Active Learning for ML Enhanced Database Systems

Lin Ma* Bailu Ding
Carnegie Mellon Microsoft Research
University badin@microsoft.com

lin.ma@cs.cmu.edu

ABSTRACT

Recent research has shown promising results by using ma-
chine learning (ML) techniques to improve the performance
of database systems, e.g., in query optimization or index rec-
ommendation. However, in many production deployments,
the ML models’ performance degrades significantly when the
test data diverges from the data used to train these models.

In this paper, we address this performance degradation by
using B-instances to collect additional data during deploy-
ment. We propose an active data collection platform, ADCP,
that employs active learning (AL) to gather relevant data
cost-effectively. We develop a novel AL technique, Holistic
Active Learner (HAL), that robustly combines multiple noisy
signals for data gathering in the context of database applica-
tions. HAL applies to various ML tasks, budget sizes, cost
types, and budgeting interfaces for database applications.
We evaluate ADCP on both industry-standard benchmarks
and real customer workloads. Our evaluation shows that,
compared with other baselines, our technique improves ML
models’ prediction performance by up to 2Xx with the same
cost budget. In particular, on production workloads, our tech-
nique reduces the prediction error of ML models by 75% using
about 100 additionally collected queries.

ACM Reference Format:

Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan . 2020.
Active Learning for ML Enhanced Database Systems. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3318464.3389768

“Lin Ma and Sudipto Das performed the work while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3389768

Adith

Swaminathan
Microsoft Research
adswamin@microsoft.com

Sudipto Das®
Amazon Web Services
sudiptdas@gmail.com

1 INTRODUCTION

We increasingly see the promise of using machine learning
(ML) techniques to enhance database systems’ performance,
such as in query run-time prediction [18, 37], configuration
tuning [51, 66, 77], query optimization [35, 44, 50], and index
tuning [5, 14, 61]. For example, a query optimizer can use
an ML model that predicts a query plan’s execution cost to
search for the best query plan [45]. Most of these techniques
use supervised learning [54], which trains the ML model
using a labeled dataset.

Supervised learning performs well when the labeled data
used for training the ML model comes from the same distri-
bution as the data that the model will be deployed to make
predictions for [17, 20]. In many ML applications for data-
bases, however, the data distribution seen after deployment
differs from that of the training data due to the databases’
complexity and their diverse workloads. For example, the in-
put of a model that predicts execution cost is often based on
plan information, including operator types and join orders,
which heavily depends on the content of the database and
the queries [14, 18, 37, 44]. The workloads in the production
environment where the model is deployed, however, may
come from different databases or queries than the workloads
that are used to train the ML model. This results in substan-
tially different inputs fed to the deployed ML model than
what it saw during training.

ML models can make huge prediction errors when they are
used for predicting on the data that differs from what they
are trained with [14, 37]. We demonstrate this phenomenon
in detail in Section 2.2. Fundamentally, the training data’s
quality and coverage of the production workload determines
the model’s prediction performance. However, we do not
know what the production workload will be until we actually
deploy a model. Thus, we can not assess a priori whether
we have good enough training data nor whether ML models
will perform well for our workloads.

Conceptually, if we had a training dataset that covered
all possible workloads, we could guarantee that ML models
trained on them will perform well when deployed. Unfortu-
nately, it is infeasible to enumerable all possible databases
and workloads to collect such a massive dataset.

Instead, we aim at quickly adapting a model to the current
workload after the model is deployed, by collecting additional

https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768

execution data that is most beneficial to improve the model’s
performance within a given cost budget. We then retrain
the ML model with this additional data so that it adapts to
the observed workload. There are three key questions with
this approach: What mechanism do we use to collect labeled
data in production? How can we gather labeled data that
is relevant to the ML model? And how can we make such
data collection scalable for the increasing number of ML
applications for databases?

To gather labeled data from production workloads, we
leverage fork-offs (i.e., B-instances [13]) for databases in the
cloud or backups for on-premise databases. These replicas
can execute and instrument queries from production work-
loads to collect telemetry for data labeling.

To gather labeled data relevant to ML models, our key
insight is that, based on the database application and work-
loads, we can narrow down the space of data that the ML
models need to predict for. In many database applications,
we observe that we can derive the data space that the ML
model needs to predict for based on how the application uses
the model. For example, the optimizer uses a plan cost pre-
diction model to navigate its search space, where the search
space for a set of queries, i.e., the potential pool of test data,
can be recorded. By executing additional plans from this
search space and recording their execution costs, we can
improve the model’s prediction specifically for this pool of
test data. Such a workload-centric data collection can focus
on gathering the most helpful labels for the ML model.

Finally, there are many workloads during the lifetime of
an ML model and various tasks in ML-enhanced databases —
how can we scalably collect data for all of them? We present
an active data collection platform (ADCP) that manages the
complexity of this data collection (see Section 3). The ADCP
takes a base ML model trained with some training data and
a budget specified either by resource cost or the number of
labels to collect from the production workload. The ADCP
then uses additional B-instances or replicas to collect a subset
of labeled data under the budget, and it returns the new labels
for model retraining. The main challenge for such a platform
is how to intelligently decide which labels to collect to best
improve the model prediction on a specific set of data.

We formulate this problem as pool-based active learning
(AL) [57], where an AL strategy selects the best training data
from a pool of unlabeled points. Although AL is known to be
superior to rudimentary approaches (e.g., randomly selecting
points) in many domains [56], ADCP faces a set of holistic
challenges neglected by prior work in AL (see Section 8):

@ Robustness: AL strategies rely on several signals to
decide which data points to label. The signals can come from
the ML model, the unlabeled data distribution, or the labeling
cost estimates. Though these signals can be available in our
context (see Section 3.2), they are often noisy and unreliable.

@ Cost Sensitivity: Typical AL strategies assume uniform
labeling costs. But the resources needed to acquire labels
in databases can be drastically different, e.g., the disparate
plan execution costs with different selectivities or join orders.
€@ Batching: Many AL strategies assume model retraining
after acquiring each label. Training ML models for databases
can be expensive [14, 45]. Thus, the ADCP needs to support
acquiring a batch of labels before retraining the model.

We present a simple and effective AL strategy, Holistic
Active Learner (HAL), that addresses all these challenges
(see Section 4). HAL takes the labeling cost into account
and robustly combines multiple noisy signals. We discuss
HAL’s design choices in Section 5 and explain HAL’s execu-
tion in Section 6. We evaluate HAL with industry-standard
benchmarks and real-world workloads for a variety of ML
applications in databases, including different ML tasks, ML
algorithms, cost types, budget sizes, and budgeting interfaces
(see Section 7). Our results show that the ADCP with HAL
consistently outperforms the state-of-the-art AL strategies
for improving the prediction accuracy on the target test data.
In particular, our ADCP can reduce ML model’s prediction er-
ror on production workloads by 75% with ~100 additionally
executed queries.

2 BACKGROUND AND MOTIVATION

We first discuss the typical ML tasks encountered in ML en-
hanced databases and how they have prediction errors in
production. We then discuss the opportunity to use addi-
tional resources with active learning techniques to collect
extra labels to adapt these models.

2.1 ML Enhanced Databases

There are many examples of ML enhanced databases [14,
37, 45]. Without loss of generality, we discuss two examples
that represent two distinct types of ML problems which have
many applications in database systems. We use these two
tasks throughout the paper, as well as in the evaluation.
Execution cost prediction (ECP) is a regression ML task
that takes in a query plan and outputs a real number that rep-
resents the estimated CPU time to execute the plan. ECP has
several applications in databases. For example, cost-based
query optimizers enumerate candidate plans for a query and
select the plan with the lowest estimated cost to execute [10].
Advanced index tuners also rely on the plan’s estimated exe-
cution cost under different index configurations to recom-
mend indexes with the highest cost reduction [2, 11, 12, 78].
ECP can help the optimizer/tuner’s search by predicting the
candidate plans’ costs. We can also extend this task formula-
tion to predict other logical resources, e.g., logical I/O.
Plan regression prediction (PRP) is a classification ML
task that takes in a pair of plans and outputs a class nominal

NN Training E== Validation [Target 273 Target-CSC Bl Target-Active
0.32 31

e 0.304

wo.8

o 5

° =

] w

8 T 0.5+

© 1 w

£ 0.4

2 0.05

o
o

0.00-

(a) ECP (b) PRP
Figure 1: Target Data Prediction Error - ML model’s pre-
dictions error increase with training-target data mismatch.
Active data collection reduces this error.

that represents whether the first plan has a higher execution
cost than the second plan. Various database applications can
leverage PRP for improvement. For example, PRP can help
the optimizer to compare the costs of candidate plans or
identify the query plan regressions with changed plans [15].
It may also significantly help an index tuner to detect perfor-
mance regressions on candidate index configurations [14],
which is a requirement for state-of-the-art index tuners [13].

Previous works have applied various ML models to these

tasks, such as random forests [15], boosted regression trees [37],

and deep neural networks [45]. Training data for these mod-
els typically come from the execution history of standard
benchmarks or any accessible databases. For example, both
ECP and PRP can use the recorded query plan execution costs
in the workloads as training data. Most previous works on
ML enhanced databases assume that these models’ test data
are similar to the training data. Prior work has also shown
that the prediction error can increase significantly when the
models are deployed for different data distribution [14].

2.2 Prediction Error in Production

The prediction error of the ML model can be dramatically
higher in a production environment compared with evalua-
tion on held-out training data. As an example, we simulate
the production deployment of an ML enhanced index tuner.
We use a state-of-the-art index tuner [13] to generate the plan
(plan pair) space on 14 diverse database workloads (details in
Section 7.2). We simulate a new deployment by holding-out
the data in one database (i.e., the target database) and using
the labeled data in the remaining 13 databases to train ML
models for both ECP and PRP, resulting in 14 simulation
runs per model in total. We also split the labeled training
data into a 80% training set and a 20% validation set. We in-
vestigate a number of advanced ML techniques and use the
random forest that has the best prediction. The trained mod-
els then predict the labels for the data points generated from
the held-out database (target data). For ECP, we measure
the normalized L error (|Prediction — Actual|) on the target

data. For PRP, we measure the prediction’s F1 error [14].
Both errors are between 0 (best) and 1 (worst).

Figure 1 shows the average model performance across 14
databases. For both tasks, the model achieves high prediction
performance on both the training and the validation data (de-
noted as Training and Validation). This indicates good gen-
eralization ability of the ML model and no-overfitting [20].
However, the target predictions (denoted as Target) have
huge errors (9% higher L, error or 6x higher F1 error com-
pared to validation data prediction), which is caused by data
mismatch between the training and the target data [65].

We also evaluate popular covariate shift correction (CSC)
techniques to address the distribution mismatch between
training and target [1, 6, 26]. When the training data overlaps
with the target data but only differs in the distribution, CSC
can adjust the training weight of the labeled data to match
the target data distribution. However, we observe that the
training data and the target can contain disparate regions
in the input space in our database workloads, where CSC
cannot help [65]. As shown in Figure 1, the best performing
CSC technique (denoted as Target-CSC) does not improve
prediction quality substantially.

Thus, neither changing the supervised ML algorithm nor
reweighting the training data can easily address the ML
models’ degradation in production.

2.3 Workload-Centric Data Collection with
B-Instances / Replicas

We propose to collect extra labels from an unlabeled dataset
to reduce the ML model’s generalization error during pro-
duction. For example, a query optimizer explores many pos-
sible plans in the plan space for queries in the production
workload. This plan space produces a pool of unlabeled data-
points. The database only executes the best-estimated plan,
so the labels (e.g., execution costs) for alternative plans are
not available via normal operation. The ML model for this
specific workload can benefit from collecting additional la-
bels from the plan space, i.e., the target data. In ML litera-
ture, predicting labels for a given and unlabeled test (target)
data is called the transductive setting [29, 76]. Transductive
data collection can leverage the information from the unla-
beled target data to acquire more valuable labels. This differs
from the inductive setting more commonly used in academia,
where the test data is only used during evaluation. Evaluat-
ing ML models in the transductive setting needs to be careful
and we describe the protocol for making fair comparisons
between transductive algorithms in Section 7.1.

To derive labels for any unlabeled data-point, an ML en-
hanced database can extract query execution statistics. For
example, labels for ECP and PRP are the execution costs (or
cost differences) of query plans. We can use the B-instance

/ replica of production databases to collect such data for
alternative plans that were not executed in production.

In Figure 1, we also highlight that by intelligently execut-
ing ~100 queries on the B-instance, our proposed technique
(denoted as Target-Active) reduces the target data predic-
tion error for ECP by 61% and for PRP by 75%.

2.4 Active Learning

The target data, e.g., the optimizer/index tuner’s search space,
may contain tens of thousands of plans that can consume a
lot of resources to execute exhaustively on B-instances. We
leverage active learning (AL) techniques to select the most
valuable plans and reduce this labeling cost. We first describe
the typical AL setup [57]:

An AL strategy takes as input a set of labeled training data
X1, a set of unlabeled target data X7, and a base ML model 6.
X1, and Xy are assumed to come from the same underlying
data distribution. A loss function Ly, (6%t (x), y(x)) denotes
the loss of the model 0 trained with data X}, compared to the
true label function y(x), and evaluated on Xy . A typical AL
strategy derives an informativeness signal for each data point
x € Xy using the model 8 to estimate how much x’s label can
reduce the loss Lx,,. We refer to this signal as weight wy. For
instance, w, can be an estimate of the model’s confidence or
uncertainty in its prediction for x. The AL strategy selects the
data point with the highest w, to label and retrains the ML
model — when wy is uncertainty, this yields the uncertainty
sampling class of AL algorithms [36]. In the next round, the
AL uses updated estimates wy from the retrained 6 to select
the next data-point. This proceeds until either the loss of 8
is small enough or until the labeling budget is exhausted.

We will discuss the additional AL challenges in the data-
base context in Section 3.3 and our re-formulation of the AL
problem in Section 4.1.

3 ACTIVE DATA COLLECTION
PLATFORM

We propose an active data collection platform (ADCP) to
collect labels to adapt the ML model to the production work-
load. We now discuss the ADCP’s architecture and workflow.
We then discuss the challenges in applying AL for deciding
which target data-points to label.

3.1 Platform Architecture and Workflow

The ADCP uses additional resources to collect the labels dur-
ing production workloads. As shown in Figure 2, an ADCP
connects to the ML applications in the production database
and the labeling handlers in the B-instances / replicas. The
ADCP can acquire the target test data and the ML model
from the specific ML application in the database, e.g., the
optimizer’s plan search space for the production workload

oo Data

DBMS ML Task
"""""""""" Make P

+ Optimizer | Auto Indexerd—— e EkE Fredicion @

! ! Tar et Test Data

1

1

| Workload Addmonal
: Manager Training
'

'

'

'

ML Enhanced
+ DB Components

B-Instances/

Replicas
Invoke Labeling Handler W|th°'
9 Selected Unlabeled Data ‘
- Data Labels
—_—
User

Specify Budget
z o(Or # Iterations)

Figure 2: Active Data Collection Platform (ADCP) -
The ADCP actively collects training data with additional
resources and returns new labels to retrain the ML model.

and the ECP (PRP) model used by the optimizer. The ADCP
can also invoke the labeling handler to execute a query plan
and acquire its label, e.g., the plan’s execution cost, for model
retraining.

We anticipate that users will adopt the ADCP in the fol-
lowing steps. @ The users specify the ML application whose
model needs improvement and the resource budget for col-
lecting data. @ The ADCP acquires the target (unlabeled)
data generated by the production database and the ML model’s
predictions on the target data. € The ADCP selects a batch
of points from the target data under the resource budget,
and invokes labeling handlers to get the actual labels for
these points. @) The ML model is retrained with the newly
collected data. @ The new model is installed back to the
ML application to make predictions for the ML enhanced
components in the production database.

The users may optionally specify an iteration number for
the data collection and model retraining before installing the
model back to the application. In this case, the ADCP will
repeat € and @ for the specified number of iterations while
ensuring that the resources consumed stay under budget.

3.2 Application and Usage Scenarios

In Section 2.3 we outlined how the pool of unlabeled data

points (target data) is created in the ADCP (see Figure 2).

Given this target data, ADCP supports several scenarios to

allow a user to specify how to collect additional data.

o Budget: Since users are often cost-sensitive, ADCP allows
the user to specify a budget for labeling. This can be a fixed
number, say n data points (typical in AL) or richer notions
like “spend at most C cost”, per iteration. We refer to such

a choice as the budgeting interface. ADCP provides this
flexibility since different data points can take dramatically
different costs to label.

e Cost: ADCP allows the user to provide a labeling cost es-
timator, and selects data-points in a cost-sensitive way. In
our example applications (Section 2.1), the costs can con-
tain the query execution cost and the index creation cost.
The true labeling cost is typically unavailable or can even
be the prediction goal of the ML model. But, we can lever-
age crude estimators in databases, such as the optimizer’s
estimates. Such a crude estimator can be better than the
ML models trained with mismatched training data, but can
also be inaccurate and noisy (shown in Section 7). Thus,
we design the ADCP to leverage imperfect cost informa-
tion robustly, and jointly optimizing the cost estimator
with the data collection is interesting future work. If a cost
estimator is unavailable, the ADCP can also fall back to
the plan budgeting interface with uniform labeling costs.

e Uncertainty: Users provide a base ML model to ADCP,
which handles the training of the ML model and then
queries the model to produce informativeness scores wy
that can drive the data-collection policy.

e Retraining frequency: In ML enhanced databases, re-
training the ML model can be very expensive. The ADCP
supports specifying how many times this retraining should
happen by allowing the user to set the number of iterations
of data collection. ADCP does not yet include this model
retraining cost into the user-specified budgets or costs,
and we believe that estimating/reasoning about these re-
training costs is an interesting avenue for future work.

3.3 Active Learning Challenges

There are three major challenges to apply AL for the ADCP
to decide which points to label:

Robustness: AL strategies typically select points based
on their informativeness w, derived from the ML model (Sec-
tion 2.4), since not all points may benefit the model equally.
For example, query plans that are less similar to the model’s
training data may improve the model’s prediction much more
than other plans. For ADCP, the ML model’s informative-
ness signal can be unreliable because of the data distribution
mismatch faced by the model 0. As discussed in Section 3.2,
other signals that the AL strategy may leverage, e.g., the cost
estimator, can also be noisy and unreliable.

Cost-Sensitive: Labeling each point comes with a cost,
e.g., executing a query plan. Such cost can be dramatically
different from one data point to another because of the plans’
diverse operators, cardinalities, or join orders. The index cost
type further complicates this problem because query plans
can share the same index and have interdependent costs.

Notation Description

XL the set of labeled (training) data points
Xu the set of unlabeled (target) data points
Xa the set of data points selected by the AL strategy to label
y(x) the true label of a data point x
an ML model
c(x) the cost to label a data point x
u(x) the uncertainty of a data point x
Wy the weight of a data point x used by AL strategies for selection
B the resource budget for the data collection
Yy the redundancy rejection threshold based on cluster size
p the redundancy rejection threshold based on cluster uncertainty

Table 1: Table of Important Notations

Batching: Many ML tasks for databases use models that
are expensive to train [14, 45]. Thus, the ADCP requires the
AL strategy to label a batch of points at once before model
retraining to reduce the training overhead. An AL strategy
that only focuses on points with higher informativeness or
lower costs may select a number of points in a batch with
similar information, and hence select sub-optimal batches.

Since we envision the ADCP to support a wide variety of
ML applications for databases, we also design the AL strategy
to make minimal assumptions about the ML task or model.

We next describe our formulation of active learning that
augments the typical setting (Section 2.4) and a novel AL
strategy that surmounts the challenges described above.

4 HOLISTIC ACTIVE LEARNER

We present a novel AL strategy, Holistic Active Learner (HAL),
that addresses the ADCP’s AL challenges discussed in Sec-
tion 3.3. We first explain HAL’s main concepts and core
framework, which are simple yet effective. We defer discus-
sion of HAL’s design space and our decisions to Section 5.

4.1 Notation and Formulation

An AL strategy in our problem setting takes as input a set of
labeled training data X7, a set of unlabeled target data Xy,
a base ML model 0, a labeling budget B, and the cost c(x)
to acquire the label for a data point x. The core addition to
the vanilla AL formulation is the notion of labeling budget
B and labeling costs c(x). Table 1 summarizes the important
notations used in the paper.

The AL strategy selects a batch of points X4 from the
target data Xy under the budget B, as:

arg rgl(in Ly, (07:9%4(x), y(x))
A
subject to
Xa € Xu, Y c(x) < B
xeXa
4.2 Biased Sampling

We first highlight how HAL addresses the robustness chal-
lenge. A deterministic optimization strategy to select points
with the highest w,, which is typical in the AL literature [36,

Algorithm 1: Holistic Active Learner

Input :X is the original labeled training data,
Xy is the unlabeled target data,
0 is an ML model that predicts the data label,
B is the budget for data collection,
c is a function to estimate the labeling cost,
P is a function to calculate the sampling weight,
R is a function to identify the redundant points
Output: X4 is the batch of selected points to label, where
X4 € Xy and Yyex, c(x) < B
1 W« P(Xy,0,c) I/ wy € Wisx € Xy’s sampling weight
2 X4 < ¢ // the points selected by the AL strategy
3 X < {x|c(x) < B,x € Xy} // the qualified points for the AL
strategy to select from
4 XR < ¢ // the redundant points that the strategy should reject
5 while Xp \ Xg # ¢ do
6 Sample x from X \ Xg according to weight W
7 X4 = X4 U{x} //add x to the selected points
8 Xr = R(X4, Xy, W) // update the redundant points
9 B = B —c¢(X) //update the budget
10 Xo « {x|e(x) < B,x € Xg \ {X}} // update the qualified
points
11 end
12 return X,

57, 62, 73], is doomed to be brittle when there is noise and
variance in wy.

HAL, in contrast, adopts a biased-sampling approach. HAL
also defines the informativeness score wy, but only uses w, as
a sampling weight and employs probabilistic sampling. Thus,
HAL prefers points with higher wy, but does not entirely
depend on the quality of wy. In essence, HAL incorporates
randomness into w, to resist w,.’s noise and variance. We
provide a deeper analysis on this insight in Section 5.1.

4.3 Cost-weighting

Under the sampling framework, HAL achieves cost-sensitivity
by incorporating the labeling cost c¢(x) into the sampling

weight w,. We denote the function that combines the infor-
mativeness and the cost to derive w, as , which essentially

calculates the “per cost unit” informativeness. We discuss

P’s several design choices in Section 5.2.

4.4 Redundancy Rejection

We now highlight how HAL combats the batching challenge.
While HAL can easily support batching by sampling without
replacement, there can be redundant samples in a batch. HAL
uses a clustering-based approach to explicitly capture the
target data distribution and identify the redundant points (de-
noted as R). HAL rejects samples from the well-represented
clusters in the batch. We discuss this design and two novel
adaptations to derive the rejection scheme in Section 5.3.

4.5 Algorithm Framework

Algorithm 1 shows the algorithm of HAL. Recall that P
returns the sampling weight w, for a data point x and R

returns the set of redundant points in the target data. And
we discuss P and R in later sections.

In Line 1, HAL first calculates the sampling weight wy
with . HAL then initializes the set of selected points X4 as
¢ (the empty set), the set of qualified sampling points Xy as
the points whose labeling cost is under the remaining budget,
and the set of redundant points Xy as ¢ (Line 2-4). HAL then
repeats a sampling loop until the budget is exhausted (Line
5-10). In each loop, HAL first samples a point X under the
sampling weight w, from the qualified and non-redundant
points, i.e., Xo \ Xr (Line 6). It then adds x to the set of
selected points X4 (Line 7), and updates Xg with function R
(Line 8). It then calculates the remaining budget and updates
qualified points X based on the current budget (Line 9-10).

When the set of qualified points Xp becomes ¢, HAL re-
turns X4 and terminates (Line 12).

5 DESIGN SPACE AND DECISIONS

There are many design choices in HAL, for instance, in set-
ting and R. We now explore the design space and discuss
our decisions in detail.

5.1 Biased-Sampling Decisions

To design an AL strategy for the ADCP, it is natural to in-
vestigate the state-of-the-art AL strategies. We initially set
out to evaluate a number of AL strategies that might be
able to handle the challenges in Section 3.3, ranging from
simple strategies that focus on the most informative/cheap
points to complex strategies that combine multiple signals
together [36, 57, 62, 73]. We find that none of them select
points that give satisfactory prediction improvement for the
ML models (Section 7.4).

As mentioned in Section 4.2, all these strategies select
points deterministically to maximize the total informative-
ness score wy. Recent research in AL provides theoretical
proof and empirical evidence that probabilistic sampling (e.g.,
uniform random sampling) outperforms advanced AL strate-
gies in certain cases, such as when the dataset is noisy [48].
Uniform random sampling does not require any additional
signal, but is oblivious of the different informativeness and
cost values of datapoints, and does not perform well in
ADCP’s scenarios either (Section 7).

HAL uses wy as the sampling weight for a biased softmax
sampling process, which interpolates between determinis-
tically maximizing w, and uniform random sampling. Con-
cretely, HAL’s biased sampling process with weight w, is
defined as

po) = 5 1)

where p(x) is the sampling probability of x. By the Gumbel
trick [21, 42], sampling one point x with probability distri-
bution p(x) is equivalent to independently perturbing the

log-probabilities log p(x) with Gumbel noise and finding the
largest element:
arg max logp(x) + Gy (2)
X

where G, ~ Gumbel(0, 1). Furthermore, recent extensions
of the Gumbel trick note that taking the top k largest per-
turbed log-probabilities (instead of the maximum) yields k
samples from the probability distribution p(x) without re-
placement [33]. This is equivalent to a greedy optimization
algorithm that maximizes log p(x) + G, for the k samples
(note that log p(x) is a monotone transformation of w,).

Thus, by only keeping log p(x) in Equation (2), we re-
cover many deterministic AL strategies that maximize the
“informativeness score” for the points; by only keeping Gy in
Equation (2), we recover a purely random sampling strategy.
Biased sampling with w, as the sampling weight is exactly
equivalent to maximizing the perturbed log-probabilities;
thus combining and balancing the informativeness signal
with randomness. Thus, HAL utilizes the signals captured in
wy to guide the selection towards more valuable points, but
also leverages randomness to resist the noise and variance
in the informativeness signal.

5.2 Cost-weighting Decisions

There are three challenges in deriving the sampling weight
(the function P) for HAL: @ Decide which informativeness
measure to use. @) Combine the informativeness and the
cost. € Adapt the sampling weight to different budgeting
interfaces and cost types that the ADCP needs to support.

Informativeness: There are many ways in AL literature to
capture the informativeness, as discussed in Section 2.4. Nev-
ertheless, most of these methods incur additional constraints
on the ML task, ML model, or the input/output, which limits
the strategy’s applicability in the various scenarios that the
ADCP needs to support. For example, an informativeness
measure like expected model change requires the model to be
differentiable to compute the gradient [57, 60], which many
ML models (e.g., random forests) do not satisfy.

Given this, we use a simple but more accessible informa-
tiveness signal for HAL: uncertainty u(x) [36]. A higher u(x)
corresponds to a higher probability of incorrect prediction
for x. u(x) is directly available among many common ML
models, such as random forests and logistic regression. There
are also separate methods to derive u(x) for a wide range
of ML models/tasks, such as ensemble, quantile regression,
and confidence calibration [22, 46, 47, 69]. In a classification
task, u(x) can be the probability that x does not belong to the
predicted class. In a regression task, u(x) can be the output
variance of x’s prediction. Uncertainty-based AL exploits the
correlation between points with high uncertainty and the
probability of a prediction error. Thus, acquiring labels with
higher uncertainty is likely to give more information and

improve the ML model’s prediction after retraining.

Combining Cost: To combine the uncertainty u(x) and the
cost ¢(x), previous works have directly summed the impact
of u(x) with c¢(x) (or —c(x)) with potential reweighting [30,
32]. The issue, however, is that u(x) and c(x) fundamentally
come from two different domains. The two metrics can have
drastically different scales as we generalize across different
databases and it is intricate to derive a proper reweighting.
We use a different approach to combine u(x) and c¢(x) by
dividing u(x) by c(x):
u(x)
ws =0 ©)
which is referred in the AL literature as Return On Invest-
ment (ROI) [25, 67]. Intuitively, ROI characterizes the amount
of information in a data point per “cost unit”. ROI is in pro-
portion to u(x) and in reverse proportion to ¢(x), regardless
of what the scales that u(x) and ¢(x) have. And as analyzed
in Section 5.1, using the per-cost-unit uncertainty as the
sampling weight for a biased sampling procedure is equiv-
alent to a greedy optimization algorithm that maximizes
the perturbed log uncertainty of the sampled points. We
also investigate other variants of ROI, such as smoothing
the distribution of u(x) or c(x) before calculating their ratio.
However, we find that Equation (3) is the most natural ap-
proach to calculate the per-cost-unit uncertainty and yields
the best performance.

Budgeting Interfaces and Cost Types: We provide two
options for budgeting: the total estimated cost of labeling or
the number of plans to execute.

For the set of database applications and ML tasks we focus
on in ADCP (Section 2.1), the labeling cost comes from two
sources: creating the configuration to execute a query and ex-
ecuting the query. The budget can be based on the estimated
cost if such information for creating physical configurations
and executing queries is available. Because creating a physi-
cal configuration or an index can benefit labeling multiple
queries in the target dataset, when computing the cost of
labeling in the sampling weight, we amortize the cost of cre-
ating an index over all the unlabeled plans that refer to this
index. When the ADCP chooses to implement the configu-
ration, it deducts the unamortized cost of creating indexes
from the budget. We can also use the number of plans as the
budget if the user prefers or if the estimated cost information
is not available. In such a case, we remove c¢(x) from the cost
in Equation (3) regardless of the cost type (i.e., wy = u(x)).

5.3 Redundancy Rejection Decisions

We experimented with state-of-the art approaches to reject
selecting redundant points. Experimentally, none of these ap-
proaches showed substantially different behavior. We outline
the options we explored; discovering more effective ways to

reduce redundancy is an interesting avenue for future work.
Capturing the redundancy in a batch of points (function R)
is challenging because there are multiple weak indicators:

Similar Selected Points: The most direct indicator for re-
dundancy is whether there have been similar points already
selected. This is a weak indicator because similar points may
have disparate labels in databases. For example, two plans
with similar structures and operators (thus similar features)
but small differences in join orders or selectivities can some-
times have significantly different execution costs.

Density: Since a data point’s label does not necessarily
generalize to all its neighbors, we observe that the model’s
target data prediction can benefit from labeling more points
in high-density regions. Labels in dense regions might gen-
eralize to more number of related data points.

Uncertainty: Since u(x) corresponds to the probability
of incorrect prediction, we observe that regions with higher
u(x) tend to require more labels for the model to generalize
to all the points. This is also a weak indicator because u(x)
can be imprecise before model retraining.

HAL combines these indicators leveraging a clustering-
based approach. Previous AL strategy has used clustering
to capture the distribution of the target data explicitly, and
select the same number of points from each cluster in a
round-robin fashion [62]. The intuition is that points within
a cluster are similar, and thus redundant. A direct application
of this approach does not capture the density and uncertainty
indicators. Given that, we propose two novel adaptations:

Sub-modular Threshold: Selecting the same number of
points from each cluster does not give preference to larger
clusters (regions with higher density). Within each cluster,
there is also a diminishing return as more points are selected.
Thus, HAL uses a monotone concave function y(n) = n,
where a € (0,1) and n is the cluster size, to restrict the max-
imum number of points to select from each cluster. y(n) is
larger for larger clusters, and the concavity naturally cap-
tures the diminishing return [34]. HAL sets a initially to be
small. HAL incrementally multiplies a if all clusters reach
the threshold: y(n) = n%, n?%,n%... until y(n) >= n. Thus,
the threshold automatically adapts to larger budget sizes.

Uncertainty Clip: Since regions with higher u(x) tend
to require more labels, HAL clips redundancy rejection for
high-uncertainty clusters. More specifically, HAL does not
enforce the threshold y if a cluster’s average u(x) is higher
than a percentile f among all the target data uncertainties.

There are two clustering details. (1) Similarity: We first
perform quantile transformation on the data [19] and then
use the L, metric. We observe this approach performs bet-
ter than directly applying standard metrics, such as L, and
cosine, because it brings different feature dimensions into
the same scale. (2) Algorithm: We investigate a few common
clustering algorithms and observe similar performance with

properly tuned parameters [16, 41, 43]. We use DBSCAN
for ADCP as it has moderate cost and is less sensitive to
hyper-parameters across database workloads (Section 7.2).

In general, our redundancy rejection mechanism is con-
servative with the sub-modular threshold and uncertainty
clip adaptations. Though missing certain rejection opportu-
nities, our design meets the ADCP’s robustness requirement
to support various applications (see analysis in Section 7.8).

Another alternative to combine the weak indicators is to
integrate them into the “value score” of the points. Then
an AL strategy can either maximize the value score [73]
or use the score as the sampling weight wy [9]. However,
the complex interactions between these weak indicators can
make the value score brittle and more unreliable, which leads
to poor performance in our evaluation (Section 7.4).

6 HAL EXECUTION EXAMPLE

We now illustrate the execution of HAL using a running-
example, as shown in Figure 3. Given the target test data (5
points in total), the base ML model, and the labeling cost
budget (6) specified by the user, HAL executes the follow-
ing steps. @ Prepare the necessary information by deriving
the sampling weight wy using u(x) and ¢(x) (Equation (3))
and perform clustering on the target data (Section 5.3). @
Initialize the algorithm’s relevant states, including the se-
lected points (None), the qualified points (all 5 points), and
the redundant points (None) as defined in Algorithm 1. HAL
maintains the set of redundant points by tracking the IDs
of the clusters that reach the rejection threshold. €) Sample
one point with a cost 4 according to weight w,. HAL updates
the remaining budget to 2. It calculates the qualified points
(2 points) under the new budget, and the clusters (1 cluster)
that reach the rejection threshold. @) Sample a second point
with a cost 2. After this step, there are no qualified points
since the budget is 0. There are also two redundant clusters
given the selected points. @ Return the selected points and
terminate, since the budget has been exhausted.

7 EXPERIMENT

We couch our evaluation on the ADCP’s application and
usage scenarios discussed in Section 3.2. We use two ML tasks
(Section 2.1) to evaluate the ADCP under different budget
sizes, cost types, and budgeting interfaces (Sections 7.4 to 7.7)
We also use a variety of industry-standard benchmarks and
customer workloads. Our evaluation shows that the ADCP
significantly reduces the ML model’s prediction error on the
target data in all scenarios (e.g., over 75% error reduction
with approximately 100 query executions).

In each scenario, we compare the ADCP with HAL against
a number of baseline AL strategies, ranging from straw man
approaches to advanced techniques in the AL literature that

Input Preparation Initialization
i ML Model i Compute the | ‘Remaining Budget;
H A 1 sampling weight; H 6 ' 9
H @ 1 X|lulcl w i | Selected Points |
; ; ; 1 O]0.1]5] 0.02 : : First
f L 0 [Qo.5]4[0.125]: 9 f sample
! Target Data | [¥[0.3]3] 0.1 H
i 9 H |:> ; 042 0.2 |:> Qualified Points f|:> Q |:>
o o) [©lo.2]1] 0.2 - ;
; . Clusterin Sampled from
& LJ‘:J O) ! 9 ! & LEJ o qualified and
H H @ H Redundant Pomts non-redundant
Budget : ; : ! points according
6 i i ! ! to weight w

Update State

:Remaining Budget:

e Selecte Points

Update State

:Remaining Budget;

(5]

i Selected Points ‘

EICk
Il

Second Return
Sample Selected Points
Qualified POInts [:::] E:> Qualified Points [:> @
f : Sampled from ‘Q
: B qualified and |

non-redundant \Redundant Pomts
points according

to weight w

Redundant Pomts

Figure 3: HAL Execution Example — HAL selects two points to label under the budget (details explained in Section 6).

are more aligned with the ADCP’s requirements. Unlike
HAL, all the baselines only partially address the ADCP’s
holistic AL challenges (Section 3.3), which we annotate in
detail in Section 7.3. The results show that HAL significantly
outperforms all the baselines in all scenarios, and no baseline
performs well in all cases. This demonstrates HAL’s superi-
ority as a robust, cost-sensitive, and batch-friendly strategy.
Under the same budget, HAL reduces the prediction error
by up to 2x more compared to all the baselines.

We also analyze HAL and the baselines’ properties in-
depth in Section 7.8. This analysis further reflects how HAL
better handles ADCP’s challenges compared to the baselines.

7.1 Evaluation Protocol

Data Generation: We use the same methodology discussed
in Section 2.2 to generate the target data for each held-out
database, which rotates among all the 14 database work-
loads (Section 7.2). We construct the target data for both ECP
and PRP tasks by executing the queries from our workloads.
We use a state-of-the-art index tuner [13] to recommend
a set of indexes for each query, and enumerate subsets of
the recommended indexes as the index configurations. The
optimizer then generates candidate plans under each index
configuration for a query. We implement the different index
configurations, execute the queries in isolation, and record
the plans’ execution costs (e.g., CPU time) for labeling. For
ECP, the collected plans and their execution costs are the tar-
get data and the labels. For PRP, we construct plan pairs from
all the plans of the same query as the target data, and assign
labels based on whether the first plan is more expensive than
the second. Although we use the same execution data for
both ECP and PRP, the two tasks use distinct featurizations
for their inputs. Thus, the two tasks’ data distributions after
featurization are substantially different. When the ADCP
labels a pair for PRP, it executes both plans. Table 2 summa-
rizes the statistics of the collected plans and indexes.

Experiment Execution: We run an active data collection
experiment for each target data with three repetitions, and
report the average result from all the experiments. By default,
we specify the data collection budget by the labeling cost,

which includes both the index creation and the plan execu-
tion costs. In each experiment, we first train a base ML model
(“cold-start” model) using the labeled data from all databases
except the held-out one. We set the total budget spent by
the ADCP as 150% the average estimated plan execution cost
(avg(c(x))) in the target data, which is on average 18% of the
entire target data’s labeling cost. We use the optimizer’s cost
model as the crude cost estimator, which does not require
any additional training data. To evaluate how the ADCP
performs with different model retraining frequencies and
budget sizes, we evenly split the total budget among multiple
(3-15) iterations. In each iteration, we (1) use ADCP to label
a batch of data points under the divided budget, (2) retrain
the ML model with the existing and the newly labeled data,
and (3) evaluate the model’s prediction on the target data.

Metrics: For ECP, we use L; error on the target data to mea-
sure the model’s performance as used in the previous work
for this task [37]. We normalize the L; error between [0, 1]
for clarity. For PRP, we use F1 error on the target data as
the performance metric [7], which is robust to skew in the
distribution of classes where prediction accuracy is suscepti-
ble. The F1 error is between [0, 1]. We use the error metrics
on the entire target data since this reflects how databases
use ML models in reality. When we evaluate the model’s
prediction on the remaining target data, excluding the data
points labeled by the AL strategy, we observe similar results.

7.2 Implementation Details

Workloads: We use a diverse collection of both industry-
standard benchmarks and real customer workloads under
a variety of data sizes, distributions, and query complexity.
Table 2 summarizes the key statistics of the workloads. For
the TPC workloads, we use two different scale factors, 10
and 100, which share query templates but use different pa-
rameters and have different data sizes and distributions. We
also use a skewed data generator [52] for TPC-H to make
the execution cost estimation more challenging. All queries
in these workloads are SELECT statements.

ML Tasks: We use the following featurizations and models.

‘Workload DB size # # Avg. Total # Plan #in- Method Uncertainty Cost Estimate Redundancy = Randomness
(GB) tables queries #joins # Plans Pairs dexes HAL v v v v

TPC-DS 10g 1.2 24 92 7.9 3,500 200, 825 329 Rand 7

TPC-DS 100g 87.7 24 92 7.9 3,714 211,541 359 Cheap 7

TPC-H 10g 12.1 8 22 2.8 299 6, 986 60 Index v

Zipf Uncertain v/

TPC-H 100g 132 8 22 2.8 306 6, 600 57 Hybrid 7 7

Zipf RBMAL v v/

Customer1 87.7 20 111 5.9 4,669 144,474 389 Round 7 T 7

Customer2 1723 23 34 7.2 2,364 214,842 185 Similar - 7

Customer3 4.6 614 32 8.1 584 17,926 83 OPT N N N/ A

Customer4 1.2 8 125 1.6 2,539 153,752 134

gﬁ::ﬁﬁ::z 2982 > 232 3ﬁ 72? ; %; 33 g;; ;i; Table 3: AL Baseline Categorization — Summary on how

Customer? 93 22 23 5.2 841 37,157 128 the AL strategies leverage different signals and sampling

Customer8 0.25 129 474 1.1 3,746 82,738 287 1

Customerd 17.0 3 10 s 242 7, 854 37 options to address the holistic challenges in Section 3.3".

Customer10 7.2 81 399 0.8 2,80 19,257 228

Table 2: Workloads - Aggregate statistics about the
schema and query complexity for the read-only workloads.

Plan regression prediction (PRP): We use the same method
in a recent work for this task to featurize a plan [14], which
includes the operator types (e.g., Index Scan), the execu-
tion modes (e.g., single-threaded/parallel), each operator’s
estimated work, and the plan structure. We also use the
same plan-pair featurization technique, which calculates the
attribute-wise difference between the two plans’ features.
We use random forest (RF) [38] as the default ML model since
it has high accuracy and low training cost [14]. We use 100
learners (trees) and at least 1 sample in any leaf node set
through cross-validation. We use early stopping to prevent
node splitting if the impurity (see [7]) is below 107°.

Execution cost prediction (ECP): To unify the evaluation
protocol, we use the same technique as PRP to featurize a
plan and also use RF as the ML model. We use 200 learners
(trees) and at least 5 samples in any leaf node set through
cross-validation. We use early stopping to prevent node split-
ting if the impurity is below 107.

We also evaluate the ADCP under other featurizations and
ML models (e.g., LightGBM [31]) for PRP and observe similar
results; we omit these due to space limitations.

Software and Hardware: We implement the ML models
using scikit-learn and LightGBM in Python. We train
the ML models on a virtual machine with 144 GB RAM and
72 virtual CPU threads based on the Intel Xeon Platinum
8168 (SkyLake) processor. In our experiments, training the
ML model on average takes five minutes for both ML tasks.

Hyper-Parameters: We use cross-validation to set the hyper-
parameters for the redundancy rejection mechanism (Sec-
tion 5.3). For ECP, we set the DBSCAN'’s neighbor distance
as 0.1 and the minimum samples in a core point’s neighbor-
hood as 5 for all workloads. For PRP, we set them as 1 and
4, respectively. We set the uncertainty clip percentile S as
60% and 70% for ECP and PRP, respectively. And we set the
submodular threshold parameter a as 0.1 for both tasks.

7.3 Baselines

We compare our HAL strategy with nine baselines based on
either heuristics or AL literature. Table 3 categorizes how the
baselines use different AL signals and selection approaches.
Our baselines include:

Rand: Randomly select data points from the target data.
As discussed in Section 5.1, Rand is a simple but surpris-
ingly effective strategy that can outperform advanced AL
strategies in many cases [48]. Rand is robust to unreliable
AL signals, e.g., the informativeness and the cost estimates.

Cheap: Select data points with the lowest cost ¢(x). Cheap
is cost-sensitive, and maximizes the number of labeled points.

Index: Sample queries with a fixed weight p for queries
that use indexes, and with the weight 1 — p for the other
queries. Index is implicitly cost-sensitive without a cost esti-
mator. We tune p to 0.4 where Index performs the best.

Uncertain: Select data points with the highest uncer-
tainty u(x) [36] to maximize the newly labeled points’ total
uncertainty. We also evaluate a variant of this strategy that
selects points ordered by % Because c¢(x) has a wider and
more skewed distribution than u(x) in many workloads, this
variant ends up similar to the Cheap baseline. Since the vari-
ant performs worse than Uncertain on average, we do not
include it in our baselines.

Hybrid: This strategy uses Uncertain to select points with
a fixed portion of the budget (tuned to 0.5), and it uses Rand
for the remaining budget. Hybrid is a batch-friendly AL strat-
egy used in database crowdsourcing [24].

RBMAL: RBMAL is a state-of-the-art batch-friendly AL
strategy [9] that augments Uncertain with a weighted dis-
tance of each data point to the labeled training data. The
weight for the distance degrades as more points are selected.
Empirically, we found that calculating the weight and the
distance to the entire training set performs better than only
to the labeled/selected points in the target data. Specifically,
RBMAL selects points in order sorted by wy = u(x) + a *

1We use v/ to denote that the original strategy has that property, and +- to denote that

we extended the strategy to have that property in our evaluation.

—@— Rand © - Similar ¢ Round V— Hybrid —— HAL
--@-- Cost —— Uncertain -+« Index g RBMAL === OPT
1.0

o
e
|

o
o
|

Normalized L1 Error

o
IS
|

Iteration

(a) ECP: 10x Avg Cost/Iteration(b) PRP: 10X Avg Cost/Iteration

Figure 4: Baseline Performance — The performance im-
provement on the ML models with baseline strategies.

Iteration

dis(x, X1 U Xa), where dis(x, Xy U X,) is a distance metric
between x and the labeled training data.

Round: Cluster the target data, then select one point from
each cluster in a round-robin fashion ranked by the points’
“informativeness score”. This is a state-of-the-art AL strategy
that considers redundancy and is batch-friendly [62]. Round
can be cost-sensitive by using the HAL’s sampling weight
as the score, and yields better performance.

Similar: Define w, for each point as the difference be-
tween the point’s distances to the labeled training data and
the unlabeled target data, and select points in sorted w, order.
Similar is batch-friendly and captures the redundancy [73].
We further divide wy by log ¢(x): w(x) = Togc®)

This makes Similar cost-sensitive and yields better results.

OPT: A crude baseline that directly derive the labels for
the ML tasks through the optimizer’s cost estimation. We
assign labels for PRP by comparing the optimizer’s costs for
the plan pair. To derive ECP’s labels, we use Huber regres-
sion [28], which is robust to outliers, on the labeled training
data with the optimizer’s cost as input. OPT does not require
any additional label or model retraining.

7.4 Baseline Improvements

We first evaluate ADCP with all the baseline strategies. For
both ML tasks, we run 15 continuous iterations of active data
collection with a 10x avg(c(x)) budget for each iteration.
Figure 4a and Figure 4b show ECP’s normalized L, error and
PRP’s F1 error (discussed in Section 7.1) on the target data
after each iteration.

Directly using the optimizer’s estimate (OPT) performs
similar or better than the ML models without additional
labels in the target data (iteration 0). This reinforces the need
for active data collection to improve the model’s predictions.

Maximizing the number of labeled points (Cheap), which
is arguably the most simple and intuitive strategy, fails to

dis(x, X UXa)-dis(x,Xy)

deliver reasonable model error reduction; this is because it
may select many uninformative and redundant points.

The two more sophisticated AL strategies in literature
(Similar and Round) do not achieve satisfactory error reduc-
tion, either. The informativeness signal can be unreliable.
Combining other signals related to cost and redundancy ag-
gravates the noise and variance in the informativeness score,
and make these deterministic selection methods brittle.

Rand, which is robust to unreliable signals, outperforms
Similar and Round in most cases. However, the error reduc-
tion is limited since Rand is oblivious to the informativeness
values. Index adds a naive cost signal to Rand but does not
bring much performance improvement either.

The uncertainty-based strategies generally have reason-
able performance. Although Uncertain only uses the infor-
mativeness signal, it outperforms many advanced strategies.
Hybrid, which combines Uncertain and Rand, outperforms
both of them. This confirms our intuition that randomness
can robustify AL under noisy signals. RBMAL adds a more
complex distance metric to Uncertain, but performs similar
(ECP) or worse (PRP) than Uncertain. This further demon-
strates the problem’s difficulty and a complex strategy that
partially addresses the challenges in Section 3.3 may perform
worse than a simple approach.

HAL, which holistically addresses ADCP’s AL challenges,
significantly outperforms the baselines. It especially reduces
the model prediction error with small budgets. For example,
with 10X avg(c(x)) budget (iteration 1), it reduces ECP’s L;
error by 27% and PRP’s F1 error by 24%.

We further evaluate the baseline strategies in a wide range
of settings, such as different budget sizes or cost types. Un-
certain and Hybrid are the best performing baselines across
all settings. Hence, for the remaining results, we use these
two strategies along with the rudimentary baseline, Rand, as
representatives for comparing with HAL.

7.5 Budget Sizes

We now evaluate the AL strategies for the ADCP with dif-
ferent budget sizes per iteration, and subsequently different
number of iterations. Results in Figure 5 show that HAL
significantly outperforms all the other baselines.

Many ML models can be expensive to retrain. However,
the retraining cost might not be directly comparable with
the plan execution costs. Thus, we use the experiments in
this section and Section 7.4 to evaluate how the ADCP per-
forms with cheap/expensive models with different retraining
frequencies. The results show that HAL performs well even
when the retraining frequency (number of iterations) is low.
For example, with an 100X avg(c(x)) budget, HAL reduces
ECP’s L error by 61% with both 10 iterations (Figure 4a) and
2 iterations (Figure 5a). In contrast, Hybrid and Uncertain,

—@— Rand —aA— Uncertain V- Hybrid —> HAL = OPT
1.0 -\
g
1 0.8
]
B
N 0.6
©
£
S
Z 0.4
T T T T T T 0.0+ T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration

(a) ECP: 30x Avg Cost/Iteration (b) PRP: 30X Avg Cost/Iteration

1.0 -\

5 0.3
1 0.8
O S
£ 0.2 A
E]
= 0.6 h "
£ 0.1 v
o
Z0.44
T T 0.0 T T T T
0 1 2 3 0 1 2 3
Iteration Iteration

(c) ECP: 50x Avg Cost/Iteration (d) PRP: 50x Avg Cost/Iteration

Figure 5: Budget Sizes — The improvement on the ML mod-
els with different ML tasks and budget sizes.

which are the best performing baselines, reduces ECP’s L
error by ~60% with 10 iterations (Figure 4a) and only 50%
with 2 iterations (Figure 5a). Since Hybrid and Uncertain do
not reason about redundancy, they select more redundant
points with larger batch sizes. We observe similar trends for
PRP in Figure 4b and Figure 5b.

Since users are often cost-sensitive, they may decide to ter-
minate the data collection sooner with smaller resource cost
and model retraining time. Thus, improving the model’s pre-
diction on the target data in the early iterations is important.
The results in Figure 5 show that after the first iteration, HAL
reduces PRP’s F1 error or ECP’s L; error 1.5X-2X compared
to all the baselines under two different budget sizes. Note
that the labeling resource cost varies with the budget size
when the iteration count is the same. These results show that
HAL efficiently improves the model’s target data prediction
with small resource budget and model retraining iterations.

7.6 Cost Type

The ADCP supports database applications with different cost
types. We have so far focused on the index tuner where the
labeling cost of points includes both the plan execution and
the index creation cost. We now consider a different applica-
tion, query optimization, where the optimizer estimates the
plan execution costs in the current index configuration. In
such an application, the labeling cost does not contain the
index creation cost. Thus, we evaluate the ADCP’s perfor-
mance with the index cost excluded from the cost estimation
c(x). We set the budget for each iteration as 30X avg(c(x)).

—@— Rand —&— Uncertain ¥V Hybrid —>— HAL w— OPT
1.0
g
1 0.8
O
2
N 0.6
©
E v
o
Z 0.4 Yy
T T T T T T 0.0 T
0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration
(a) ECP Error (b) PRP Error

Figure 6: Cost Type — The model’s performance improve-
ment when the active data collection only includes the plan
execution cost, but not the index creation cost.

—@— Rand —&— Uncertain V- Hybrid — HAL O HAL-PBI e OPT
1.00
_ i\ 0.3
s
5 0.754 N]
o > 0.2 5]
8050 & u
N e
g mn \V\KKE\E\F\ - 0.1
5 0.25- Og . '
2 "oookg
XY R A R
Iteration Iteration
(a) ECP Error (b) PRP Error

Figure 7: Model error reduction under Plan Budgeting
Interface — Each iteration has a budget on the number of
plans that the AL strategy can select regardless of the cost.

The results in Figure 6 show that HAL significantly outper-
forms the baselines with the optimizer’s cost type. Especially,
HAL reduces PRP’s F1 error at least 2X compared to all the
baselines after the first iteration (Figure 6b). The change in
the cost affects how the strategy uses the budget, and the
results show that HAL handles both cost types well. Note
that Hybrid performs worse for the index tuner cost type
(e.g., Figure 5a vs. Figure 6a) because cost-oblivious strate-
gies struggle to reason about the interdependent index cost.

7.7 Budgeting Interface

We now evaluate the ADCP by a different budgeting inter-
face, i.e., by the number of executed plans, as discussed in Sec-
tion 3.2. We set the ADCP to execute 2% of the target data’s
total number of plans in each iteration, with the remaining
setup the same as Section 7.1. We denote our adapted sam-
pling strategy for this plan budgeting interface as HAL-PBI,
where we remove the denominator c(x) from the compu-
tation of the sampling weight wy (Section 5.2). HAL-PBI is
especially useful when a good cost estimator is unavailable.
Besides evaluating how well HAL-PBI reduces the model’s
prediction error, we also study (1) how much resource cost
the cost-oblivious HAL-PBI spends, and (2) assuming a cost
estimator is still available, how HAL performs.

EEE Uncertain E= HAL [ZZ2 HAL-PBI

== Rand
x10°

BA Hybrid

x10%

Cost (Optimizer Unit)

0.6 0.5 0.4
Reach Normalized L1 Error

(a) ECP Cost - Error Target

Figure 8: Costs under Plan Budgeting Interface — The
cost (in the optimizer’s unit) to reach certain error targets.

0.2
Reach F1 Error

(b) PRP Cost - Error Target

The results in Figure 7 show that HAL-PBI outperforms
all the baselines after the same number of iterations. Espe-
cially, it reduces the prediction error 1.6X-2.2x after the first
iteration compared to the baselines for both tasks. Since the
strategies can spend different amount of costs in an iteration,
we also measure the total cost spent by each strategy to re-
duce the model’s prediction error to certain targets. Figure 8
shows that HAL-PBI spends similar or lower cost for the
data collection to achieve the same error target compared to
the baselines. This demonstrates that HAL-PBI is robust and
batch-friendly even without accurate cost estimation.

The results in Figure 8 also show that if a reasonable cost
estimator is available, the cost-sensitive HAL spends signifi-
cantly less cost than other strategies to reach a fixed error
target. For example, HAL uses at most 0.35X cost to reduce
PRP’s F1 error to 0.15 compared to all the other strategies
(Figure 8b). However, HAL may also select points that are
only moderately informative when the cost is low. Thus,
with the same number of labeled points, HAL can yield less
total information. The results in Figure 7 show that HAL re-
quires many more iterations to achieve the same error target
compared to the baselines, which is undesirable when the
ML model has high training cost (e.g., for DNNs or SVMs).

HAL and HAL-PBI show different advantages over the
baselines in this scenario, depending on the ratio between
the ML model retraining cost and the labeling cost. Balancing
this tradeoff is an interesting avenue for future work.

7.8 Additional Analysis

We now conduct a deeper analysis on HAL’s performance
compared to other strategies. We focus on the PRP task with
the default setup (Section 7.1), and set the budget per iteration
to 30X avg(c(x)); we observe similar results in other setups.

We first measure the ratio between the number of labeled
points by the ADCP and the target data’s total number of
points. Figure 9 shows that HAL labels more points than the
baselines at each iteration, which suggests that the average
cost of HAL’s labeled points is lower. This demonstrates that
HAL is cost-sensitive and selects cheaper points.

-=@— Rand —A&— Uncertain V- Hybrid —> HAL

0.45 0.3
2
g 0.30 g 0.2
g w
° e
§ 0.15 0.1

R I e e e S 00— +——

0 1 2 3 4 5 0 1 2 3 4 5
lteration lteration
(a) PRP Labeled Ratio (b) PRP Expensive Points’ Error

Figure 9: Strategy Properties — The ratio of the labeled
points and the prediction error on the expensive points.

—*— None - Linear =@— Sub —A— LinearClip =< Sub-Clip
0.6
0.16
§0.41 5
w 1 0.12+
i b
0.2
0.08
0.0— , T T . | ! | | ! 7
o 1 2 3 4 5 1 2 3 4 5
Iteration Iteration

(a) PRP Error - Customer8 (b) PRP Error - Average

Figure 10: Redundancy Rejection Design Space — Per-
formance with different options in the design space of the
redundancy rejection mechanism.

Since HAL on average selects cheaper points than the
baselines, we then investigate whether HAL reduces less
error of the model’s predictions on the more expensive points.
This is important because expensive points may have higher
performance impact to the DBMS than cheaper ones, such
as consuming more resource or resulting in longer query
latency. We measure the ML model’s prediction error on
the points with a cost c(x) higher than the median cost in
the target data. Figure 9b shows that HAL still yields lower
prediction error on the expensive points compared to the
baselines, which indicates that HAL does not sacrifice the
label’s value (informativeness) while selecting points.

Finally, we examine the design space of the redundancy re-
jection mechanism (Section 5.3). We denote the strategy that
excludes the redundancy rejection from HAL as None. On top
of None, we denote the direct adaptation of the clustering-
based approach that samples one point from each cluster in
turn as Linear. We denote the submodular threshold adapta-
tion for Linear as Sub. We add the uncertainty clip adaptation
on top of both Linear and Sub, denoted as Linear-Clip and
Sub-Clip. Sub-Clip is equivalent to HAL.

We observe that Sub-Clip performs significantly better
compared to None on a few workloads, with an example

shown in Figure 10a. This confirms the importance of cap-
turing the redundancy in the AL strategy. In many work-
loads, however, Sub-Clip has similar performance with None.
Figure 10b shows the average error reduction for different
rejection mechanisms, where we zoom in the y-axis and omit
iteration 0 for clarity. Sub-Clip has a moderate average advan-
tage over None, and does not perform worse than None on
any workload. Other rejection mechanisms either perform
similar or worse than None. This is because (1) capturing the
redundancy is challenging (Section 5.3), and (2) None already
spreads the samples across different regions, which reduces
the potential redundancy in a batch of selected points.

8 RELATED WORK

ML models have been used to enhance several aspects of
databases, like query run-time prediction [18, 37], query op-
timization [35, 44, 50], self-administration [39, 51], physical
design [5, 61], knob configuration [66], and index recommen-
dation [14]. Their performance typically degrades when they
serve a production workload that was unseen during train-
ing time; (see [14] for a case study in index recommendation;
and [37] for an example in query run-time prediction).

One solution to combat this performance degradation is
to passively collect telemetry from the production work-
load [63]. Although this approach does not incur extra ex-
ecution overhead, the database does not control when or
what plans to execute. Our solution, in contrast, employs
active learning [57]. Active learning is known to be more
sample-efficient than passive supervised learning in many
problem settings [62, 73], which can mean that ML models
are re-trained on collected data in a more cost-effective way.

Active Learning is a vast field, but many tailored AL solu-
tions do not work in the database setting. For example, some
works require the models to be differentiable [4, 8, 57, 60],
which do not apply to many ML models such as random
forests. Other methods require a large amount of retrain-
ing [23, 40, 72], rendering them computationally prohibitive
for many complex ML models.

Most database applications, including ours, require batch
data collection. Batch AL is well studied (e.g., see [9]), and
aims to find datapoints that maximize model uncertainty
as well as diversity [4]. We compare to the state-of-the-art
techniques (e.g., by explicitly capturing the data distribu-
tion [49, 62] or applying density weighted methods [58, 73]
or ranking [9]) in our experiments, and incorporate simple
notions of uncertainty and diversity into HAL.

Several AL strategies are also cost-sensitive [59]. Some
techniques use return on investment to guide labeling ef-
fort [25, 67], which HAL draws inspiration from. Recent
benchmarks [75] also show that uniform random sampling is

a formidable baseline and uncertainty sampling [55, 56, 68]
is a useful heuristic, especially when the data is noisy [48].

Robustness (or, AL with distribution shift) is the key chal-
lenge in our work that is relatively understudied in the liter-
ature. Related approaches compose domain adaptation tech-
niques with active learning [53, 64]. Other approaches use
transfer learning [70, 71]. The key idea is to adapt the initial
ML model to hopefully provide better signals in situations
when domain adaptation/transfer learning can succeed. In
our problem settings, the mismatch in training and target
is so severe (e.g., see Figure 1) that these techniques (like
covariate shift correction) are doomed to fail.

There is a long and successful history of using active learn-
ing in database systems for tasks like crowdsourcing [24, 47]
or data mining [3, 27, 74]. These works use human labeling
to improve the performance of the front-end applications.
However, in these settings labels are noisy and signals/costs
are accurate. In our setting of AL with distribution shift, the
labels we collect are accurate and signals/costs are noisy. This
requires us to incorporate mechanisms in HAL to remain
robust to noisy and varying signals using Gumbel sampling.

9 CONCLUSION AND FUTURE WORK

The training-test data mismatch can significantly limit the
applicability of ML techniques in databases, especially in pro-
duction deployments. We propose an active data collection
platform (ADCP) to address this issue by collecting more
labeled data with extra resources. We formulate an AL prob-
lem to collect labels for specific target test data, and design a
simple yet effective AL strategy, HAL, that is robust to unre-
liable signals, cost-sensitive, and batch-friendly. Empirically,
ADCP greatly improves the ML model’s performance with
small resource budget, and HAL significantly outperforms
state-of-the-art AL baselines in a wide range of scenarios.
We contend that this is a crucial step towards building a
complete ML pipeline to enhance database systems.

There are several interesting future directions for this
work. For example, ADCP may jointly learn a labeling cost
estimation model with the newly labeled points. There is also
the opportunity to combine the additionally collected labels
for the individual production workload into a global model
with better generalization. Our early investigations also show
that adjusting the training weight after collecting more labels,
like covariate shift correction, can further benefit the model
error reduction on the target data. We view this work as the
first step towards tackling the holistic AL problem that arises
from applying ML to complex database systems.

10 ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and Andy Pavlo for their valuable feedback.

REFERENCES

(1]

[10

=

[11

—

[12

—

(13

—_

(14

=

(15

[

[16

—

(17]

Deepak Agarwal, Lihong Li, and Alexander Smola. 2011. Linear-time
estimators for propensity scores. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics. 93-100.
Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. 2005. Database tuning advisor for
microsoft sql server 2005. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of data. ACM, 930-932.
Arvind Arasu, Michaela Gotz, and Raghav Kaushik. 2010. On active
learning of record matching packages. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data. ACM, 783-
794.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford,
and Alekh Agarwal. 2019. Deep batch active learning by diverse,
uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671
(2019).

Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong
Yuan, Pierre Senellart, and Stéphane Bressan. 2015. Cost-model obliv-
ious database tuning with reinforcement learning. In International
Conference on Database and Expert Systems Applications. Springer, 253—
268.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. 2009. Discrim-
inative learning under covariate shift. Journal of Machine Learning
Research 10, Sep (2009), 2137-2155.

Christopher Bishop. 2006. Pattern Recognition and Machine Learning.
Pattern Recognition and Machine Learning (2006).

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. 2005.
Fast kernel classifiers with online and active learning. Journal of
Machine Learning Research 6, Sep (2005), 1579-1619.

Thiago NC Cardoso, Rodrigo M Silva, Sérgio Canuto, Mirella M Moro,
and Marcos A Gongalves. 2017. Ranked batch-mode active learning.
Information Sciences 379 (2017), 313-337.

Surajit Chaudhuri. 1998. An overview of query optimization in rela-
tional systems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. ACM, 34-43.
Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database
systems: a decade of progress. In Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 3-14.

Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed
Zait, and Mohamed Ziauddin. 2004. Automatic SQL tuning in oracle
10g. In Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment, 1098-1109.

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jo-
vanovic, Vivek R Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang
Xu, and Surajit Chaudhuri. 2019. Automatically indexing millions of
databases in microsoft azure sql database. In Proceedings of the 2019
International Conference on Management of Data. 666-679.

Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri,
and Vivek R Narasayya. 2019. Ai meets ai: Leveraging query execu-
tions to improve index recommendations. In Proceedings of the 2019
International Conference on Management of Data. 1241-1258.

Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek
Narasayya. 2018. Plan stitch: harnessing the best of many plans.
Proceedings of the VLDB Endowment 11, 10 (2018), 1123-1136.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. 1996.
A density-based algorithm for discovering clusters in large spatial
databases with noise.. In Kdd, Vol. 96.

Jodao Gama, Indré Zliobaite, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation.
ACM computing surveys (CSUR) 46, 4 (2014), 44.

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener,
Armando Fox, Michael Jordan, and David Patterson. 2009. Predicting
multiple metrics for queries: Better decisions enabled by machine learn-
ing. In 2009 IEEE 25th International Conference on Data Engineering.
IEEE, 592-603.

Warren Gilchrist. 2000. Statistical modelling with quantile functions.
CRC Press.

Ian Goodfellow, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. The MIT Press.

Emil Julius Gumbel. 1954. Statistical theory of extreme values and some
practical applications: a series of lectures. Number 33. US Govt. Print.
Office.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On
Calibration of Modern Neural Networks. In International Conference
on Machine Learning. 1321-1330.

Yuhong Guo and Russ Greiner. 2007. Optimistic active learning us-
ing mutual information. In Proceedings of the 20th international joint
conference on Artifical intelligence. Morgan Kaufmann Publishers Inc.,
823-829.

Daniel Haas, Jiannan Wang, Eugene Wu, and Michael J Franklin. 2015.
CLAMShell: Speeding up Crowds for Low-latency Data Labeling. Pro-
ceedings of the VLDB Endowment 9, 4 (2015).

Robbie Haertel, Kevin D Seppi, Eric K Ringger, and James L Carroll.
2008. Return on investment for active learning. In Proceedings of the
NIPS Workshop on Cost-Sensitive Learning, Vol. 72.

Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, and
Takafumi Kanamori. 2011. Statistical outlier detection using direct
density ratio estimation. Knowledge and information systems 26, 2
(2011), 309-336.

Enhui Huang, Liping Peng, Luciano Di Palma, Ahmed Abdelkafi, Anna
Liu, and Yanlei Diao. 2018. Optimization for active learning-based
interactive database exploration. Proceedings of the VLDB Endowment
12,1 (2018), 71-84.

Peter] Huber et al. 1973. Robust regression: asymptotics, conjectures
and Monte Carlo. The Annals of Statistics 1, 5 (1973), 799-821.
Thorsten Joachims. 1999. Transductive Inference for Text Classifica-
tion using Support Vector Machines. In Proceedings of the Sixteenth
International Conference on Machine Learning. Morgan Kaufmann Pub-
lishers Inc., 200-209.

Ashish Kapoor, Eric Horvitz, and Sumit Basu. 2007. Selective su-
pervision: guiding supervised learning with decision-theoretic active
learning. In Proceedings of the 20th international joint conference on
Artifical intelligence. Morgan Kaufmann Publishers Inc., 877-882.
Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural Information
Processing Systems. 3146-3154.

Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser,
Christopher H Bryant, Stephen H Muggleton, Douglas B Kell, and
Stephen G Oliver. 2004. Functional genomic hypothesis generation
and experimentation by a robot scientist. Nature 427, 6971 (2004), 247.
Wouter Kool, Herke Van Hoof, and Max Welling. 2019. Stochastic
Beams and Where To Find Them: The Gumbel-Top-k Trick for Sam-
pling Sequences Without Replacement. In International Conference on
Machine Learning. 3499-3508.

Andreas Krause and Carlos Guestrin. 2008. Beyond convexity: Sub-
modularity in machine learning. ICML Tutorials (2008).

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein,
and Ion Stoica. 2018. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint arXiv:1808.03196 (2018).
David D Lewis and Jason Catlett. 1994. Heterogeneous uncertainty
sampling for supervised learning. In Machine Learning Proceedings

1994. Elsevier, 148-156. [54] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern
[37] Jiexing Li, Arnd Christian Konig, Vivek Narasayya, and Surajit Chaud- approach. Malaysia; Pearson Education Limited,.
huri. 2012. Robust estimation of resource consumption for sql queries [55] Maytal Saar-Tsechansky and Foster Provost. 2004. Active sampling

=

=

—

= o

— =

=

—

—

[t

using statistical techniques. Proceedings of the VLDB Endowment 5, 11
(2012), 1555-1566.

Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression
by randomForest. R news 2, 3 (2002), 18-22.

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J Gordon. 2018. Query-based workload forecasting
for self-driving database management systems. In Proceedings of the
2018 International Conference on Management of Data. ACM, 631-645.
Oisin Mac Aodha, Neill DF Campbell, Jan Kautz, and Gabriel] Brostow.
2014. Hierarchical subquery evaluation for active learning on a graph.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 564-571.

James MacQueen et al. 1967. Some methods for classification and
analysis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, Vol. 1. Oakland,
CA, USA, 281-297.

Chris] Maddison, Daniel Tarlow, and Tom Minka. 2014. A* sampling.
In Advances in Neural Information Processing Systems. 3086—3094.
Yury A Malkov and Dmitry A Yashunin. 2018. Efficient and robust
approximate nearest neighbor search using hierarchical navigable
small world graphs. IEEE transactions on pattern analysis and machine
intelligence (2018).

Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement
learning for join order enumeration. In Proceedings of the First Inter-
national Workshop on Exploiting Artificial Intelligence Techniques for
Data Management. 1-4.

Ryan Marcus and Olga Papaemmanouil. 2019. Plan-structured deep
neural network models for query performance prediction. Proceedings
of the VLDB Endowment 12, 11 (2019), 1733-1746.

Nicolai Meinshausen. 2006. Quantile regression forests. Journal of
Machine Learning Research 7, Jun (2006), 983-999.

Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan,
and Samuel Madden. 2014. Scaling up crowd-sourcing to very large
datasets: a case for active learning. Proceedings of the VLDB Endowment
8,2 (2014), 125-136.

Stephen Mussmann and Percy Liang. 2018. On the Relationship be-
tween Data Efficiency and Error for Uncertainty Sampling. In Proceed-
ings of the 35th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research), Vol. 80. PMLR, 3674-3682.

Hieu T Nguyen and Arnold Smeulders. 2004. Active learning using pre-
clustering. In Proceedings of the twenty-first international conference on
Machine learning. ACM, 79.

[50] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya

Keerthi. 2018. Learning State Representations for Query Optimization
with Deep Reinforcement Learning. In Proceedings of the Second Work-
shop on Data Management for End-To-End Machine Learning. ACM,
4.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah,
et al. 2017. Self-Driving Database Management Systems.. In CIDR.
Program for TPC-H Data Generation with Skew. [n.d.]. Program for
TPC-H Data Generation with Skew. https://www.microsoft.com/en-
us/download/details.aspx?id=52430..

Piyush Rai, Avishek Saha, Hal Daumé, and Suresh Venkatasubrama-
nian. 2010. Domain Adaptation Meets Active Learning. In Proceedings
of the NAACL HLT 2010 Workshop on Active Learning for Natural Lan-
guage Processing (ALNLP ’10). Association for Computational Linguis-
tics, USA, 27-32.

for class probability estimation and ranking. Machine learning 54, 2
(2004), 153-178.

Burr Settles. 2009. Active Learning Literature Survey. Computer Sci-
ences Technical Report 1648. University of Wisconsin-Madison.
Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 6, 1 (2012), 1-114.

Burr Settles and Mark Craven. 2008. An analysis of active learning
strategies for sequence labeling tasks. In Proceedings of the conference
on empirical methods in natural language processing. Association for
Computational Linguistics, 1070-1079.

Burr Settles, Mark Craven, and Lewis Friedland. 2008. Active learning
with real annotation costs. In Proceedings of the NIPS workshop on
cost-sensitive learnings. 1-10.

Burr Settles, Mark Craven, and Soumya Ray. 2008. Multiple-instance
active learning. In Advances in neural information processing systems.
1289-1296.

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The
Case for Automatic Database Administration using Deep Reinforce-
ment Learning. arXiv preprint arXiv:1801.05643 (2018).

Xuehua Shen and ChengXiang Zhai. 2005. Active feedback in ad hoc
information retrieval. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 59-66.

Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil.
2001. LEO-DB2’s LEarning Optimizer. In Proceedings of the 27th Inter-
national Conference on Very Large Data Bases. 19-28.

[64] Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Subhransu Maji,

and Manmohan Chandraker. 2019. Active Adversarial Domain Adap-
tation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 1-4.

Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. 2017.
Dataset shift in machine learning.

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
2017. Automatic Database Management System Tuning Through Large-
scale Machine Learning. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD °17). 1009-1024.
Sudheendra Vijayanarasimhan and Kristen Grauman. 2009. What’s it
going to cost you?: Predicting effort vs. informativeness for multi-label
image annotations. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2262-2269.

Andreas Vlachos. 2008. A stopping criterion for active learning. Com-
puter Speech & Language 22, 3 (2008), 295-312.

Stefan Wager, Trevor Hastie, and Bradley Efron. 2014. Confidence inter-
vals for random forests: The jackknife and the infinitesimal jackknife.
The Journal of Machine Learning Research 15, 1 (2014), 1625-1651.
Xuezhi Wang. 2016. Active Transfer Learning. Ph.D. Dissertation. BAE
Systems.

Xuezhi Wang, Tzu-Kuo Huang, and Jeff Schneider. 2014. Active transfer
learning under model shift. In International Conference on Machine
Learning. 1305-1313.

X Xhu, J Lafferty, and Z Ghahramani. 2003. Combining active learning
and semi-supervised learning using Gaussian fields and harmonic
functions. In Proceedings of the ICML-2003 Workshop on The Continuum

from Labeled to Unlabeled Data. ICLM, 58-65.

Zuobing Xu, Ram Akella, and Yi Zhang. 2007. Incorporating diversity
and density in active learning for relevance feedback. In European
Conference on Information Retrieval. Springer, 246-257.

Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar,
and Cong Yu. 2015. Active learning in keyword search-based data

https://www.microsoft.com/en-us/download/details.aspx?id=52430.
https://www.microsoft.com/en-us/download/details.aspx?id=52430.

(75

[76

=

]

integration. The VLDB Journal-The International Journal on Very Large
Data Bases 24, 5 (2015), 611-631.

Yazhou Yang and Marco Loog. 2018. A benchmark and comparison of
active learning for logistic regression. Pattern Recognition 83 (2018),
401-415.

Kai Yu, Jinbo Bi, and Volker Tresp. 2006. Active learning via trans-
ductive experimental design. In Proceedings of the 23rd international
conference on Machine learning. ACM, 1081-1088.

[77] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Ji-

ashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An

[78]

end-to-end automatic cloud database tuning system using deep rein-
forcement learning. In Proceedings of the 2019 International Conference
on Management of Data. ACM, 415-432.

Daniel C Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm,
Christian Garcia-Arellano, and Scott Fadden. 2004. DB2 design advisor:
integrated automatic physical database design. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30.
VLDB Endowment, 1087-1097.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 ML Enhanced Databases
	2.2 Prediction Error in Production
	2.3 Workload-Centric Data Collection with B-Instances / Replicas
	2.4 Active Learning

	3 Active Data Collection Platform
	3.1 Platform Architecture and Workflow
	3.2 Application and Usage Scenarios
	3.3 Active Learning Challenges

	4 Holistic Active Learner
	4.1 Notation and Formulation
	4.2 Biased Sampling
	4.3 Cost-weighting
	4.4 Redundancy Rejection
	4.5 Algorithm Framework

	5 Design Space and Decisions
	5.1 Biased-Sampling Decisions
	5.2 Cost-weighting Decisions
	5.3 Redundancy Rejection Decisions

	6 HAL Execution Example
	7 Experiment
	7.1 Evaluation Protocol
	7.2 Implementation Details
	7.3 Baselines
	7.4 Baseline Improvements
	7.5 Budget Sizes
	7.6 Cost Type
	7.7 Budgeting Interface
	7.8 Additional Analysis

	8 Related Work
	9 conclusion and future work
	10 ACKNOWLEDGMENTS
	References

