
Tastes Great! Less Filling!
High Performance and Accurate Training Data Collection for

Self-Driving Database Management Systems
Matthew Butrovich, Wan Shen Lim, Lin Ma, John Rollinson♠, William Zhang, Yu Xia♦, Andrew Pavlo

Carnegie Mellon University, ♠Army Cyber Institute, ♦Massachusetts Institute of Technology
{mbutrovi,wanshenl,lin.ma,wz2,pavlo}@cs.cmu.edu,john.rollinson@westpoint.edu,yuxia@mit.edu

Abstract
A self-driving database management system (DBMS) aims to config-
ure, deploy, and optimize almost all aspects of itself automatically
without human intervention or guidance. Achieving this high level
of automation relies on machine learning (ML) models that pre-
dict how a DBMS will behave in different scenarios. This behavior
encompasses all DBMS runtime operations, including query exe-
cution and maintenance tasks. These ML-based behavior models
for a self-driving DBMS require low-level training data about a
DBMS’s internals. Such training data includes (1) features that de-
scribe the workload, environment, and DBMS configuration, and
(2) both DBMS- and hardware-level metrics. But it is difficult to
collect training data from a DBMS while it is running because it can
introduce performance and measurement degradations that hinder
the ML models’ ability to predict the DBMS’s behavior correctly.

We present the TScout (TS) framework for collecting training
data from self-driving DBMSs. Our framework is an internal ap-
proach where developers annotate a DBMS’s source code with
hooks to monitor the system’s behavior. TS then extracts these
hooks and generates a kernel-level program (via Linux’s BPF) that
efficiently captures metrics from multiple sources (e.g., CPU per-
formance counters, memory allocators). TS combines these metrics
with internal DBMS state observations, generating training data
for behavior models. We integrated TS in a PostgreSQL-compatible
DBMS and measured its ability to collect training data for both
OLTP and OLAP workloads. Our results show that TS generates
training data for a deployed DBMS to train more accurate models
than previous methods with only a 7% performance reduction.
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1 INTRODUCTION
Self-driving DBMSs seek to automate the arduous tuning and opti-
mization tasks for databases [39, 41, 42]. Given a target objective
function (e.g., throughput, latency), a self-driving DBMS automati-
cally deploys actions that it deems will help the application’s future
workload for that objective. These actions control three aspects
of the system: (1) physical design, (2) knob configuration, and (3)
hardware resources. Although there are existing advisory tools
that support individual actions (e.g., index recommendation [11],
knob tuning [52]), a self-driving DBMS takes a holistic approach to
optimization to include when and how to deploy such actions.

The functionality that enables this is a self-driving DBMS’s abil-
ity to estimate the cost/benefit of an action using behavior mod-
els [29]. For example, if an action adds an index, the DBMS’s be-
havior models predict how much CPU and memory the system
will consume to execute future queries if the database includes that
index. The behavior models also predict the cost of the action’s
deployment. Using the same index action example, the models pre-
dict how much CPU and memory that DBMS will use to create that
index and how that will affect queries running simultaneously.

Building these behavior models as the foundation of a self-
driving DBMS requires ample training data. Such training data
comes from the DBMS executing queries and actions and observing
the outcome. Training data comprises both high-level observations
specific to the DBMS’s operations, such as the number of tuples
that a query plan operator consumes, and hardware metrics (e.g.,
CPU instructions, memory allocations).

One problem with existing approaches for training data col-
lection in autonomous DBMSs is that they rely on offline DBMS
instances. The most common method is to clone the database and
simulate the application via a workload trace [13, 30, 52]. To avoid
copying the database, another method uses hand-written “runners”
that execute queries in an offline environment [29]. Although these
offline methods are useful for bootstrapping a DBMS’s models, they
require significant time and computational resources to train. They
can also not try all combinations of physical designs and knob
configurations in a DBMS.

It is clear that the solution to this problem is to perform online
training data collection while the DBMS executes the application’s
workload and then augment offline data with this new “fresh” data.
Incorporating such online data as soon as possible means that the
DBMS’s behavior models better reflect the system’s current work-
load and configuration. But current online training data collection
methods are bespoke and impose unacceptable runtime overhead.

This paper presents the TScout (TS) framework for efficient
and accurate training data generation in self-driving DBMSs. Our
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framework collects metrics using a combination of hardware-level
performance counters, kernel-level observations (via BPF [18]),
and application-level counters. TS combines these metrics with
descriptors of DBMS behavior during query execution and internal
maintenance tasks to create training data for machine learning
models. TS uses code generation to create a kernel-level program
that collects metrics tailored to the DBMS.

We integrated TS with the NoisePage DBMS [1] and measured
its overhead and accuracy. We also compare with existing ap-
proaches from other observation tools for training data collection
in NoisePage. Our results show that TS increases the DBMS’s collec-
tion rate by ∼300% with only a 7% runtime performance overhead.
For behavior models that are heavily influenced by the workload,
we also find that generating training data while deployed with TS
reduces the error for NoisePage by 98% over existing approaches.

This paper is organized as follows. We first discuss in Sec. 2 train-
ing data collection challenges. Sec. 3 presents the TS framework,
followed by how to collect metrics in Sec. 4 and engineering issues
in Sec. 5. Lastly, we present our evaluation in Sec. 6.

2 BACKGROUND
We begin with an overview of self-driving DBMS architectures.
Next, we describe the two data sources needed to train models that
guide the decision-making processes in a self-driving DBMS. This
will motivate the need for non-intrusive methods to generate and
collect online training data.

2.1 Self-Driving DBMS
A self-driving DBMS’s architecture is comprised of three compo-
nents: (1) forecasting system, (2) behavior models, and (3) planning
system [42]. The forecasting system is how the DBMS observes and
predicts the application’s futureworkload [28]. TheDBMS then uses
these forecasts with its behavior models to predict its runtime behav-
ior relative to the target objective (e.g., latency, throughput) [29].
The planning system selects actions that improve this objective.

A behavior model represents a discrete component in the DBMS.
For a set of input features, the model emits metrics that estimate
the component’s work for those inputs. For example, a DBMS could
build a model for a sequential scan where the input is the table
name and the number of tuples that the operator will scan, and the
output is the expected execution time.

The models’ output is comprised of one or moremetrics. A metric
is a low-level measurement of how the DBMS interacts with its
underlying hardware: (1) CPU, (2) memory, (3) disk, and (4) network.
The DBMS can easily measure some metrics with user-level code
(e.g., memory allocated). Other metrics are only observable via
methods that are external to the DBMS in either the OS or hardware
(e.g., CPU counters), and thus are more challenging to collect. The
self-driving components require accurate models. For example, the
planning system uses models and the workload forecast to predict
future DBMS resource consumption. If those models are inaccurate,
the planning components will not optimize the DBMS.

The scope of a model depends on the implementation. In the
case of the sequential scan example, the DBMS could use a single
model to represent the entire query plan scan operator [30] or mul-
tiple models with internal features that represent smaller operating

units (OUs). OU-level models are less complex and thus require less
training data than monolithic models [29].

To build OU models, a DBMS needs training data of previous
examples of the system’s operations (e.g., executing queries). Each
data point in a training corpus contains input features and its cor-
responding output metrics that the models will predict. We now
describe ways in which a DBMS can generate such training data.

2.2 Input Features Collection
The inputs to an OU behavior model describe the DBMS’s task when
executing that OU. For example, the features for an index lookup
OU contain its schema, data structure type, and the number of index
entries. Since workloads, statistics, and configurations fluctuate,
such features must reflect DBMS state at the time of execution. One
can collect these features from the DBMS either (1) externally via
SQL commands or (2) internally within the DBMS.
External: Previous work on modeling query latency extracts fea-
tures by executing EXPLAIN for every query [30]. This provides
the optimizer’s physical plan and cost estimates, which can be
decomposed into individual operator features.

However, this approach is not feasible in high-performance sce-
narios. EXPLAIN is meant to be an infrequent operation that regen-
erates the query plan. Furthermore, it presents human-readable
information about query execution, and cannot capture a query’s
interactions with DBMS background tasks, like garbage collection
and write-ahead logging (WAL). Lastly extracting the DBMS’s con-
figuration and environment requires executing even more SQL
queries. This additional work slows down query execution, making
it challenging to collect training data in an online setting.
Internal: An alternative approach is to embed feature collection
logic inside the DBMS. Since the DBMS already maintains infor-
mation about query execution, configuration, and environment, it
can use its internal APIs to read this data. In addition, the system
can tag background operations with identifiers to describe what
queries initiated them. This approach is similar to previous network
tracing methods that determine causality in opaque systems [15].

Internal methods solve many problems associated with external
training data features at the expense of higher software engineering
costs. Foremost is that since the DBMS already needs the results of
EXPLAIN for query execution—explicitly invoking it is not necessary.
Second, internal collection accurately represents temporal features
that fluctuate, like CPU frequency and the number of concurrent
workers. Lastly, internal feature collection enables modeling DBMS
subsystems beyond the query execution to express causality in
background tasks like write-ahead logging. As such, an internal
collection method is better suited for self-driving DBMSs.

2.3 Output Metrics Collection
The output of an OU behavior model is the DBMS’s estimated
metrics, so the training data for these models must come from
runtime operations. Therefore, the challenge is how to efficiently
measure a DBMS’s metrics without altering its observed behavior.

Previous work onmodeling query latency collectedmetrics using
EXPLAIN ANALYZE [30]. In addition to EXPLAIN’s limitations that we
describe in Sec. 2.2, EXPLAIN ANALYZE does not return query results
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Figure 1: User-space vs. Kernel-spaceMetrics Collection – Transaction
latency of TPC-C with (1) DBMS metrics collection disabled, (2) metrics
collected in user-space, and (3) metrics collected in kernel-space using BPF.

on the client, and the instrumentation imposes runtime overhead to
query execution [45]. It can also not collect metrics for other parts
of the system not related to query execution (e.g., maintenance
operations). Such issues make EXPLAIN ANALYZE unsuitable for
generating the output metrics for training data.

Given this, there are two approaches for capturing metrics in
an internal training data collection framework for a self-driving
DBMS: (1) user-space or (2) kernel-space.
User-space: To collect system metrics from user-space, the DBMS
manually invokes the necessary functions in its source code to
enable and disable recording metrics. It then manually retrieves the
metrics with a final set of function calls.

The problem with this approach is that for some metrics, such
as CPU counters, the functions to enable/disable their collection
are syscalls to the OS; syscalls are expensive because execution
switches into a privileged kernel mode. In some cases, collecting
metrics for a single OU requires multiple syscalls per hardware type.
Another problem is that the OS may not expose all the metrics via
syscalls. Instead, the DBMS developer has to scrape procfs (/proc)
or other tools, which are slower and less robust than syscalls.
Kernel-space: With kernel-space collection, theDBMS relies on an
ancillary program running inside the OS kernel to retrieve metrics
for it. This approach means that the program requires only one
transition to kernel mode to extract multiple system metrics. Once
in kernel mode, the program can read CPU performance counters,
network statistics, and any additional system metrics.

Although kernel-space collection is faster than user-space meth-
ods, traditional OS kernel modules are notoriously difficult to write
and could potentially pose several safety issues. In the last decade,
however, the rise of kernel-embedded VMs for specialized programs
has simplified executing user code in kernel-space while providing
guarantees that the programs cannot harm the OS.

The most well-known of these VMs is Linux’s “extended” Berke-
ley Packet Filter (BPF) library [47]. BPF allows developers to write
event-driven programs in C-like dialect that run in kernel mode
to trace the behavior of other processes. The kernel’s BPF valida-
tor strictly limits a program’s length, permissible operations, and
storage allocation. But BPF programs can execute OS-level tasks
efficiently due to their privileged execution mode. Developers com-
pile their programs to BPF bytecode and then load them into the
kernel. During this loading step, the BPF subsystem verifies the
program’s safety, just-in-time compiles the bytecode to machine
code, and transfers it into the kernel.

The Linux kernel does not continuously run a loaded BPF pro-
gram. Instead, when an event (e.g., kprobes, uprobes, or tracepoints)
occurs in a monitored process, the process switches into kernel
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Figure 2: Offline vs. Online Training Data – Accuracy measurements
of behavior models trained with offline and online data when predicting
the execution time of TPC-C queries.

mode and executes the BPF code. Unlike some syscalls to retrieve
metrics, the OS does not preempt BPF programs, which yields more
predictable performance for the DBMS.

When a BPF program runs, it can inspect kernel data structures,
explore the DBMS’s address space, accumulate metrics into BPF
maps, and communicate with the DBMS in user-space. Upon com-
pletion, the thread resumes the DBMS’s original execution path.
BPF metrics collection also minimizes the amount of code that
needs to run in a privileged mode; without system modification, a
DBMS that collects OS metrics from user-space would need to run
as root. The OS sandboxes BPF programs with strict verification re-
quirements, making them safer to use in production environments
than a DBMS with elevated privileges in user-space.

To show the benefit of collecting DBMS metrics in kernel-space,
we evaluate the average p99 latency of TPC-C transactions on
NoisePage in three configurations: (1) onewith nometrics collection
enabled, (2) one with metrics collection using user-space methods,
and a final method relying on BPF. We run the workload with
a single client to reduce the effects of contention on any shared
data structures. The results in Fig. 1 show how metrics collection
using BPF yields more predictable performance. As expected, both
methods increase the p99 latency compared to no metrics collection
due to the increased amount of work being performed. However,
the reduced number of syscalls with BPF reduces the tail latency of
queries compared to the user-space approach. The BPF approach
generates the same data as user-space syscalls, but with fewer
execution mode switches, resulting in better performance.

2.4 Offline vs. Online Training Data
A self-driving DBMS uses two type of data to train its behavior
models: (1) offline data and (2) online data.
Offline Data: A self-driving DBMS generates offline data if it
uses a separate environment from the production one. The most
common approach is to deploy a clone of the production instance
and replay a workload trace [13, 30, 52]. Although creating database
snapshots has become easier in recent years, it still requires a new
DBMS instance for the clone, which can be prohibitively expensive.
Furthermore, one must also capture a workload trace from the
production instance to replay on the clone.

An alternative to the clone-based approach is for DBMS devel-
opers to create targeted microbenchmarks (i.e., runners [29]) that
simulate different execution scenarios. Since traces are static and
repetitive (especially for OLTP applications), they generate training
data that does not provide additional information. Runners target
specific DBMS components by sweeping input values to generate
unique training data points that yield robust models. Although
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these runners require additional engineering for DBMS developers,
they reduce redundancy in the offline training data collection.

Regardless of what approach a DBMS uses to generate offline
data, the system will need to sweep database configurations and
parameters to mimic scenarios in the production DBMS. Depending
on the complexity of a DBMS’s runner suite, it could take several
days or weeks to generate enough offline data to yield robust, gen-
eralizable models. Then if the target DBMS’s software changes (e.g.,
upgrading to a new DBMS version) or its hardware changes, the
DBMS may have to re-run its offline training data generation meth-
ods. It is still impossible to represent all possible configurations and
environments.
Online Data: This second data category occurs if the target pro-
duction DBMS collects the training data as it executes the applica-
tion’s queries. Online data has the advantage that it exactly reflects
the DBMS’s current workload, database, and environment. This
means that as the application’s workload evolves or the database
grows/shrinks in size, the training data will reflect these changes.

To illustrate the benefit of using online data versus offline data,
we compare the accuracy of OU-level models in NoisePage to pre-
dict the system’s behavior when executing an OLTP workload [29].
We group the OU models by DBMS subsystem because they share
the same input features. The offline models use training data col-
lected from NoisePage’s built-in runners, while the online models
also use training data collected from running the TPC-C benchmark.
We then measure the models’ average absolute error in predicting
the execution time of queries from a TPC-C trace. We hold out 20%
of queries (by query template type) from the online training data
set, and then evaluate model accuracy on these omitted queries.

The results in Fig. 2 show that online data improves the behavior
models’ accuracy when predicting OU execution time for previously
unseen queries. The models for the WAL subsystem, encompassing
the log serializer and disk writer, experience the most improvement
because their behavior depends on the workload itself. More ac-
curate OU models allow a self-driving DBMS to better predict its
behavior with future workloads and new configurations.

3 FRAMEWORK OVERVIEW
Our analysis in the previous section argues that an ideal training
data framework for a self-driving DBMS collects internal input
features and kernel-space output metrics from online workloads.
Given this, we now present the TScout (TS) training data collec-
tion framework. TS facilitates the recording and processing of OU-
granular training data from a multi-threaded DBMS to generate
training data for the system’s behavior models. The framework
retrieves training data from the DBMS as it executes queries, and
thus it does not require developers to create microbenchmarks
to simulate workloads. TS collects output metrics in kernel-space
using BPF with minimal performance impact without sacrificing
measurement accuracy. When it is not feasible to use kernel-space
methods, TS also supports user-space metric collection and makes
it easy to combine metrics collected from different approaches.

The architecture overview in Fig. 3 shows that TS’s deployment
occurs in two stages. In the initial Setup Phase, a developer anno-
tates the DBMS’s source code with markers to declare OU bound-
aries and what training data to collect for them. TS then extracts

these markers and codegens a custom program for interfacing with
the DBMS and collecting training data in the Runtime Phase.

We designed TSwith two key properties to achieve non-intrusive
instrumentation for training data collection. The first is that TS does
not produce back pressure on the DBMS. Although there is a small,
unavoidable overhead to collecting data, TS does not add blocking
synchronization mechanisms on critical paths. The second property
is that it supports fine-grained, dynamic collection. TS supports
adjustable data collection frequencies per internal subsystem rather
than the “all or nothing” approach of many DBMSs.

The following section describes the architecture of the TS frame-
work in more detail. We first describe how developers integrate TS
with a DBMS and its codegen process. We then present how the
framework operates in its Runtime Phase to retrieve metrics and
other data to produce training data for its behavior models. We
discuss how TS collects hardware resource data in Sec. 4.

3.1 Setup Phase
TS assumes that the target DBMS uses an internal approach to au-
tonomous planning [29]. Thus, before deploying the DBMS with TS,
a developer must first modify the system’s source code to indicate
when, where, and how TS collects training data. They do this by
annotating the DBMS with markers for each OU to specify their lo-
cations and subsystem. If the OU belongs to a new subsystem of the
DBMS, then the developer also defines the OU’s input features and
resources for TS to monitor. TS’s Compiler uses this information to
generate the Collector’s BPF code (Sec. 3.2).
Markers: TS provides its markers as statically-defined tracepoint
macros [5, 14, 48]. Tracepoints were introduced as part of Solaris’
DTrace project for kernel-level debugging and dynamic tracing.
At DBMS compilation time, these tracepoint macros generate NOP
instructions and metadata about their offset location in the program
code. The OS replaces these NOPs with instructions that enable TS
to instrument the OU when the program starts.

BPF supports other invocation methods (e.g., uprobes [51]) that
do not require source code annotation. We use tracepoints instead
of them for several reasons: (1) compiler optimizations and function
namemanglingmake it difficult to define OU boundaries inmachine
code, (2) OU behavior can spanmultiple functions, (3) DBMS control
flow can have multiple exit paths from OUs (e.g., query and trigger
exceptions), and (4) DBMSs that use JIT compilation [37] further
obfuscate system behavior, making instrumentation less reliable.

TS uses markers to identify when the DBMS executes an OU. A
developer annotates each OU in the DBMS’s source code with a
triplet of markers: (1) BEGIN, (2) END, and (3) FEATURES. The first
two represent the start (BEGIN) and finish (END) boundaries of an
OU in the system. At runtime, when a DBMS’s thread encounters
a BEGIN marker, this triggers an event that causes TS to enable
metrics collection for that thread. The framework then disables
collection when that same thread encounters a END marker. TS
maintains an internal state machine to handle situations when
markers are in an unexpected order (Sec. 5.1).

The third marker type (FEATURES) is how the DBMS records the
input features and any user-level metrics for each OU’s behavior
model (Sec. 2.1). In most cases, the features of an OU are known
before execution (i.e., an OU’s inputs describe the amount of work
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Figure 3: Framework Overview – TScout’s architecture is split into two phases. In the Setup Phase, a developer annotates the DBMS’s source code. Then,
TS uses code generation to create a customized Collector for the Runtime Phase. During the Runtime Phase, the Collector retrieves metrics and the DBMS’s
OU input features to create training data. Finally, these data are shipped to the Processor for archiving with other training data.

it will perform). However, DBMSs also perform operations that
cannot be summarized until completion. One example of this sce-
nario is processing messages from the network layer. PostgreSQL’s
protocol allows for multiple queries to be sent in a single packet,
and only after fully inspecting the buffer can the amount of work
be summarized. For this reason, TS treats input feature generation
as a separate event after OU execution.

Fig. 3 shows an example of using markers for an OU that per-
forms a sequential scan on a table. The BEGIN and END markers
enclose the loop that reads tuples from the table. The FEATURES
marker denotes the input parameters for the scan operation, includ-
ing the table’s name and the number of scanned tuples.

TS does not collect training data all the time as continuously
monitoring fine-grained OUs would (1) degrade the DBMS’s per-
formance and (2) generate a large amount of data that require
significant storage resources. Thus, TS needs to toggle collection
on and off at runtime on a per query basis. TS wraps markers with
lightweight sampling logic that determines whether to collect train-
ing data at runtime. Some input features also require the DBMS to
aggregate them before sending them to TS (e.g., total memory used
by an OU over multiple allocations). TS informs the DBMS that
it can bypass this work via a user-space flag that indicates when
collection is enabled. We discuss these optimizations in Sec. 5.3.
Codegen: After the developer adds markers to the DBMS’s source
code, TS then extracts their embedded metadata from the DBMS to
determine which metrics it needs to collect per subsystem. For the
example shown in Fig. 3, the DBMS’s execution engine needs CPU,
memory, and disk metrics but not network metrics. This metadata
also indicates that CPU and disk metrics will come from TS’s built-
in probes whereas the memory metrics will come from a developer
provided probe. TS then generates the source code for a BPF pro-
gram to create the Collector component. As we describe in Sec. 3.2,
the Collector retrieves the necessary metrics for each marker and
aggregates their measurements. The framework then generates
kernel-safe bytecode for this program using a BPF compiler (BCC).

3.2 Runtime Phase
The administrator deploys the DBMS together with TS on the same
server. Using the example in Fig. 3, the application submits a query
that performs a sequential scan and then 1 the DBMS begins
executing the query’s plan. We assume that the DBMS uses a single
thread to simplify our discussion but TS supports multi-threaded
execution. 2 The thread then executes the OU for the sequential
scan that the developer annotated with markers in the Setup Phase.
3 When the DBMS encounters the BEGIN marker for this OU at
runtime, it triggers TS to enable metrics collection using its probes.

We next describe how TS coordinates the retrieval of metrics
from its probes with its Collector component. We then discuss how
TS uses its Processor to extract training data from the DBMS.
Collector: The Collector orchestrates training data collection from
disparate sources in the DBMS. In addition to the metric-specific
code from TS’s Codegen component, the Collector also includes
data structures to store intermediate metrics.

4 The Collector uses a BPF map to store a snapshot of probes’
results at the BEGIN marker. 5 After completion of the OU and
triggering the END marker, the Collector retrieves this initial data
from the BPF map, invokes the necessary probes again to get a
current snapshot, computes the value for each metric, and then
stores the final results back in the BPFmap.When theDBMS reaches
the OU’s FEATURES marker, 6 the Collector packages the features
and metrics together into a struct (sample data point) and then 7
sends it to the Processor via a perf ring buffer for the final step.
Probes: TS’s probes generate metrics from the running DBMS. A
probe is a small piece of reusable code that retrieves one or more
metrics that the framework uses for multiple OUs. In the example
from Fig. 3, the framework contains a probe to retrieve the number
of CPU cache misses during the sequential scan OU.

TS supports both user-level and kernel-level probes. In the Setup
Phase, the developer specifies which probe to use for each resource
category. Both types of probes are necessary because it is more
efficient for the DBMS to retrieve some metrics using one type
versus another (Sec. 4). TS’s markers support passing arguments to
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kernel-space probes so the DBMS can provide qualifiers for an OU,
such as which file descriptors or network sockets to monitor.

The memory probe in Fig. 3 is an example of a user-level probe
because the developer writes the code to perform metrics retrieval
from inside the DBMS. TS provides the DBMS with a buffer for
storing input features and metrics at runtime. The DBMS’s respon-
sibility is to fill that buffer with necessary data and send it to the
Collector at the FEATURES marker. For kernel-level probes, TS han-
dles the retrieval and storage of metrics automatically.
Processor: The Processor is the user-space component that ex-
tracts and archives training data. Once the Collector sends a com-
pleted sample as a perf buffer to the Processor, the Processor can
do additional cleaning on the data and write it to the appropriate
output target (e.g., local disk, cloud storage).

When the Processor receives a sample, it extracts the raw data
from the perf buffer and transforms it to the correct format. For
our implementation in NoisePage, this requires data type conver-
sions, but the final format is configurable based on the system’s ML
training pipeline. For example, a DBMS with a Volcano-style execu-
tion engine [17] with query plan operators that call child operators
can leverage the Processor’s transformation step to separate the
runtime metrics of parent and child operations in the query plan.
If the Processor cannot keep up, it has a feedback mechanism to
decrease the sampling rate. Alternatively, the Processor can drop
data without incurring correctness problems; the Collector’s buffer
is bounded so that TS will overwrite samples if it is full.

4 RESOURCE PROBES
Probes are reusable code that run at OU boundaries defined by
the markers in the DBMS. For each probe, the BEGIN marker starts
the measurement, and the END completes the process. TS provides
probes for four hardware categories: CPU, memory, network, and
disk. There are multiple reasons for this separation. First, the nature
of how the DBMS uses these resources is different. The DBMS
creates threads or processes that the OS schedules to run on the
CPU. For memory, the DBMS is constantly acquiring and releasing
memory to execute queries whereas it groups blocking IO calls.
The second reason for distinct probe definitions is because the OS
exposes different ways to measure each hardware type. The OS
provides syscalls to measure usage for some hardware, while others
require access to kernel internals. Thus, depending on the hardware
category, a probe for TS is either (1) user-level or (2) kernel-level.

TS provides kernel-level probes written in BPF for measuring
CPU, network, and disk activity. Sec. 3.2 describes how TS generates
this code in the Setup Phase. Memory is the only category that
requires developers to implement a user-level probe per DBMS.
In this case, TS generates no Collector code for that hardware
category. Instead, user-level probes require the DBMS to track its
resources during OU execution. The DBMS bundles those metrics
at the FEATURES marker before sending them to TS’s Collector.

In addition to user-level and kernel-level metrics, hardware de-
vices can expose counters (e.g., CPU PMU, disk SMART stats). TS
does not provide probes to collect any of these. The code required to
access these counters can be vendor-specific, making it not portable
and onerous to implement. For example, Intel’s rdpmc instruction
accesses PMUs, but this requires low-level knowledge of the CPU’s

ISA and the OS’s scheduling algorithm. We now describe how TS’s
probes extract metrics per hardware category.

4.1 CPU Probe
TS’s CPU probe measures the amount of work a CPU performs
for the DBMS within the boundaries of an OU. This work includes
pipeline information like cycles, instructions, and reference CPU
cycles. It also records caching metrics, such as cache references and
misses. TS use the perf_event functions of BPF to retrieve this
information. These functions are a stable API provided by the Linux
kernel that supports multiple architectures [54]. The framework
could also access perf_event in user-space; we measure the trade-
offs between different access methods in Sec. 6.2.

At the BEGIN marker, TS’s CPU probe reads perf_event coun-
ters, normalizes their values, and stores them in the Collector’s BPF
map. This normalization step is necessary because of the limited
PMU registers on the CPU. If the probe enables more perf counters
than the CPU supports, then the OS samples these values. The
probe must normalize raw counters by the elapsed active time in
the PMU. TS handles this step transparently.

At the OU’s END marker, the CPU probe again reads the perf
counters and performs the same normalization. It then retrieves
the initial values from the BPF map, computes their difference, and
stores the final metrics back in the BPF map.

4.2 Memory Probe
TS’s memory probe is the only user-level probe in the framework.
The developer instruments their OUs to collect their memory con-
sumption for TS. There are several reasons that memory is the only
hardware category that follows this model. First, memory alloca-
tions in a DBMS have different life cycles that may persist beyond
OU execution. Second, the frequency of memory allocations make
them impractical to instrument with BPF. Lastly, the abstraction
layers of memory allocators and virtual memory make it difficult
to assign ownership to an OU from BPF. We now discuss each of
these considerations in more detail.
Life Cycles: When a DBMS thread allocates memory, the system’s
amount of time to use that memory depends on many factors. Some
memory is for transient tasks (e.g., C++ object allocation), while
some memory is for data structures that last the DBMS process’ life-
time (e.g., catalog metadata). But for modeling the DBMS’s runtime
behavior for self-driving purposes, the only allocations that matter
are for buffers during query execution (e.g., query results, WAL
redo buffers). Thus, only the DBMS developer knows how long a
memory allocation is expected to be needed, and if the ownership
will change beyond the OU that initiated the request.
Frequencies: A DBMS performs millions of memory allocations
per second. Although allocators keep the majority of them com-
pletely in user-space, BPF probes would force every allocation to
trap into kernel-space, which would be unbearably slow. TS’s query
sampling reduces overhead, but it prolongs the time to generate
sufficient training data. TS’s user-level memory probe allows DBMS
developers to instrument allocations optimally at a granularity that
makes sense for each OU definition in their system.
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Abstractions: Modern allocators (jemalloc, mimalloc) handle
malloc calls by over-requesting and then reusing memory to mini-
mize syscalls. These allocators have tunable pools, reuse policies,
and other optimizations to avoid fragmentation. As such, these allo-
cators obscure the OS’s view of true memory usage. The OS is only
aware of a specific memory request from the DBMS if it requests a
large allocation that is unsuitable for OU instrumentation.

Within the kernel, virtual memory further complicates deter-
mining how much memory an OU actually consumes. First, Linux
assigns physical memory to virtual addresses lazily by default, with
the kernel relying on page faults to service allocations. This dispar-
ity between request time and use time, and some allocators relying
on this behavior to minimize system calls, makes it difficult to at-
tribute a request for raw memory to a specific memory allocation
by an OU. Lastly, POSIX instrumentation syscalls like getrusage
are too coarse-grained, and only provide summary statistics for the
entire DBMS process.

For the above reasons, TS provides a user-level probe for col-
lecting memory metrics. DBMS developers implement their own
memory tracking for each OU, and populate the values at the appro-
priate FEATURESmarkers. TS bundles these metrics with the results
of its kernel-level probes to complete an OU’s data. TS takes this
approach because DBMSs already track memory to support knobs
for join buffer sizes [31] and queries like EXPLAIN ANALYZE [23].

4.3 Network Probe
TS provides a kernel-level probe that records an OU’s network
activity (e.g., bytes read/written). One could implement this with
a user-level probe, and many DBMSs already keep such statistics
by accumulating the results of networking syscalls. But a benefit
of TS’s approach is separating instrumentation logic from control
logic. DBMS networking state machines are complex code that rely
on the return value of socket operations. Without TS, a DBMS needs
additional code to respond to the socket results and accumulate
metrics. With TS, developers only need to wrap socket operations
(e.g., read, write) in markers.

There are user-space sources for network metrics, but they im-
pose a larger overhead than TS’s BPF approach. Linux command-
line tools (e.g., netstat, ss) generate socket statistics, but the fre-
quency of OU execution make them infeasible. Linux’s sock_diag
syscall also provides socket-level metrics, but it also has overhead
from data copying and parsing. Instead, TS’s network probe limits
the transition overhead to just the mode-switch and extracts socket
statistics by reading kernel data structures (tcp_sock).

4.4 Disk Probe
TS’s disk probe design is similar to the network probe described
above: it is a kernel-level probe that calculates bytes read and writ-
ten for disk IO. Like for network activity, this probe could track
this information in user-space based on the results of IO syscalls,
but TS again separates the concerns of instrumentation and control
flow. The performance concerns of using command-line tools at OU
granularity and syscall overheads apply to measuring disk metrics.

TS’s kernel-level disk probe collects disk statistics the same way
as the network probe: by reading metrics that the Linux kernel
already maintains by traversing the DBMS’s task_struct. As an

optimization specifically for NoisePage, TS’s implementation as-
sumes a single open file (e.g., WAL) for the entire DBMS process,
which allows the probe to retrieve metrics from the OS’s ioac IO
accounting struct. One can extend the probe to support tracking IO
for multiple files by using their descriptors as marker parameters.

5 ENGINEERING
We now present additional details and considerations of TS’s im-
plementation that we did not cover in Secs. 3 and 4.

5.1 BPF Development
BPF enables tools to run programs inside the OS without recompil-
ing the kernel or loading privileged modules. BPF currently requires
a modern Linux kernel; TS targets kernel version 5.4 due to its wide
adoption in the major Linux distributions. As we now describe, BPF
imposes unique constraints for these programs.

Most of these limitations come from BPF’s verifier that checks
programs as they are loaded into the kernel. The verifier enforces a
program’s safety and performance guarantees by building a control
flow graph and then checks for unreachable instructions. It allows
for loops, but they must be bounded at compile-time. BPF does not
allow dynamic allocation other than in BPF maps, and it restricts
pointers to a safe API. Because TS reads kernel data structures
to extract runtime metrics, TS validates kernel memory accesses
before dereferencing. The verifier also restricts the total length of
the program to 1m instructions. This is not a problem for TS as its
compiled BPF programs only contain 100s of instructions.

BPF tooling is limited, and messages from the BPF compiler and
verifier do not always make errors obvious. TS simplifies BPF devel-
opment by using its Codegen component to generate high-level C
code that uses the BCC library to generate BPF code. As described in
Sec. 3.1, DBMS developers select the hardware resources to monitor
for an OU, and TS automatically composes probe code.

TS benefits from BPF constraints by enforcing a strict state ma-
chine. If TS executes in an unexpected order, the Collector resets
training data collection, discards any intermediate results, and logs
an error message. This scenario can occur in two ways: (1) a DBMS
developer placing markers in a sequence that TS deems incorrect
(e.g., out-of-order markers) and (2) exceptional control flow due to
client request to the DBMS.

5.2 Query Engine Integration
TS’s flexibility supports all modern DBMS designs. As we now
describe, two cases are challenging to implement OU training data
collection in a DBMS’s execution engine.
JIT Query Compilation: With this technique, the DBMS converts
a query plan into executable code that it then compiles and links
into its address space [37]. The problem, however, is that trace-
points in this dynamic code are not known when TS’s Codegen
component creates its BPF program and will not trigger events
at runtime. Instead, one can wrap the location in the DBMS that
invokes a compiled query with markers. But in a system using
fine-grained OUs, a compiled query will contain multiple OUs. In
general, the problem is that one maywant to model query execution
at a granularity that the DBMS does not support.
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Figure 4: Query Engine Integration – TS’s vectorized input features
supports collecting training data from a JIT compilation execution engine
with a pipeline containing multiple OUs.

To overcome this problem, TS supports recording the input fea-
tures for multiple OUs that the DBMS executes together. In the
example shown in Fig. 4, the compiled query contains three OUs:
(1) index lookup, (2) filter, and (3) writing to an output buffer. After
invoking the query, the Collector retrieves a single set of metrics
from its probes but the FEATURES marker emits vectors of input
features for the query’s three OUs. Breaking apart which portion
of the metrics correspond to which OU happens when the DBMS
trains new models, which is outside the purview of TS.
Recursive Operators: Another problem is when an operator in-
vokes itself, causing TS to encounter the same BEGIN marker twice
before a END marker. This can occur in a Volcano-style [17] DBMS
when an operator higher in the query plan invokes the same opera-
tor type. For example, a hash join operator calls next on its child
operator that happens be the same hash join operator. This situation
can also arise in queries with recursive common table expressions
(CTEs) where an operator may call its own function.

We solved this problem by modifying TS’s Collector to maintain
intermediate results using a stack BPF map. For each BEGINmarker,
the Collector pushes a new OU invocation entry onto this stack.
Then as it encounters FEATURESmarkers, it pops the last entry from
the stack, checks that it matches the expected OU type, and then
transmits the data to the Processor.

5.3 Sampling
For training data collection in NoisePage, we implemented ad-
justable sampling for subsystem events. These events are typically
queries, but some subsystems group operations to improve perfor-
mance. For example, the disk serializer combines query results into
buffers, so each sample corresponds to a single buffer.

Per-subsystem sampling reduces overhead at the expense of
lower data generation rates. TS maintains a 100-bit field for each
subsystem to represent its sampling rate. For example, a sampling
rate of 100% has this field to all one, while a rate of 20% will have 20
random bits set to one. The random distribution of ones reduces the
burstiness of collection. Without shuffling, a transaction’s query
sequence may fall entirely within the sampling window, thereby
experiencing higher latency than other transactions. Lastly, each
thread in NoisePage maintains offsets to index into the bit fields.
On a candidate collection event, the thread checks the bit value at
its offset, uses the value to enable or disable training data for the
event, and then increments the offset until it wraps around to zero.

5.4 Dynamic Feature Selection
A key challenge in a training data collection framework like TS is
how to support changing what data to collect. Previous work in
DBMS tuning has shown the benefits of automatic feature selection
algorithms to simplify modeling [52]. Adding additional collection
targets (e.g., user-space probes) to a DBMS requires source code
changes. If the DBMS already exposes the necessary data, external
approaches can modify what data they retrieve without affecting
the system’s behavior. But internal approaches may potentially
require redeployment and restarting whenever the models require
new input features, which is difficult because production DBMSs
have high uptime requirements.

If one does not need tomodify the DBMS’s code, then TS supports
dynamic selection of internal features without restarting in two
ways: (1) TS’s Collector runs in the same address space as the DBMS,
so it has access to all information available at deployment. (2) TS can
dynamically unload BPF programs, modify them, and reload them.
With this capability, developers can change the internal features to
collect, restart TS, and generate new models from the training data.
We defer the problem of using TS to automatically identify which
features to include in a DBMS’s OU models as future work.

6 EVALUATION
To evaluate the efficacy of the TS framework, we integrated it in
the NoisePage DBMS [1]. NoisePage is a PostgreSQL-compatible
DBMS that uses HyPer-style MVCC [38] over Apache Arrow in-
memory columnar data [27]. The original version of NoisePage
uses OU-level behavior models that it trains via offline runners
with user-level probes [29]. We modified NoisePage’s source code
to introduce TS’s markers and probes for its OUs.

We deployed NoisePage on a server with 2×20-core Intel Xeon
Gold 5218R CPUs, 196 GB DRAM, and Samsung PM983 SSD. For the
experiment in Sec. 6.6 with a smaller hardware configuration, we
use a server with a single 6-core Intel Core i7-10710U CPU, 64 GB
DRAM, and Samsung 970 EVO+ SSD. Both machines run Ubuntu
20.04 with Linux (v5.4) that supports BPF.

In each experiment, we deploy NoisePage and TS’s BPF-based
Collector running in the kernel. We also use a single-threaded
Processor to extract training data andwrite it to a file on the server’s
local disk. Since NoisePage uses operation-fusion in its execution
engine, we preprocess the DBMS’s online models to break multiple
OUs per execution engine operation into per-OU data points using
offline models (Sec. 5.2).

When evaluating the performance of OU models trained with
data from TS, we report the average absolute error. OLTP transac-
tions are short-lived and result in noisy runtime measurements,
so we measure the absolute error ( |𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 |) for each query
template and then compute the average.

6.1 Workloads
We use the following workloads in our evaluation. All queries
execute over JDBC using the BenchBase framework [2, 12].
YCSB: The Yahoo! Cloud Serving Benchmark [10] is a synthetic
benchmark modeled after cloud services. To maximize the transac-
tion throughput, we use a read-only configuration for YCSB that
only executes queries that retrieve a single tuple using its primary
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Figure 5: Runtime Overhead (Transaction Throughput) – Impact of query sampling on OLTP transaction throughput, comparing user-space and
kernel-space approaches to system metrics collection.
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Figure 6: Runtime Overhead (Training Data Generation) – Impact of query sampling on OLTP training data generation, comparing user-space and
kernel-space approaches to system metrics collection.

key. The YCSB database contains a single table comprised of tuples
with a primary key and 10 columns of random data, each 100 bytes
in size. Each tuple’s size is approximately 1 KB. We use a database
with 12m tuples (∼13 GB).
SmallBank: This workload models a banking application where
transactions perform simple read and update operations on cus-
tomers’ accounts [3, 8]. All transactions involve a small number
of tuples retrieved using primary key indexes. In addition to the
original six transaction types, we added a transaction that transfers
money between two accounts. The database contains three tables
with 50m accounts (∼10 GB).
TATP: The Telecom Application Transaction Processing bench-
mark is an OLTP testing application that simulates a caller location
system used by telecommunication providers [55]. It has nine trans-
action types that use either a primary key to find caller records or
a secondary index as an indirection look-up to caller records. The
database contains 20m tuples (∼16 GB) stored across four tables.
TPC-C: This is an order-processing application that contains nine
tables and five transaction types [50]. For our experiments, we
use a 1-warehouse database (128 MB), a 20-warehouse database
(∼2.5 GB), and a 200-warehouse database (∼25 GB).
CH-benCHmark: This is a hybrid (HTAP) workload comprised
of the TPC-C OLTP schema with queries adapted from the TPC-
H OLAP benchmark [9]. We use four threads to execute TPC-H
queries and 16 threads to execute TPC-C transactions.

6.2 Runtime Overhead
We first measure to what extent collecting training data with TS
reduces the DBMS’s performance. We modified NoisePage to use
three collection methods with TS: (1) kernel-level probes with con-
tinuous perf counters (Kernel-Continuous), (2) user-level probes
with dynamic perf counters (User-Toggle), and (3) user-level probes
with continuous perf counters (User-Continuous). For the first and
last methods, TS enables its probes even if the framework never

retrieves the data (e.g., TS toggles on CPU counters for all OUs at
DBMS start-up). The second approach dynamically toggles perf at
the start and stop of each OU. We do not evaluate toggled perf in
a kernel-level probe as this does not align with BPF’s access API.

This experiment enables data collection for all DBMS subsystems
to ensure the maximum impact. We sweep the TS’s sampling rate
from 0% to 100%. We run each rate configuration three times and
report (1) the average throughput and (2) how many data samples
TS generates. We execute the workloads described in Sec. 6.1 with
20 client threads. We use Kernel-Continuous with 0% sampling rate
as the baseline because the only user-space logic is minimized to
sampling behavior, which all three methods need.

The results in Fig. 5 show that the DBMS’s performance drops
as the sampling rate increases for each method. This reduction is
because the DBMS, OS, and TS spend more time collecting and
processing training data as the rate increases. In the User-Toggle
configuration when the sampling rate reaches 100%, the DBMS’s
throughput drops by almost 50%. The User-Continuous approach
reduces the DBMS’s throughput by 2–8% even when the sampling
rate is 0% because the kernel does more work at each context switch
to save the CPU’s PMU state. But since User-Continuous only re-
quires a single syscall to retrieve perf counters, it incurs at most a
15% reduction compared to the other methods. Kernel-Continuous
requires multiple syscalls to read perf counters, which slow the
system down despite the syscalls occurring under a single switch in
execution mode. User-Toggle is the slowest because it requires three
syscalls with execution mode switches for each sampled event: one
to enable counters, disable counters, and read results.

User-Continuous has the smallest impact on the DBMS’s perfor-
mance at a high sampling rate, but we must also consider the data
generation rate. As such, we next compare the number of data
points that TS extracts from the DBMS as the sampling rate in-
creases. We measure this from the number of training data samples
that the Processor writes to its output source.
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Figure 7: Adapting to Environment Changes – Comparing prediction error of baseline OU models trained with offline runner data against models trained
with online TPC-C data.
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Fig. 6 shows TS’s data generation throughput increases as the
sampling rate increases but only up to a point. For User-Toggle and
User-Continuous, the overhead of retrieving data from the user-space
probes prevents them from generating more data points beyond
a 2–4% sampling rate and the Processor is mostly idle waiting for
data from the Collector. On the other hand, TS generates data using
Kernel-Continuous at a 3× higher generation rate than the other two
methods. Kernel-Continuous achieves peak throughput at a 20–30%
sampling; at a higher sampling rate, the overhead of collecting
the data from probes slows down query execution, leading to less
collected data. We attribute Kernel-Continuous’s advantage to its
in-kernel data structures with efficient RCU synchronization [33].

The results in Figs. 5 and 6 show that the ideal configuration
for TS is to use Kernel-Continuous with a sampling rate of 10%. This
setup yields the maximum throughput for both the application’s
workload and training data generation.

6.3 Adjustable Sampling
The previous experiment evaluated TS’s overhead when collecting
training data for all the DBMS’s subsystems simultaneously. As
described in Sec. 5.3, TS also has per-subsystem sampling that
allows it to collect training data only for the OUs whose models
require refinement. Such flexibility further reduces TS’s overhead
since it is not an “all or nothing” approach.

To demonstrate how collecting data for individual subsystems af-
fects the DBMS’s performance, we run YCSB and then dynamically
adjust TS’s subsystem sampling rates at runtime. TS starts with a
0% sampling rate. After 60 sec, TS starts sampling 10% of queries
across four subsystems: (1) execution engine, (2) networking, (3) log
serializer, and (4) disk writer. Then after another 60 sec, TS adjusts
the execution engine and networking sampling rates to 0% to simu-
late a scenario where TS has generated enough data. TS maintains
its 10% sampling rate for the other two DBMS subsystems.

As shown in Fig. 8, the DBMS’s throughput drops by ∼7% when
TS starts training data collection for all subsystems. But the DBMS’s
returns to its original throughput when TS disables collection for
the system’s execution engine and networking. Although TS keeps

collecting data for the DBMS’s WAL-related subsystems, the work-
load is read-only, and TS does not generate much training data and
imposes minimal overhead to the DBMS’s throughput.

6.4 Adapting to Environment Changes
We next evaluate the ability of the DBMS’s models to adapt to
changes in its environment.We target the scenario where the DBMS
migrates to a new machine with different hardware capabilities.
This experiment highlights a key benefit of online training data
collection: a self-driving DBMS does not need to redeploy its offline
runners to retrain its models after the migration.

We consider two separate scenarios where the DBMS migrates
to either (1) a better machine (Larger-HW) or (2) a weaker machine
(Smaller-HW). As described above, our more powerful machine has
2×20-cores and the lesser one has 6-cores. For each scenario, we first
deploy the DBMS with only offline models on its initial hardware
type. We then move the DBMS to the new machine and enable TS’s
collection for 1 min while executing TPC-C (20 warehouses, one
client). During this time, TS generates ∼2m training data samples;
we tested generating the same data at lower sampling rates with a
longer workload time but saw similar results. We then retrain the
DBMS’s behavior models with the online and offline data combined
and evaluate the model accuracy with 5-fold cross-validation.

The results in Fig. 7 show that online data helps in nearly every
scenario across all subsystems. The largest improvement is NoiseP-
age’s disk writer (Fig. 7d), where online data improves the models’
accuracy by 98% and 86% when migrating to larger and smaller
hardware, respectively. The accuracies of the log serializer models
also improve by up to 91% with online data; as we mentioned pre-
viously, this gain is because the online data better represents the
runtime behavior of the system’s group commit implementation.
Both the networking and execution engine (Larger-HW only) see
modest improvements as well, though the average error already
starts small in those scenarios (i.e., <20𝜇s).

The only model whose accuracy does not improve with online
data is the execution engine on smaller hardware in Fig. 7a. We
see a similar but a less pronounced reduction when running this
same experiment on other machines that are slightly less powerful
than our 2×20 machine. We believe that this diminution is due to a
shortage of features describing the CPU for the models to generalize
across architectures. The CPU most impacts query execution time,
yet the only hardware context feature is the CPU’s clock speed. The
larger machine has over twice the amount of L3 cache (27.5 MB
vs. 12 MB), significantly affecting query performance. We suspect
that features that characterize the CPU beyond clock speed would
increase the benefit of online training data in this scenario.
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Figure 9: Model Convergence (TPC-C) – Comparing prediction error of baseline OU models trained with offline runner data against models trained with
increasing size online TPC-C data.
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Figure 10: Model Convergence (CH-benCHmark) – Comparing prediction error of baseline OU models trained with offline runner data against models
trained with increasing size online CH-benCHmark data.
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Figure 11: Model Convergence (TPC-C) – OU model accuracy improve-
ment for the execution engine with increasing number of workers. Higher
bars show a greater reduction in error.

6.5 Model Convergence
We now measure the convergence time for NoisePage’s behav-
ior models to understand how much training data is necessary to
generate accurate predictions. As shown in Sec. 6.2, TS generates
thousands of data points per second at a low sampling rate. Thus,
this experiment informs us on how long to enable collection for a
DBMS’s current configuration.

We simulate a scenario where the DBMS migrates to a larger
server and must refine existing models initially trained on a weaker
machine with online data. We execute TPC-C (20 warehouses, one
client) for 15 min with TS’s metrics collection enabled. We again use
5-fold cross-validation to evaluate the model accuracy. For each fold
of test data, we retrain the model with increasingly larger random
data samples to evaluate the convergence.

The results in Fig. 9 show the accuracy measurements of the
models for NoisePage’s four subsystems with larger training data
set sizes. The horizontal line in each graph represents the baseline
accuracy of NoisePage’s offline models. Fig. 9c indicates that the
DBMS’s log serializer models converge after 40k data points and
improve accuracy by up to 98%. This is because NoisePage uses
group commit and batches records from different transactions to
reduce disk IO. The offline runners target individual OUs, and do
not represent the behavior of the end-to-end workload. Similarly,

the DBMS’s disk writer models converge after 70k data points in
Fig. 9d. This subsystem is workload dependent like the log serializer,
but also shows how online data benefits scenarios where the IO
device changes. The networking models shown in Fig. 9b do not
require much data to converge and its error difference from the
offline models is small (i.e., <5 𝜇s).

The most interesting result is for the execution engine in Fig. 9a
where the online models are less accurate than offline. Although
the difference is small (i.e., <1 𝜇s), it contradicts expectations and
what we see with the other models. NoisePage’s offline runners are
heavily influenced by TPC-C’s workload with a single client [29],
and thus there is not much for online data to improve.

To provide a better use case to show convergence, we run TPC-C
scaling the number of clients. We only report in Fig. 11 the results
for the execution engine with fewer training data set sizes; the
convergence for the other subsystems are not shown, but their
behavior follows those of Fig. 9. As the number of clients increases,
the offline models are less accurate at predicting execution time.
With 20 clients, the offline models’ average absolute error is 885 𝜇s.
Each query contains multiple OUs, so these errors compound when
predicting total DBMS performance. The biggest contributor to this
error is contention for resources under heavy load that the offline
runners do not capture. For the online models, average absolute
error drops to less than 10 𝜇s.

Lastly, we measure model convergence with an HTAP workload.
We run CH-benCHmark for 15 minutes with one warehouse and 20
clients. We configure BenchBase to use 16 clients to execute TPC-C
and four clients to execute CH-benCHmark queries. We use the
same 5-fold cross-validation for evaluation.

The trends for the results in Fig. 10 are similar to our measure-
ments in Fig. 9. The log serializer takes longer to converge with
the CH-benCHmark workload but eventually reaches similar per-
formance levels. The disk writer and network subsystems exhibit
similar benefits of online modeling. The execution engine is again
the most difficult to model. Fig. 10a shows strict improvement with
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Figure 12: Model Generalization – Comparing prediction error of baseline OU models trained with offline runner data against models trained with online
TPC-C data. Online data does not match configuration of test workload.

all data sizes, but the models can perform worse from one data
point to the next. This may be due to overfitting and demonstrates
that care is needed when training models in an online setting.

TS generates tens of thousands of training data points per sec-
ond during high-performance workloads. At this rate, TS provides
enough training to refine models with minimal overhead quickly.

6.6 Model Generalization
We now evaluate the accuracy of models trained using online data
in various scenarios that a self-driving DBMS will encounter in
real-world deployments. This experiment aims to demonstrate that
the accuracy of the DBMS’s behavior models’ improves for their
current deployment scenario, and ideally even for scenarios that the
DBMS has not yet encountered. At a minimum, the online models
should perform no worse in these new scenarios than their offline
model counterparts. For example, we are interested if the online
models generated in Sec. 6.4 overfit to their new environment.

We run the TPC-C benchmark in four scenarios that vary some
aspect of the DBMS’s environment: (1) database size, (2) hardware,
(3) thread count, and (4) workload. For each scenario, we first ex-
ecute the workload on NoisePage in an initial setting for 1 min
with training data collection enabled. Next, we deploy NoisePage
again in a new setting and collect more training data. We then
compare how well the models trained with the first data set pre-
dict the DBMS’s behavior as measured in the second set. We use
NoisePage’s models trained with offline data using the first setting
as a baseline. We then switch the settings and repeat the evaluation
to test generalization.
Database Size: We vary the size of the database by changing the
number of TPC-C warehouses with a single client. The first configu-
ration starts with online data from TPC-C with one warehouse and
then evaluates TPC-C with 20 warehouses (Larger-DB). The second
configuration starts with online data from 20 warehouses and then
evaluates one warehouse (Smaller-DB).
Hardware: We next compare the models using training data on
different hardware. For the first configuration, we collect online

data from the 6-core machine running TPC-C with 20 warehouses
and one client. We then measure the models’ accuracy for TPC-C
on the 2×20-core machine (Larger-HW). The second configuration
reverses the hardware: we train the models from the 2×20-core
machine and then evaluate on the 6-core machine (Smaller-HW).
ThreadCount: This scenario uses the same database size and hard-
ware, but we increase the number of concurrent threads executing
in the DBMS. The first configuration executes TPC-C with 20 ware-
houses and one client, and then the second configuration uses 20
warehouse and 20 clients (More-Threads). The second configuration
swaps the thread count (Fewer-Threads).
New Queries: Lastly, this scenario evaluates the models when the
application’s workload changes. One potential approach is to train
the models on TPC-C in the first configuration but then switch to
a different benchmark for the second. Such a setup measures the
models’ robustness, not the benefit of online data. Instead, we use
TPC-C (20 warehouses, one client) for both configurations but train
on an 80% sample of its queries (randomly selected based on query
templates) in the first configuration. We then evaluate the other
20% queries in the second configuration. We use the same 5-fold
cross-validation for evaluation.

Fig. 12 presents the results for these scenarios divided by subsys-
tem. Our first observation is that offline models with small errors
(<10 𝜇s) improve in almost all scenarios. For networking models,
this is for two reasons: (1) they have a small number of input fea-
tures and (2) the subsystem’s behavior is consistent in all scenarios.
The workload does not change the model’s error rate (which was
already low) and online data only improves them. The execution
engine models are more complex, and its models continue their
performance with online data, maintaining sub-10 𝜇s average er-
rors. These results show that training with online data does not
overfit the models to the workload and still yields robust models
that generalize to unseen scenarios.

For offline models with larger errors (>10 𝜇s), online data im-
proves model performance in all scenarios except for two shown in
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Fig. 12d. The disk writer models perform about the same when mi-
grating to smaller hardware, but average error increases by 2×with
larger hardware because the input features for this model do not
capture the storage device’s capabilities. This is another example
of a model that would improve with hardware context [57].

As in Sec. 6.4, Fig. 12c indicates that the log serializer models
improve because its behavior is mostly influenced by query arrival
rate due to effects of group commit. Both the DBMS’s execution
engine and disk writer subsystems also incur lower model accuracy
on the larger hardware scenario. The former’s accuracy drops by
16% in Fig. 12a, while the latter’s accuracy drops by 113% in Fig. 12d.
This discrepancy reflects the hardware characteristics of the two
machines and how OU input features that reflect their performance
are important (i.e., hardware context [57]).

7 RELATEDWORK
To the best of our knowledge, there is no prior work on training data
collection for self-driving DBMSs. There is, however, an existing
corpus on profiling, observability, and modeling for DBMSs and
other software systems. We now discuss this prior research.
Profiling: The approaches to collect queries’ profiling data dif-
fer depending on whether they target administrators versus sys-
tem developers. For the former, EXPLAIN ANALYZE annotates query
plans with internal metrics, like the elapsed time or the number
of accessed tuples per operator. Monitoring tools, such as Vivid-
Cortex [46] and Amazon’s RDS Performance Insights [4], track
execution times along with additional DBMS- and OS-level metrics.

Most DBMSs also provide bespoke profiling methods in their
source code. PostgreSQL contains DTrace probes similar to what TS
uses for query tracing, debugging, and performance analysis [44].
One could use these probes to build markers that communicate with
TS’s Collector, but they still need additional FEATURES markers to
capture OU input features. MySQL contained DTrace probes in
its source, but these were deprecated in v5.7 and subsequently
removed in v8.0 in 2018 [40]. MongoDB has support for creating
USDT probes, but this functionality appears unused [34].

In addition to profiling an individual query, most DBMSs track
internal performance statistics over time. These statistics repre-
sent the user-level behavior of the DBMS across multiple queries,
such as data read from or written to disk. To track timing informa-
tion, DBMSs rely on portable methods using either POSIX built-
ins (e.g., clock_gettime) or language-level high-resolution clocks
(e.g., std::chrono). Some DBMSs such as PostgreSQL [43] and
MySQL [36] capture hardware metrics using tools like rusage. As
we describe in Sec. 4, there are limitations to using coarse-grained
approaches for generating high-quality training data.
Observation Services: System observability is a concept adapted
from control theory that refers to the analysis of system runtime
telemetry for visualizing and understanding complex software inter-
actions [6, 19]. A common pattern is to collect all available metrics
at runtime, identify a relevant subset of the metrics for a given task,
and then feed those metrics into a specific model or tool.

ViperProbe [24] is an adaptive BPF-based gray box approach to
metrics collection for Kubernetes microservices. ViperProbe uses
offline analysis to identify relevant metrics for a program and then
generates a BPF program to collect those metrics.

Other observability tools typically build on kernel monitoring
primitives, such as OS performance counters, Strace, Ftrace, DTrace,
Sysdig (which was rewritten to use BPF), or BPF. For example,
Slack’s Observability Data Management System [20] analyzes met-
rics to diagnose and resolve disruptions across multiple services.
Seer [16], MicroRCA [56], and LOUD [32] are systems that gather
all available metrics to identify root causes of QoS violations, lo-
cate performance issues in microservices, and localize faults in a
cloud setting, respectively. Sieve [49] identifies a salient metrics
and associated dependencies, but it analyzes offline. Pythia [7] is a
proposed always-on automated instrumentation framework.

In comparison, TS is an adaptive internal approach to dynamic
metrics collection. Furthermore, we designed TS to facilitate the
collection of high-quality training data for self-driving DBMSs.
Modeling: Previous work in DBMS knob tuning takes a similar ap-
proach to observation services, using external features and metrics
to train models about DBMS behavior. For example, OtterTune [52]
and CDBTune [25] both train ML models optimizing DBMS knob
configurations by using the external metrics collected from run-
ning the target workload. Similarly, other work in DBMS model-
ing relies on collecting training data from external sources like
query logs, query plans, or custom runners. QPPNet [30] extracts
execution times and execution plans from PostgreSQL’s EXPLAIN
ANALYZE to train models that predict the execution time of queries.
ModelBot2 [29] exercises offline runners to train OUs-level mod-
els similar to TS. DBSeer [35] extracts SQL query logs to cluster
queries based on their runtime behavior. DeepSketch [21] executes
training queries to obtain cardinalities. GPredictor [58] extracts
query plans and execution performance from the DBMS to train
a graph-embedding performance model. UDO [53] evaluates its
performance on sample workloads offline. Huawei’s openGauss
aggregates training data from three external sources: (1) database
metrics, (2) SQL query log, and (3) database log [26]. Other learned
system proposals like SageDB are not prescriptive in generating
training data in online settings [22].

8 CONCLUSION
We presented the TScout framework for training data collection
in self-driving DBMSs. We showed how it addresses the engineer-
ing challenges of collecting high-quality online training data from
production DBMSs, with the flexibility to support any system archi-
tecture. With TS, developers modify their DBMS to add markers at
points in the code to enable the metrics collection for four hardware
categories (CPU, memory, disk, network). TS automatically receives
and processes events at these markers using a kernel-space BPF
program. In our evaluation using NoisePage, we showed that TS
produces better training data that results in more accurate models
than previous methods with minimal performance overhead.
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