DSB,
Figures 8c and 8d show 2.7× worse error at a smaller SF, but this
error improves to 1.5× as the scale increases because Gate allows
the DBMS to learn from queries that would otherwise time out.

Compared to the Orig models’ MAE, the µS models are 5–12×
worse for TPC-H and 1.7–2.3× worse for DSB and JOB, which is
comparable to µG. The Gate’s early operator termination have
similar effects to sampling when it comes to MAE (i.e., observing a
subset of execution is similar to sampling the entire execution).

Across all workloads, combining the MA with individual µA
modules produces similar errors to the µAmodule alone. This result

is because theMA does not modify query execution itself. When
allMA and µA modules are activated, the All models exhibit similar
error to the µG models. Compared to the Orig models, the MAE
ranges from 9.4–11.9× for TPC-H, 2.1–2.7× for DSB and 2.29× for
JOB. To contextualize these numbers, we sum the prediction errors
for Q1 in Figure 8b. Executing these Q1 instances takes 3.7 hr. Con-
sistent with other state-of-the-art models [34, 37], the Orig models
are only off by 5 min, whereas the All models are off by 35 min.
Although this is 7× the error, the speedup to obtain All’s TPC-H
models makes it an acceptable tradeoff (i.e., the DBMS obtains its
first models in 4 days instead of 3 weeks, and these models predict
3.1 hr when the actual time is 3.7 hr for all Q1 executions).

Factor Error: The results in Table 3 show how the model pre-
diction error is distributed across queries in the form of factor error
(i.e., the multiple that a query’s predicted latency is incorrect).

For almost all TPC-H queries, the error for MA’s models is at
most 2× because of the database’s uniform data distribution. Such
uniformity means that invocations of the same query but using
different input parameters have similar performance. Therefore,
even though MA executes fewer queries, the ones that it does
execute are enough. However, bothMA andOrigmodels haveworse
error for DSB and JOB, because these workloads are more complex
than TPC-H. This result is consistent with previous work [37] that
found that some queries are harder to model than others. But the
difference in themedian factor error across all workloads is minimal:
MA’s error is 1.10–2.22×, and Orig’s error is 1.02–1.54×.

Table 3 also shows that µG’s models have comparable factor
error to MA, with the exception of Table 3b where it is worse. This
increase in error is because PostgreSQL’s optimizer underestimates
operator selectivities [28]. For µG’s models, the median error ranges
from 1.05–2.58×, which is up to 2.3× worse the Orig models. In
comparison, µS’s models have median errors that range from 1.31–
1.44× for every workload except JOB, which is 27×.

TheMA+µG models have median factor errors that range from
1.12–2.52×, which is up to 2.5×worse thanOrig. With the exception
of JOB, we observe similar results for theMA+µSmodels: themedian
error ranges from 1.39–1.71×, which is up to 1.4× worse than Orig.
TheMA+µS models have 5× worse median error for JOB than the
Sampler alone, which is up to 78× worse than Orig. Because JOB
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Figure 9: Error Distribution – The distribution of model er-
ror for TPC-H at SF 100, DSB at SF 10, and JOB (closer to 0
is better). For example, an error of -20 s means the model
predicted 20 seconds under the actual value.

only has 113 queries, activating the MA removes about 10% (11) of
the queries. This missing data is more important in JOB because
most queries produce little meaningful data (i.e., the run-time in
most operators rounds to zero milliseconds) and the low repetition
makes it difficult to learn from other queries.

Excluding JOB, the Allmodels have median factor errors ranging
from 1.25–2.43×, which is up to 2.4×worse thanOrig. JOB observes
a median error of 165×, which is 108× worse than the Orig models.
However, JOB’s queries are shorter, limiting the practical impact of
such mispredictions (e.g., query 10a’s run-time of 0.226 s is under-
predicted as 0.0018 s). We investigate the reason in the discussion on
error distribution below. Recent research shows that less accurate
models are competitive for tasks like index recommendation [62].

Error Distribution: Figure 9 shows the distribution of predic-
tion errors for each training data generation configuration on the
two larger datasets. The errors for Orig and MA are both uniform
peaks with long tails centered at zero (i.e., most queries experience
low error), where macro-acceleration has slightly more error. We
expect this result in the absence of micro-acceleration as it matches
existing work [34, 37] and we use newer modeling techniques.

Figure 9g shows the µG models consistently underpredict query
latency for a subset of queries. This occurs more for long-running
queries because µG expedites their execution and then scales up the
telemetry based on optimizer estimates. However, PostgreSQL’s op-
timizer underestimates the result size ofmulti-join queries [28]. This
means that as the optimizer’s estimation algorithms improve [59],
µG’s accuracy improves as well. µS suffers from the same underes-
timation problem, though its errors are more normally distributed
from sampling. All inherits the same underprediction issue from
µG and µS, with a slight increase to its error fromMA as well.

Orig MA µG µS All

0
50

100

%
 W

as
te

d

36 47
16 31 15

(a) TPC-H (SF 100)
0

50
100

%
 W

as
te

d

29 3 0 13 0

(b) DSB (SF 1)
0

50
100

%
 W

as
te

d 91

31
0

41
0

(c) DSB (SF 10)

Figure 10: Wasted Collection Time – The percentage of time
wasted executing queries that the DBMS aborts after 5 min.
We omit TPC-H (SF 10) and JOB as they do not time out.

7.3 Reducing Aborted Queries
The collection times in the above section include queries that the
DBMS aborts on timeout. Because the DBMS only produces teleme-
try for completed queries, time is wasted when it executes queries
that will abort. Boot reduces this waste by (1) MA probabilistically
avoiding such queries and (2) µG allowing queries to finish that
would otherwise abort, which we describe in more detail below.

We now revisit the results from Figure 7 by identifying the col-
lection time spent on queries that the DBMS aborts. This analysis
reveals the wasted work in the DBMS’s training data collection and
the extent to which Boot’s modules reduce such waste.

Figure 10 shows the percentage of collection time that was
wasted work. WithOrig, the DBMS spends 36% (193 hr) and 29–91%
(4.6–52 hr) of its collection time on aborted queries for TPC-H and
DSB, respectively. These timeouts are caused by a small fraction
of query invocations from the workload: 2310 (10.5%) for TPC-H
SF 100, 56 (1%) for DSB SF 1, and 626 (12%) for DSB SF 10. That is,
less than 15% of queries are responsible for 29–91% of the collec-
tion time despite producing no telemetry. The DBMS cannot avoid
these queries because it is impossible to know how long a query
will take before running it. For example, the run-time for DSB’s
query102_spj ranges from 1–26 s based on its parameters.

The MA reduces waste when it substitutes invocations that will
abort with historical executions that did not. But Figure 10a shows
that the MA is unable to reduce TPC-H’s waste. Most queries have
only a small fraction of their invocations perform poorly relative
to the mean (e.g., only 10% of Figure 3a’s invocations have slower
plans). Figures 9d and 9e show that the DBMS obtains enough data
for its models without executing these poor plans. However, the
degree of variability between TPC-H’s plans was too low for the
MA to reduce waste (i.e., the good and bad plans had similar abort
behavior). In comparison, DSB’s plans had high variability because
of its skew and complexity, allowing theMA to reduce waste by 26%
at SF 1 (Figure 10b) and 60% at SF 10 (Figure 10c). The MA obtains
less improvement at the higher SF because more query invocations
time out, preventing it from avoiding aborts.

The results in Figure 10a show that the µG reduces wasted work
by 20% for TPC-H and eliminates wasted work entirely for DSB.
The µG reduces waste through accelerating long-running queries
that would otherwise abort. It does this by identifying operator
repetition (see Section 2.3) and stopping such operators early, which
we investigate further in Section 7.6.

Across all workloads, All reduced Orig’s wasted work to 32% of
the total time (250 hr to 80 hr). This reduction accounted for 30%
(170 hr of 560 hr) of All configuration’s absolute time improvement.
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Table 4: Factor Error – The factor error of the model predictions divided into buckets forMA.P (lower is better).
Factor Error

1.1 ≤ [1.1,2] [2,5] ≥ 5
Orig 94% 6% 0% 0%
MA 50% 50% 0% 0%

MA.P 92% 8% 0% 0%

(a) TPC-H (SF 10)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 82% 18% 0% 0%
MA 44% 51% 6% 0%

MA.P 76% 21% 3% 0%

(b) TPC-H (SF 100)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 18% 45% 18% 19%
MA 16% 61% 17% 6%

MA.P 36% 47% 13% 4%

(c) DSB (SF 1)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 52% 42% 4% 1%
MA 14% 64% 17% 4%

MA.P 40% 48% 10% 3%

(d) DSB (SF 10)

Factor Error
1.1 ≤ [1.1,2] [2,5] ≥ 5

Orig 4% 63% 21% 12%
MA 5% 36% 39% 19%

MA.P 5% 40% 36% 19%

(e) JOB
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Figure 11: Exponential Speedup – Workload completion rate
and run-time distributions underMA, excluding timeouts.
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Figure 12: Operator Time Breakdown – The time spent in
each operator (lower is better), excluding queries that timed
out inOrig. We show the top 10 operators thatOrig executes.

7.4 MA: Different Encoding Strategies
Next, we analyze whether more advanced fingerprinting that in-
cludes query plan changes improves the MA’s effectiveness. We
run the experiments from Section 7.2 using a modified Finger-
printer that appends the query plan hash [37] to the query template
(MA.P), contrasting against the default Fingerprinter (MA) and
default DBMS configuration (Orig).

ComparingMA.P toMA, we observed similar collection times
for DSB and JOB. The collection time of TPC-H increased from
57 min to 2 hr for SF 10 and decreased from 2 weeks to 1 week
for SF 100 (i.e., MA.P is 2× faster at smaller scale factors and 2×
slower at larger scale factors). Both the speedup and slowdown
are caused by theMA’s adaptive exponential skipping algorithm.
TheMA resets a query template’s skip counter when a query has
different behavior. TheMA.P avoids this and obtains speedups at SF
10, but it maintains more skipping sequences (i.e., skip counters are
per plan instead of per query). Because the skipping is exponential,
MA.P skips fewer executions, resulting in SF 100’s slowdown.

The results in Table 4 show that the factor and absolute error
improves for all benchmarks with theMA.P. However, unlike the
protocol-levelMA, theMA.P requires invoking the optimizer and
pausing execution after plan generation to check whether to con-
tinue execution or to return a cached result. Because optimizer calls

are a bottleneck [7] and using plan data increases engineering com-
plexity for modest accuracy benefits, we use MA in our evaluation.
We defer more advanced fingerprinting [56] to future work.

7.5 MA: Executing Fewer Queries
We now evaluate MA’s effect on the workload completion rate as a
function of the collection time. This analysis shows whetherMA
obtains its speedup across all queries or only a handful of queries.
We analyze the data from Section 7.2 by measuring the number of
queries completed (Workload %) as a function of elapsed time. We
also plot the run-time distribution for both Orig andMA.

Figures 11a and 11b show thatMA’s workload completion rate
is higher than Orig. Recall that the only difference between these
configurations is the number of queries executed: when MA has
enough training data, it intelligently skips an exponential num-
ber of queries between executions. Therefore, MA’s completion
improvement also scales exponentially because it executes expo-
nentially fewer queries. Figures 11d and 11e shows this effect on the
distribution of query run-time. The DBMS executes queries with the
same complexity under both configurations (i.e., similar histogram
shapes), but the MA reduces the number of executions for each
query (i.e., shorter heights on every bar). Figure 11b also shows the
reduction in exponential skipping that Section 7.4 describes.

7.6 µG: Stopping Operators Early
We revisit µG’s ability to reduce collection time by measuring the
DBMS’s duration in each operator. Our analysis seeks to identify
which operators that contribute significantly to the collection time
and the extent to which Boot speeds them up.

We perform a fine-grained analysis of the data from Section 7.2
by breaking down the collection times in Figures 7b and 7d for the
Orig and All configurations into individual operators. We found
that operator timings reported by PostgreSQL are inaccurate [2].
Therefore, we instrument every operator with additional timers [8].

Figure 12 shows the distribution of time spent in each operator
for both Orig and All configurations. To ensure a fair comparison,
we omit timed-out queries. The distribution of operator time is
highly skewed, meaning that a few operators are responsible for
most of the time spent. We observe that for both workloads (1)
the µA reduces the run-time of every operator, (2) scans dominate
the original query run-time, and (3) the µA achieves the highest
absolute speedups on the longest-running operators.

Figure 13a shows that the top three absolute speedups for TPC-H
are index scans (175 hr to 32 hr, 5.4×), sequential scans (68 hr to
47 hr, 1.4×), and hash joins (28 hr to 18 hr, 1.5×), whereas for DSB
(Figure 13b) they are index scans (92 min to 35 min, 2.6×), index-
only scans (47 min to 16 min, 2.8×), and CTE scans (28 min to 90 s,
18×). The disk-based operators (e.g., scans) speed up because µG’s
early stopping reduces the I/O. The in-memory operators (e.g., hash
join, aggregate) in Figure 13a obtain their speedup when µG reduces
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Figure 13: Speedup Analysis – Each operator’s speedup be-
cause of µG in Figure 12 (higher is better).
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Figure 14: Tuple Reduction – Each operator’s reduction in
tuples processed because of µG in Figure 12 (higher is better).

downstream tuples. Figure 14a shows that hash joins are 1.5× faster
for TPC-H because they process 3·1011 fewer tuples. The reduction
in downstream tuples (Figures 14c and 14d) also explains each
operator’s relative speedup (Figures 13c and 13d). The materialize
operator has high speedup in TPC-H (14.99×) because it processed
32.29× fewer tuples. Because µG dynamically decides when to stop
an operator, the speedup of each operator is difficult to predict.
Most speedups and reductions in downstream tuples are 1.4–3.5×.

7.7 µG: Accelerating Short Workloads
We now revisit the experiment from Section 7.2 in which we ob-
served µG achieving a speedup overOrig for every workload except
TPC-H (SF 10) (Figure 7a). This analysis aims to discover whymicro-
acceleration does not work as well in some scenarios.

We conjectured that micro-acceleration is less effective in Fig-
ure 7a because the DBMS completed queries too quickly to detect
operator repetition. Recall that the µG detects repetition by batching
tuple telemetry, which it then uses to determine when an operator
should stop processing new input. For every operator, µG creates
a new batch whenever the current batch’s (1) processing time ex-
ceeds 1 s and (2) the number of tuples is greater than the optimizer’s
estimated tuple count by 10%. µG then stops the operator if the
new batch’s timing is within two std of the mean on historical
data. Therefore, three hyperparameters control µG’s detection of
operator repetition: (1) processing time, (2) optimizer %, and (3) std.
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Figure 15: Batching Sensitivity – Collection time and MAE as
we vary µG’s hyperparameters on TPC-H (SF 10), 100 queries.

We perform a sensitivity analysis on µG’s hyperparameters using
100 queries from TPC-H (SF 10). We measure the collection time
and MAE as we sweep the processing time (0.1 s to 1 s), optimizer %
(1% to 10%), and std (2 to 3). These ranges potentially allow for more
opportunities for micro-acceleration to optimize this workload.

Figure 15 visualizes the three hyperparameters and their target
variable (i.e., collection time or MAE) as heatmaps, where darker is
better. Figures 15a and 15c show the collection time (darker is faster),
whereas Figures 15b and 15d show the MAE (darker is lower). These
heatmaps show that increasing the std has no appreciable effect
on the collection time and MAE as the top row (std 2) has near-
identical values to the bottom row (std 3). Varying the processing
time and optimizer % achieves up to a 3× speedup at the cost of up
to 3× higher error. For example, reducing the processing time from
1 s to 0.1 s improves the collection time by 1.33× (203 s to 152 s) but
increases the MAE by 1.58× (1.2 s to 1.9 s). Similarly, reducing the
optimizer % from 10% to 1% improves time by 2.5× (152 s to 61 s)
but increases the MAE by 2.2× (1.9 s to 4.1 s).

This result verifies our hypothesis from Section 7.2 that µG is
ineffective in Figure 7a because the queries’ average run-time is too
short. It also means tuning µA’s hyperparameters allows for more
aggressive tradeoffs between speedup and error. However, because
an optimal progress estimate is impossible, we cannot prescribe a
batch size that evenly divides an operator’s progress. µG’s reduced
efficacy is due to the small dataset size, but Boot’s combined tech-
niques are still effective. Since Boot already achieves large speedups,
we use conservative default settings of 1 s processing time, 10%
optimizer cutoff, and two std for all experiments.

7.8 Output Sampling Analysis
We next investigate alternative sampling techniques and the Sam-
pler’s tradeoffs between collection time and error.

We evaluate Boot’s sampling against the DBMS’s built-in table
sampling (through the TABLESAMPLE SQL modifier) even though
Section 5.2 outlines qualitative reasons against such an approach.
We collect training data for TPC-H (SF 100) as it represents the
best case for TABLESAMPLE with its uniform data distribution. We
evaluate four training data generation configurations. First is the
baseline with neither sampling nor Boot active (Orig). The next
configuration uses TABLESAMPLE at a rate of 10% on all tables in
the query (Automatic). Because we found TABLESAMPLE to cause
problems with PostgreSQL’s optimizer and generate slower plans
for some queries, we also manually modify every SQL query to
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Figure 16: Sampling Baseline – Collection time and absolute
error with TABLESAMPLE and Boot for TPC-H (SF 100). The red
circle shows sample mean. The whiskers extend to 1.5 IQR.
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Figure 17: Sampling Rate – The collection time andMAEwith
MMA enabled, sampling sequential scans at different rates.
We exclude timed out queries for fairness (4.55% of TPC-H).

add the TABLESAMPLE clause only for the relations where there is a
benefit (Manual). Lastly, we collect training data with Boot using
a 10% sample rate for all scan operators (All-10).

Figure 16 shows that both TABLESAMPLE methods reduce collec-
tion time by up to 2.1×, though this requires the user to rewrite
every query template by hand (Manual). All-10 achieves a 3× faster
collection time than both sampling methods with comparable error
rate (MAE increases from 12.7× to 14.7×). As described in Sec-
tion 5.2, sampling scans improves the collection time by reduc-
ing the number of tuples that the DBMS processes downstream.
Moreover, when Sampler only targets less selective operators (e.g.,
sequential scans), it reduces the risk of eliminating tuples that were
uniquely important for exercising DBMS behavior and therefore
limits the effect of sampling on the MAE.

To understand the effect of the sampling percentage, we sweep
the rate across trials with different random seeds. Figure 17 shows
the collection time and MAE as a function of the sampling rate.
Their scaling is approximately linear (e.g., for TPC-H, increasing
the sampling rate by 10% increases collection time by 10–20 min
and decreases MAE by 1–2 s). This demonstrates that the Sampler
allows Boot to obtain models even faster, albeit at a proportional
model quality cost. Boot defaults to sampling at 50%.

8 RELATEDWORK
To our knowledge, we are the first to accelerate training data gener-
ation for autonomous DBMSs by decoupling it from regular query
execution. We now discuss the areas of related work to this problem.

Query Progress Estimation (QPE): The problem of QPE was
first formally defined and studied for Microsoft SQL Server [11]
and PostgreSQL [31]. Their idea is to decompose the query plan
tree into individual pipelines and then estimate overall pipeline
progress using the driver nodes [26]. This decomposition made

the estimation problem tractable because the true cardinalities of
the driver nodes are easier to obtain (e.g., table scan). As behavior
models [34, 37] require operator-level data, this early work is not
applicable to Boot. Microsoft SQL Server LQS [27] extended QPE to
provide logical operator-level completion estimates (e.g., predicting
that a hash join operator has made 42% of its total GetNext() calls).

Another difference between Boot and prior work in QPE is that
the latter aims to help humans debug query performance. The
DBMS must still execute the entire query to produce the correct
result. In contrast, Boot only need to execute enough of the query
for its µG module to generate approximate operator telemetry.

However, key ideas shared by QPE and Boot are (1) viewing
the tuples processed so far as a random sample of the tuples avail-
able [27] and (2) using execution feedback to refine initial esti-
mates [54]. For example, existing work in QPE and re-optimization
uses random sampling to improve uncertainty [6], cardinality [54]
and selectivity [20] estimates. These better estimates are comple-
mentary to Boot, which operates in a new training data context.

Approximate Query Processing (AQP): AQP provides faster
query results by sampling data [9, 38, 40]. Unlike AQP, Boot does
not care about the correctness of the query result. However, AQP
techniques are useful for obtaining more accurate execution behav-
ior (e.g., the selectivity of a join operator’s predicate) and correcting
cardinality estimates (e.g., µG’s telemetry scaling). Although Boot
and AQP are complementary, we envision AQP will find new appli-
cations in accelerating training data generation.

Training Data Collection: Prior work that improves the train-
ing data collection process focuses on optimizing instrumentation
overhead [8] or reducing the quantity of training data that needs to
be collected. For example, using active learning [49] or index-aware
similarity [44, 45] reduces the number of queries executed, budget-
aware tuning [52, 55] reduces the number of optimizer what-if calls,
and incremental model construction [16] allows stopping training
data collection early. However, to our knowledge, no techniques
exploit the training data setting to accelerate query execution itself.

9 CONCLUSION
Autonomous DBMSs use behavior models to evaluate the benefit
of candidate configurations while avoiding the workload execution
overhead. Collecting the training data required to construct these
models is overly time-consuming, making integrating such models
into the DBMS’s tuning feedback loop infeasible. We introduce
two acceleration techniques to expedite the training data collection
process by leveraging the unique characteristics of the training data
environment. We show how to apply these techniques with our
framework Boot that drops into existing database gym pipelines.
Experiments across multiple workloads show that our accelera-
tion techniques are well-suited for bootstrapping an autonomous
DBMS’s models as they produce models in less time (hours instead
of weeks) with only a moderate degradation in model accuracy.
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