Active Learning for ML Enhanced Database Systems

Lin Ma* Bailu Ding
Carnegie Mellon Microsoft Research
University badin@microsoft.com

lin.ma@cs.cmu.edu

ABSTRACT

Recent research has shown promising results by using ma-
chine learning (ML) techniques to improve the performance
of database systems, e.g., in query optimization or index rec-
ommendation. However, in many production deployments,
the ML models’ performance degrades significantly when the
test data diverges from the data used to train these models.

In this paper, we address this performance degradation by
using B-instances to collect additional data during deploy-
ment. We propose an active data collection platform, ADCP,
that employs active learning (AL) to gather relevant data
cost-effectively. We develop a novel AL technique, Holistic
Active Learner (HAL), that robustly combines multiple noisy
signals for data gathering in the context of database applica-
tions. HAL applies to various ML tasks, budget sizes, cost
types, and budgeting interfaces for database applications.
We evaluate ADCP on both industry-standard benchmarks
and real customer workloads. Our evaluation shows that,
compared with other baselines, our technique improves ML
models’ prediction performance by up to 2Xx with the same
cost budget. In particular, on production workloads, our tech-
nique reduces the prediction error of ML models by 75% using
about 100 additionally collected queries.
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1 INTRODUCTION

We increasingly see the promise of using machine learning
(ML) techniques to enhance database systems’ performance,
such as in query run-time prediction [18, 37], configuration
tuning [51, 66, 77], query optimization [35, 44, 50], and index
tuning [5, 14, 61]. For example, a query optimizer can use
an ML model that predicts a query plan’s execution cost to
search for the best query plan [45]. Most of these techniques
use supervised learning [54], which trains the ML model
using a labeled dataset.

Supervised learning performs well when the labeled data
used for training the ML model comes from the same distri-
bution as the data that the model will be deployed to make
predictions for [17, 20]. In many ML applications for data-
bases, however, the data distribution seen after deployment
differs from that of the training data due to the databases’
complexity and their diverse workloads. For example, the in-
put of a model that predicts execution cost is often based on
plan information, including operator types and join orders,
which heavily depends on the content of the database and
the queries [14, 18, 37, 44]. The workloads in the production
environment where the model is deployed, however, may
come from different databases or queries than the workloads
that are used to train the ML model. This results in substan-
tially different inputs fed to the deployed ML model than
what it saw during training.

ML models can make huge prediction errors when they are
used for predicting on the data that differs from what they
are trained with [14, 37]. We demonstrate this phenomenon
in detail in Section 2.2. Fundamentally, the training data’s
quality and coverage of the production workload determines
the model’s prediction performance. However, we do not
know what the production workload will be until we actually
deploy a model. Thus, we can not assess a priori whether
we have good enough training data nor whether ML models
will perform well for our workloads.

Conceptually, if we had a training dataset that covered
all possible workloads, we could guarantee that ML models
trained on them will perform well when deployed. Unfortu-
nately, it is infeasible to enumerable all possible databases
and workloads to collect such a massive dataset.

Instead, we aim at quickly adapting a model to the current
workload after the model is deployed, by collecting additional
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execution data that is most beneficial to improve the model’s
performance within a given cost budget. We then retrain
the ML model with this additional data so that it adapts to
the observed workload. There are three key questions with
this approach: What mechanism do we use to collect labeled
data in production? How can we gather labeled data that
is relevant to the ML model? And how can we make such
data collection scalable for the increasing number of ML
applications for databases?

To gather labeled data from production workloads, we
leverage fork-offs (i.e., B-instances [13]) for databases in the
cloud or backups for on-premise databases. These replicas
can execute and instrument queries from production work-
loads to collect telemetry for data labeling.

To gather labeled data relevant to ML models, our key
insight is that, based on the database application and work-
loads, we can narrow down the space of data that the ML
models need to predict for. In many database applications,
we observe that we can derive the data space that the ML
model needs to predict for based on how the application uses
the model. For example, the optimizer uses a plan cost pre-
diction model to navigate its search space, where the search
space for a set of queries, i.e., the potential pool of test data,
can be recorded. By executing additional plans from this
search space and recording their execution costs, we can
improve the model’s prediction specifically for this pool of
test data. Such a workload-centric data collection can focus
on gathering the most helpful labels for the ML model.

Finally, there are many workloads during the lifetime of
an ML model and various tasks in ML-enhanced databases —
how can we scalably collect data for all of them? We present
an active data collection platform (ADCP) that manages the
complexity of this data collection (see Section 3). The ADCP
takes a base ML model trained with some training data and
a budget specified either by resource cost or the number of
labels to collect from the production workload. The ADCP
then uses additional B-instances or replicas to collect a subset
of labeled data under the budget, and it returns the new labels
for model retraining. The main challenge for such a platform
is how to intelligently decide which labels to collect to best
improve the model prediction on a specific set of data.

We formulate this problem as pool-based active learning
(AL) [57], where an AL strategy selects the best training data
from a pool of unlabeled points. Although AL is known to be
superior to rudimentary approaches (e.g., randomly selecting
points) in many domains [56], ADCP faces a set of holistic
challenges neglected by prior work in AL (see Section 8):

@ Robustness: AL strategies rely on several signals to
decide which data points to label. The signals can come from
the ML model, the unlabeled data distribution, or the labeling
cost estimates. Though these signals can be available in our
context (see Section 3.2), they are often noisy and unreliable.

@ Cost Sensitivity: Typical AL strategies assume uniform
labeling costs. But the resources needed to acquire labels
in databases can be drastically different, e.g., the disparate
plan execution costs with different selectivities or join orders.
€@ Batching: Many AL strategies assume model retraining
after acquiring each label. Training ML models for databases
can be expensive [14, 45]. Thus, the ADCP needs to support
acquiring a batch of labels before retraining the model.

We present a simple and effective AL strategy, Holistic
Active Learner (HAL), that addresses all these challenges
(see Section 4). HAL takes the labeling cost into account
and robustly combines multiple noisy signals. We discuss
HAL’s design choices in Section 5 and explain HAL’s execu-
tion in Section 6. We evaluate HAL with industry-standard
benchmarks and real-world workloads for a variety of ML
applications in databases, including different ML tasks, ML
algorithms, cost types, budget sizes, and budgeting interfaces
(see Section 7). Our results show that the ADCP with HAL
consistently outperforms the state-of-the-art AL strategies
for improving the prediction accuracy on the target test data.
In particular, our ADCP can reduce ML model’s prediction er-
ror on production workloads by 75% with ~100 additionally
executed queries.

2 BACKGROUND AND MOTIVATION

We first discuss the typical ML tasks encountered in ML en-
hanced databases and how they have prediction errors in
production. We then discuss the opportunity to use addi-
tional resources with active learning techniques to collect
extra labels to adapt these models.

2.1 ML Enhanced Databases

There are many examples of ML enhanced databases [14,
37, 45]. Without loss of generality, we discuss two examples
that represent two distinct types of ML problems which have
many applications in database systems. We use these two
tasks throughout the paper, as well as in the evaluation.
Execution cost prediction (ECP) is a regression ML task
that takes in a query plan and outputs a real number that rep-
resents the estimated CPU time to execute the plan. ECP has
several applications in databases. For example, cost-based
query optimizers enumerate candidate plans for a query and
select the plan with the lowest estimated cost to execute [10].
Advanced index tuners also rely on the plan’s estimated exe-
cution cost under different index configurations to recom-
mend indexes with the highest cost reduction [2, 11, 12, 78].
ECP can help the optimizer/tuner’s search by predicting the
candidate plans’ costs. We can also extend this task formula-
tion to predict other logical resources, e.g., logical I/O.
Plan regression prediction (PRP) is a classification ML
task that takes in a pair of plans and outputs a class nominal



NN Training E== Validation [ Target 273 Target-CSC Bl Target-Active
0.32 31

e 0.304

wo.8

o 5

° =

] w

8 T 0.5+

© 1 w

£ 0.4

2 0.05

o
o

0.00-

(a) ECP (b) PRP
Figure 1: Target Data Prediction Error - ML model’s pre-
dictions error increase with training-target data mismatch.
Active data collection reduces this error.

that represents whether the first plan has a higher execution
cost than the second plan. Various database applications can
leverage PRP for improvement. For example, PRP can help
the optimizer to compare the costs of candidate plans or
identify the query plan regressions with changed plans [15].
It may also significantly help an index tuner to detect perfor-
mance regressions on candidate index configurations [14],
which is a requirement for state-of-the-art index tuners [13].

Previous works have applied various ML models to these

tasks, such as random forests [15], boosted regression trees [37],

and deep neural networks [45]. Training data for these mod-
els typically come from the execution history of standard
benchmarks or any accessible databases. For example, both
ECP and PRP can use the recorded query plan execution costs
in the workloads as training data. Most previous works on
ML enhanced databases assume that these models’ test data
are similar to the training data. Prior work has also shown
that the prediction error can increase significantly when the
models are deployed for different data distribution [14].

2.2 Prediction Error in Production

The prediction error of the ML model can be dramatically
higher in a production environment compared with evalua-
tion on held-out training data. As an example, we simulate
the production deployment of an ML enhanced index tuner.
We use a state-of-the-art index tuner [13] to generate the plan
(plan pair) space on 14 diverse database workloads (details in
Section 7.2). We simulate a new deployment by holding-out
the data in one database (i.e., the target database) and using
the labeled data in the remaining 13 databases to train ML
models for both ECP and PRP, resulting in 14 simulation
runs per model in total. We also split the labeled training
data into a 80% training set and a 20% validation set. We in-
vestigate a number of advanced ML techniques and use the
random forest that has the best prediction. The trained mod-
els then predict the labels for the data points generated from
the held-out database (target data). For ECP, we measure
the normalized L error (|Prediction — Actual|) on the target

data. For PRP, we measure the prediction’s F1 error [14].
Both errors are between 0 (best) and 1 (worst).

Figure 1 shows the average model performance across 14
databases. For both tasks, the model achieves high prediction
performance on both the training and the validation data (de-
noted as Training and Validation). This indicates good gen-
eralization ability of the ML model and no-overfitting [20].
However, the target predictions (denoted as Target) have
huge errors (9% higher L, error or 6x higher F1 error com-
pared to validation data prediction), which is caused by data
mismatch between the training and the target data [65].

We also evaluate popular covariate shift correction (CSC)
techniques to address the distribution mismatch between
training and target [1, 6, 26]. When the training data overlaps
with the target data but only differs in the distribution, CSC
can adjust the training weight of the labeled data to match
the target data distribution. However, we observe that the
training data and the target can contain disparate regions
in the input space in our database workloads, where CSC
cannot help [65]. As shown in Figure 1, the best performing
CSC technique (denoted as Target-CSC) does not improve
prediction quality substantially.

Thus, neither changing the supervised ML algorithm nor
reweighting the training data can easily address the ML
models’ degradation in production.

2.3 Workload-Centric Data Collection with
B-Instances / Replicas

We propose to collect extra labels from an unlabeled dataset
to reduce the ML model’s generalization error during pro-
duction. For example, a query optimizer explores many pos-
sible plans in the plan space for queries in the production
workload. This plan space produces a pool of unlabeled data-
points. The database only executes the best-estimated plan,
so the labels (e.g., execution costs) for alternative plans are
not available via normal operation. The ML model for this
specific workload can benefit from collecting additional la-
bels from the plan space, i.e., the target data. In ML litera-
ture, predicting labels for a given and unlabeled test (target)
data is called the transductive setting [29, 76]. Transductive
data collection can leverage the information from the unla-
beled target data to acquire more valuable labels. This differs
from the inductive setting more commonly used in academia,
where the test data is only used during evaluation. Evaluat-
ing ML models in the transductive setting needs to be careful
and we describe the protocol for making fair comparisons
between transductive algorithms in Section 7.1.

To derive labels for any unlabeled data-point, an ML en-
hanced database can extract query execution statistics. For
example, labels for ECP and PRP are the execution costs (or
cost differences) of query plans. We can use the B-instance



/ replica of production databases to collect such data for
alternative plans that were not executed in production.

In Figure 1, we also highlight that by intelligently execut-
ing ~100 queries on the B-instance, our proposed technique
(denoted as Target-Active) reduces the target data predic-
tion error for ECP by 61% and for PRP by 75%.

2.4 Active Learning

The target data, e.g., the optimizer/index tuner’s search space,
may contain tens of thousands of plans that can consume a
lot of resources to execute exhaustively on B-instances. We
leverage active learning (AL) techniques to select the most
valuable plans and reduce this labeling cost. We first describe
the typical AL setup [57]:

An AL strategy takes as input a set of labeled training data
X1, a set of unlabeled target data X7, and a base ML model 6.
X1, and Xy are assumed to come from the same underlying
data distribution. A loss function Ly, (6%t (x), y(x)) denotes
the loss of the model 0 trained with data X}, compared to the
true label function y(x), and evaluated on Xy . A typical AL
strategy derives an informativeness signal for each data point
x € Xy using the model 8 to estimate how much x’s label can
reduce the loss Lx,,. We refer to this signal as weight wy. For
instance, w, can be an estimate of the model’s confidence or
uncertainty in its prediction for x. The AL strategy selects the
data point with the highest w, to label and retrains the ML
model — when wy is uncertainty, this yields the uncertainty
sampling class of AL algorithms [36]. In the next round, the
AL uses updated estimates wy from the retrained 6 to select
the next data-point. This proceeds until either the loss of 8
is small enough or until the labeling budget is exhausted.

We will discuss the additional AL challenges in the data-
base context in Section 3.3 and our re-formulation of the AL
problem in Section 4.1.

3 ACTIVE DATA COLLECTION
PLATFORM

We propose an active data collection platform (ADCP) to
collect labels to adapt the ML model to the production work-
load. We now discuss the ADCP’s architecture and workflow.
We then discuss the challenges in applying AL for deciding
which target data-points to label.

3.1 Platform Architecture and Workflow

The ADCP uses additional resources to collect the labels dur-
ing production workloads. As shown in Figure 2, an ADCP
connects to the ML applications in the production database
and the labeling handlers in the B-instances / replicas. The
ADCP can acquire the target test data and the ML model
from the specific ML application in the database, e.g., the
optimizer’s plan search space for the production workload
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Figure 2: Active Data Collection Platform (ADCP) -
The ADCP actively collects training data with additional
resources and returns new labels to retrain the ML model.

and the ECP (PRP) model used by the optimizer. The ADCP
can also invoke the labeling handler to execute a query plan
and acquire its label, e.g., the plan’s execution cost, for model
retraining.

We anticipate that users will adopt the ADCP in the fol-
lowing steps. @ The users specify the ML application whose
model needs improvement and the resource budget for col-
lecting data. @ The ADCP acquires the target (unlabeled)
data generated by the production database and the ML model’s
predictions on the target data. € The ADCP selects a batch
of points from the target data under the resource budget,
and invokes labeling handlers to get the actual labels for
these points. @) The ML model is retrained with the newly
collected data. @ The new model is installed back to the
ML application to make predictions for the ML enhanced
components in the production database.

The users may optionally specify an iteration number for
the data collection and model retraining before installing the
model back to the application. In this case, the ADCP will
repeat € and @ for the specified number of iterations while
ensuring that the resources consumed stay under budget.

3.2 Application and Usage Scenarios

In Section 2.3 we outlined how the pool of unlabeled data

points (target data) is created in the ADCP (see Figure 2).

Given this target data, ADCP supports several scenarios to

allow a user to specify how to collect additional data.

o Budget: Since users are often cost-sensitive, ADCP allows
the user to specify a budget for labeling. This can be a fixed
number, say n data points (typical in AL) or richer notions
like “spend at most C cost”, per iteration. We refer to such



a choice as the budgeting interface. ADCP provides this
flexibility since different data points can take dramatically
different costs to label.

e Cost: ADCP allows the user to provide a labeling cost es-
timator, and selects data-points in a cost-sensitive way. In
our example applications (Section 2.1), the costs can con-
tain the query execution cost and the index creation cost.
The true labeling cost is typically unavailable or can even
be the prediction goal of the ML model. But, we can lever-
age crude estimators in databases, such as the optimizer’s
estimates. Such a crude estimator can be better than the
ML models trained with mismatched training data, but can
also be inaccurate and noisy (shown in Section 7). Thus,
we design the ADCP to leverage imperfect cost informa-
tion robustly, and jointly optimizing the cost estimator
with the data collection is interesting future work. If a cost
estimator is unavailable, the ADCP can also fall back to
the plan budgeting interface with uniform labeling costs.

e Uncertainty: Users provide a base ML model to ADCP,
which handles the training of the ML model and then
queries the model to produce informativeness scores wy
that can drive the data-collection policy.

e Retraining frequency: In ML enhanced databases, re-
training the ML model can be very expensive. The ADCP
supports specifying how many times this retraining should
happen by allowing the user to set the number of iterations
of data collection. ADCP does not yet include this model
retraining cost into the user-specified budgets or costs,
and we believe that estimating/reasoning about these re-
training costs is an interesting avenue for future work.

3.3 Active Learning Challenges

There are three major challenges to apply AL for the ADCP
to decide which points to label:

Robustness: AL strategies typically select points based
on their informativeness w, derived from the ML model (Sec-
tion 2.4), since not all points may benefit the model equally.
For example, query plans that are less similar to the model’s
training data may improve the model’s prediction much more
than other plans. For ADCP, the ML model’s informative-
ness signal can be unreliable because of the data distribution
mismatch faced by the model 0. As discussed in Section 3.2,
other signals that the AL strategy may leverage, e.g., the cost
estimator, can also be noisy and unreliable.

Cost-Sensitive: Labeling each point comes with a cost,
e.g., executing a query plan. Such cost can be dramatically
different from one data point to another because of the plans’
diverse operators, cardinalities, or join orders. The index cost
type further complicates this problem because query plans
can share the same index and have interdependent costs.

Notation Description

XL the set of labeled (training) data points
Xu the set of unlabeled (target) data points
Xa the set of data points selected by the AL strategy to label
y(x) the true label of a data point x
an ML model
c(x) the cost to label a data point x
u(x) the uncertainty of a data point x
Wy the weight of a data point x used by AL strategies for selection
B the resource budget for the data collection
Yy the redundancy rejection threshold based on cluster size
p the redundancy rejection threshold based on cluster uncertainty

Table 1: Table of Important Notations

Batching: Many ML tasks for databases use models that
are expensive to train [14, 45]. Thus, the ADCP requires the
AL strategy to label a batch of points at once before model
retraining to reduce the training overhead. An AL strategy
that only focuses on points with higher informativeness or
lower costs may select a number of points in a batch with
similar information, and hence select sub-optimal batches.

Since we envision the ADCP to support a wide variety of
ML applications for databases, we also design the AL strategy
to make minimal assumptions about the ML task or model.

We next describe our formulation of active learning that
augments the typical setting (Section 2.4) and a novel AL
strategy that surmounts the challenges described above.

4 HOLISTIC ACTIVE LEARNER

We present a novel AL strategy, Holistic Active Learner (HAL),
that addresses the ADCP’s AL challenges discussed in Sec-
tion 3.3. We first explain HAL’s main concepts and core
framework, which are simple yet effective. We defer discus-
sion of HAL’s design space and our decisions to Section 5.

4.1 Notation and Formulation

An AL strategy in our problem setting takes as input a set of
labeled training data X7, a set of unlabeled target data Xy,
a base ML model 0, a labeling budget B, and the cost c(x)
to acquire the label for a data point x. The core addition to
the vanilla AL formulation is the notion of labeling budget
B and labeling costs c(x). Table 1 summarizes the important
notations used in the paper.

The AL strategy selects a batch of points X4 from the
target data Xy under the budget B, as:

arg rgl(in Ly, (07:9%4(x), y(x))
A
subject to
Xa € Xu, Y c(x) < B
xeXa
4.2 Biased Sampling

We first highlight how HAL addresses the robustness chal-
lenge. A deterministic optimization strategy to select points
with the highest w,, which is typical in the AL literature [36,



Algorithm 1: Holistic Active Learner

Input :X is the original labeled training data,
Xy is the unlabeled target data,
0 is an ML model that predicts the data label,
B is the budget for data collection,
c is a function to estimate the labeling cost,
P is a function to calculate the sampling weight,
R is a function to identify the redundant points
Output: X4 is the batch of selected points to label, where
X4 € Xy and Yyex, c(x) < B
1 W« P(Xy,0,c) I/ wy € Wisx € Xy’s sampling weight
2 X4 < ¢ // the points selected by the AL strategy
3 X < {x|c(x) < B,x € Xy} // the qualified points for the AL
strategy to select from
4 XR < ¢ // the redundant points that the strategy should reject
5 while Xp \ Xg # ¢ do
6 Sample x from X \ Xg according to weight W
7 X4 = X4 U{x} //add x to the selected points
8 Xr = R(X4, Xy, W) // update the redundant points
9 B = B —c¢(X) //update the budget
10 Xo « {x|e(x) < B,x € Xg \ {X}} // update the qualified
points
11 end
12 return X,

57, 62, 73], is doomed to be brittle when there is noise and
variance in wy.

HAL, in contrast, adopts a biased-sampling approach. HAL
also defines the informativeness score wy, but only uses w, as
a sampling weight and employs probabilistic sampling. Thus,
HAL prefers points with higher wy, but does not entirely
depend on the quality of wy. In essence, HAL incorporates
randomness into w, to resist w,.’s noise and variance. We
provide a deeper analysis on this insight in Section 5.1.

4.3 Cost-weighting

Under the sampling framework, HAL achieves cost-sensitivity
by incorporating the labeling cost c¢(x) into the sampling

weight w,. We denote the function that combines the infor-
mativeness and the cost to derive w, as , which essentially

calculates the “per cost unit” informativeness. We discuss

P’s several design choices in Section 5.2.

4.4 Redundancy Rejection

We now highlight how HAL combats the batching challenge.
While HAL can easily support batching by sampling without
replacement, there can be redundant samples in a batch. HAL
uses a clustering-based approach to explicitly capture the
target data distribution and identify the redundant points (de-
noted as R). HAL rejects samples from the well-represented
clusters in the batch. We discuss this design and two novel
adaptations to derive the rejection scheme in Section 5.3.

4.5 Algorithm Framework

Algorithm 1 shows the algorithm of HAL. Recall that P
returns the sampling weight w, for a data point x and R

returns the set of redundant points in the target data. And
we discuss P and R in later sections.

In Line 1, HAL first calculates the sampling weight wy
with . HAL then initializes the set of selected points X4 as
¢ (the empty set), the set of qualified sampling points Xy as
the points whose labeling cost is under the remaining budget,
and the set of redundant points Xy as ¢ (Line 2-4). HAL then
repeats a sampling loop until the budget is exhausted (Line
5-10). In each loop, HAL first samples a point X under the
sampling weight w, from the qualified and non-redundant
points, i.e., Xo \ Xr (Line 6). It then adds x to the set of
selected points X4 (Line 7), and updates Xg with function R
(Line 8). It then calculates the remaining budget and updates
qualified points X based on the current budget (Line 9-10).

When the set of qualified points Xp becomes ¢, HAL re-
turns X4 and terminates (Line 12).

5 DESIGN SPACE AND DECISIONS

There are many design choices in HAL, for instance, in set-
ting  and R. We now explore the design space and discuss
our decisions in detail.

5.1 Biased-Sampling Decisions

To design an AL strategy for the ADCP, it is natural to in-
vestigate the state-of-the-art AL strategies. We initially set
out to evaluate a number of AL strategies that might be
able to handle the challenges in Section 3.3, ranging from
simple strategies that focus on the most informative/cheap
points to complex strategies that combine multiple signals
together [36, 57, 62, 73]. We find that none of them select
points that give satisfactory prediction improvement for the
ML models (Section 7.4).

As mentioned in Section 4.2, all these strategies select
points deterministically to maximize the total informative-
ness score wy. Recent research in AL provides theoretical
proof and empirical evidence that probabilistic sampling (e.g.,
uniform random sampling) outperforms advanced AL strate-
gies in certain cases, such as when the dataset is noisy [48].
Uniform random sampling does not require any additional
signal, but is oblivious of the different informativeness and
cost values of datapoints, and does not perform well in
ADCP’s scenarios either (Section 7).

HAL uses wy as the sampling weight for a biased softmax
sampling process, which interpolates between determinis-
tically maximizing w, and uniform random sampling. Con-
cretely, HAL’s biased sampling process with weight w, is
defined as

po) = 5 1)

where p(x) is the sampling probability of x. By the Gumbel
trick [21, 42], sampling one point x with probability distri-
bution p(x) is equivalent to independently perturbing the



log-probabilities log p(x) with Gumbel noise and finding the
largest element:
arg max logp(x) + Gy (2)
X

where G, ~ Gumbel(0, 1). Furthermore, recent extensions
of the Gumbel trick note that taking the top k largest per-
turbed log-probabilities (instead of the maximum) yields k
samples from the probability distribution p(x) without re-
placement [33]. This is equivalent to a greedy optimization
algorithm that maximizes log p(x) + G, for the k samples
(note that log p(x) is a monotone transformation of w,).

Thus, by only keeping log p(x) in Equation (2), we re-
cover many deterministic AL strategies that maximize the
“informativeness score” for the points; by only keeping Gy in
Equation (2), we recover a purely random sampling strategy.
Biased sampling with w, as the sampling weight is exactly
equivalent to maximizing the perturbed log-probabilities;
thus combining and balancing the informativeness signal
with randomness. Thus, HAL utilizes the signals captured in
wy to guide the selection towards more valuable points, but
also leverages randomness to resist the noise and variance
in the informativeness signal.

5.2 Cost-weighting Decisions

There are three challenges in deriving the sampling weight
(the function P) for HAL: @ Decide which informativeness
measure to use. @) Combine the informativeness and the
cost. € Adapt the sampling weight to different budgeting
interfaces and cost types that the ADCP needs to support.

Informativeness: There are many ways in AL literature to
capture the informativeness, as discussed in Section 2.4. Nev-
ertheless, most of these methods incur additional constraints
on the ML task, ML model, or the input/output, which limits
the strategy’s applicability in the various scenarios that the
ADCP needs to support. For example, an informativeness
measure like expected model change requires the model to be
differentiable to compute the gradient [57, 60], which many
ML models (e.g., random forests) do not satisfy.

Given this, we use a simple but more accessible informa-
tiveness signal for HAL: uncertainty u(x) [36]. A higher u(x)
corresponds to a higher probability of incorrect prediction
for x. u(x) is directly available among many common ML
models, such as random forests and logistic regression. There
are also separate methods to derive u(x) for a wide range
of ML models/tasks, such as ensemble, quantile regression,
and confidence calibration [22, 46, 47, 69]. In a classification
task, u(x) can be the probability that x does not belong to the
predicted class. In a regression task, u(x) can be the output
variance of x’s prediction. Uncertainty-based AL exploits the
correlation between points with high uncertainty and the
probability of a prediction error. Thus, acquiring labels with
higher uncertainty is likely to give more information and

improve the ML model’s prediction after retraining.

Combining Cost: To combine the uncertainty u(x) and the
cost ¢(x), previous works have directly summed the impact
of u(x) with c¢(x) (or —c(x)) with potential reweighting [30,
32]. The issue, however, is that u(x) and c(x) fundamentally
come from two different domains. The two metrics can have
drastically different scales as we generalize across different
databases and it is intricate to derive a proper reweighting.
We use a different approach to combine u(x) and c¢(x) by
dividing u(x) by c(x):
u(x)
ws =0 ©)
which is referred in the AL literature as Return On Invest-
ment (ROI) [25, 67]. Intuitively, ROI characterizes the amount
of information in a data point per “cost unit”. ROI is in pro-
portion to u(x) and in reverse proportion to ¢(x), regardless
of what the scales that u(x) and ¢(x) have. And as analyzed
in Section 5.1, using the per-cost-unit uncertainty as the
sampling weight for a biased sampling procedure is equiv-
alent to a greedy optimization algorithm that maximizes
the perturbed log uncertainty of the sampled points. We
also investigate other variants of ROI, such as smoothing
the distribution of u(x) or c(x) before calculating their ratio.
However, we find that Equation (3) is the most natural ap-
proach to calculate the per-cost-unit uncertainty and yields
the best performance.

Budgeting Interfaces and Cost Types: We provide two
options for budgeting: the total estimated cost of labeling or
the number of plans to execute.

For the set of database applications and ML tasks we focus
on in ADCP (Section 2.1), the labeling cost comes from two
sources: creating the configuration to execute a query and ex-
ecuting the query. The budget can be based on the estimated
cost if such information for creating physical configurations
and executing queries is available. Because creating a physi-
cal configuration or an index can benefit labeling multiple
queries in the target dataset, when computing the cost of
labeling in the sampling weight, we amortize the cost of cre-
ating an index over all the unlabeled plans that refer to this
index. When the ADCP chooses to implement the configu-
ration, it deducts the unamortized cost of creating indexes
from the budget. We can also use the number of plans as the
budget if the user prefers or if the estimated cost information
is not available. In such a case, we remove c¢(x) from the cost
in Equation (3) regardless of the cost type (i.e., wy = u(x)).

5.3 Redundancy Rejection Decisions

We experimented with state-of-the art approaches to reject
selecting redundant points. Experimentally, none of these ap-
proaches showed substantially different behavior. We outline
the options we explored; discovering more effective ways to



reduce redundancy is an interesting avenue for future work.
Capturing the redundancy in a batch of points (function R)
is challenging because there are multiple weak indicators:

Similar Selected Points: The most direct indicator for re-
dundancy is whether there have been similar points already
selected. This is a weak indicator because similar points may
have disparate labels in databases. For example, two plans
with similar structures and operators (thus similar features)
but small differences in join orders or selectivities can some-
times have significantly different execution costs.

Density: Since a data point’s label does not necessarily
generalize to all its neighbors, we observe that the model’s
target data prediction can benefit from labeling more points
in high-density regions. Labels in dense regions might gen-
eralize to more number of related data points.

Uncertainty: Since u(x) corresponds to the probability
of incorrect prediction, we observe that regions with higher
u(x) tend to require more labels for the model to generalize
to all the points. This is also a weak indicator because u(x)
can be imprecise before model retraining.

HAL combines these indicators leveraging a clustering-
based approach. Previous AL strategy has used clustering
to capture the distribution of the target data explicitly, and
select the same number of points from each cluster in a
round-robin fashion [62]. The intuition is that points within
a cluster are similar, and thus redundant. A direct application
of this approach does not capture the density and uncertainty
indicators. Given that, we propose two novel adaptations:

Sub-modular Threshold: Selecting the same number of
points from each cluster does not give preference to larger
clusters (regions with higher density). Within each cluster,
there is also a diminishing return as more points are selected.
Thus, HAL uses a monotone concave function y(n) = n,
where a € (0,1) and n is the cluster size, to restrict the max-
imum number of points to select from each cluster. y(n) is
larger for larger clusters, and the concavity naturally cap-
tures the diminishing return [34]. HAL sets a initially to be
small. HAL incrementally multiplies a if all clusters reach
the threshold: y(n) = n%, n?%,n%... until y(n) >= n. Thus,
the threshold automatically adapts to larger budget sizes.

Uncertainty Clip: Since regions with higher u(x) tend
to require more labels, HAL clips redundancy rejection for
high-uncertainty clusters. More specifically, HAL does not
enforce the threshold y if a cluster’s average u(x) is higher
than a percentile f among all the target data uncertainties.

There are two clustering details. (1) Similarity: We first
perform quantile transformation on the data [19] and then
use the L, metric. We observe this approach performs bet-
ter than directly applying standard metrics, such as L, and
cosine, because it brings different feature dimensions into
the same scale. (2) Algorithm: We investigate a few common
clustering algorithms and observe similar performance with

properly tuned parameters [16, 41, 43]. We use DBSCAN
for ADCP as it has moderate cost and is less sensitive to
hyper-parameters across database workloads (Section 7.2).

In general, our redundancy rejection mechanism is con-
servative with the sub-modular threshold and uncertainty
clip adaptations. Though missing certain rejection opportu-
nities, our design meets the ADCP’s robustness requirement
to support various applications (see analysis in Section 7.8).

Another alternative to combine the weak indicators is to
integrate them into the “value score” of the points. Then
an AL strategy can either maximize the value score [73]
or use the score as the sampling weight wy [9]. However,
the complex interactions between these weak indicators can
make the value score brittle and more unreliable, which leads
to poor performance in our evaluation (Section 7.4).

6 HAL EXECUTION EXAMPLE

We now illustrate the execution of HAL using a running-
example, as shown in Figure 3. Given the target test data (5
points in total), the base ML model, and the labeling cost
budget (6) specified by the user, HAL executes the follow-
ing steps. @ Prepare the necessary information by deriving
the sampling weight wy using u(x) and ¢(x) (Equation (3))
and perform clustering on the target data (Section 5.3). @
Initialize the algorithm’s relevant states, including the se-
lected points (None), the qualified points (all 5 points), and
the redundant points (None) as defined in Algorithm 1. HAL
maintains the set of redundant points by tracking the IDs
of the clusters that reach the rejection threshold. €) Sample
one point with a cost 4 according to weight w,. HAL updates
the remaining budget to 2. It calculates the qualified points
(2 points) under the new budget, and the clusters (1 cluster)
that reach the rejection threshold. @) Sample a second point
with a cost 2. After this step, there are no qualified points
since the budget is 0. There are also two redundant clusters
given the selected points. @ Return the selected points and
terminate, since the budget has been exhausted.

7 EXPERIMENT

We couch our evaluation on the ADCP’s application and
usage scenarios discussed in Section 3.2. We use two ML tasks
(Section 2.1) to evaluate the ADCP under different budget
sizes, cost types, and budgeting interfaces (Sections 7.4 to 7.7)
We also use a variety of industry-standard benchmarks and
customer workloads. Our evaluation shows that the ADCP
significantly reduces the ML model’s prediction error on the
target data in all scenarios (e.g., over 75% error reduction
with approximately 100 query executions).

In each scenario, we compare the ADCP with HAL against
a number of baseline AL strategies, ranging from straw man
approaches to advanced techniques in the AL literature that
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Figure 3: HAL Execution Example — HAL selects two points to label under the budget (details explained in Section 6).

are more aligned with the ADCP’s requirements. Unlike
HAL, all the baselines only partially address the ADCP’s
holistic AL challenges (Section 3.3), which we annotate in
detail in Section 7.3. The results show that HAL significantly
outperforms all the baselines in all scenarios, and no baseline
performs well in all cases. This demonstrates HAL’s superi-
ority as a robust, cost-sensitive, and batch-friendly strategy.
Under the same budget, HAL reduces the prediction error
by up to 2x more compared to all the baselines.

We also analyze HAL and the baselines’ properties in-
depth in Section 7.8. This analysis further reflects how HAL
better handles ADCP’s challenges compared to the baselines.

7.1 Evaluation Protocol

Data Generation: We use the same methodology discussed
in Section 2.2 to generate the target data for each held-out
database, which rotates among all the 14 database work-
loads (Section 7.2). We construct the target data for both ECP
and PRP tasks by executing the queries from our workloads.
We use a state-of-the-art index tuner [13] to recommend
a set of indexes for each query, and enumerate subsets of
the recommended indexes as the index configurations. The
optimizer then generates candidate plans under each index
configuration for a query. We implement the different index
configurations, execute the queries in isolation, and record
the plans’ execution costs (e.g., CPU time) for labeling. For
ECP, the collected plans and their execution costs are the tar-
get data and the labels. For PRP, we construct plan pairs from
all the plans of the same query as the target data, and assign
labels based on whether the first plan is more expensive than
the second. Although we use the same execution data for
both ECP and PRP, the two tasks use distinct featurizations
for their inputs. Thus, the two tasks’ data distributions after
featurization are substantially different. When the ADCP
labels a pair for PRP, it executes both plans. Table 2 summa-
rizes the statistics of the collected plans and indexes.

Experiment Execution: We run an active data collection
experiment for each target data with three repetitions, and
report the average result from all the experiments. By default,
we specify the data collection budget by the labeling cost,

which includes both the index creation and the plan execu-
tion costs. In each experiment, we first train a base ML model
(“cold-start” model) using the labeled data from all databases
except the held-out one. We set the total budget spent by
the ADCP as 150% the average estimated plan execution cost
(avg(c(x))) in the target data, which is on average 18% of the
entire target data’s labeling cost. We use the optimizer’s cost
model as the crude cost estimator, which does not require
any additional training data. To evaluate how the ADCP
performs with different model retraining frequencies and
budget sizes, we evenly split the total budget among multiple
(3-15) iterations. In each iteration, we (1) use ADCP to label
a batch of data points under the divided budget, (2) retrain
the ML model with the existing and the newly labeled data,
and (3) evaluate the model’s prediction on the target data.

Metrics: For ECP, we use L; error on the target data to mea-
sure the model’s performance as used in the previous work
for this task [37]. We normalize the L; error between [0, 1]
for clarity. For PRP, we use F1 error on the target data as
the performance metric [7], which is robust to skew in the
distribution of classes where prediction accuracy is suscepti-
ble. The F1 error is between [0, 1]. We use the error metrics
on the entire target data since this reflects how databases
use ML models in reality. When we evaluate the model’s
prediction on the remaining target data, excluding the data
points labeled by the AL strategy, we observe similar results.

7.2 Implementation Details

Workloads: We use a diverse collection of both industry-
standard benchmarks and real customer workloads under
a variety of data sizes, distributions, and query complexity.
Table 2 summarizes the key statistics of the workloads. For
the TPC workloads, we use two different scale factors, 10
and 100, which share query templates but use different pa-
rameters and have different data sizes and distributions. We
also use a skewed data generator [52] for TPC-H to make
the execution cost estimation more challenging. All queries
in these workloads are SELECT statements.

ML Tasks: We use the following featurizations and models.
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Table 2: Workloads - Aggregate statistics about the
schema and query complexity for the read-only workloads.

Plan regression prediction (PRP): We use the same method
in a recent work for this task to featurize a plan [14], which
includes the operator types (e.g., Index Scan), the execu-
tion modes (e.g., single-threaded/parallel), each operator’s
estimated work, and the plan structure. We also use the
same plan-pair featurization technique, which calculates the
attribute-wise difference between the two plans’ features.
We use random forest (RF) [38] as the default ML model since
it has high accuracy and low training cost [14]. We use 100
learners (trees) and at least 1 sample in any leaf node set
through cross-validation. We use early stopping to prevent
node splitting if the impurity (see [7]) is below 107°.

Execution cost prediction (ECP): To unify the evaluation
protocol, we use the same technique as PRP to featurize a
plan and also use RF as the ML model. We use 200 learners
(trees) and at least 5 samples in any leaf node set through
cross-validation. We use early stopping to prevent node split-
ting if the impurity is below 107.

We also evaluate the ADCP under other featurizations and
ML models (e.g., LightGBM [31]) for PRP and observe similar
results; we omit these due to space limitations.

Software and Hardware: We implement the ML models
using scikit-learn and LightGBM in Python. We train
the ML models on a virtual machine with 144 GB RAM and
72 virtual CPU threads based on the Intel Xeon Platinum
8168 (SkyLake) processor. In our experiments, training the
ML model on average takes five minutes for both ML tasks.

Hyper-Parameters: We use cross-validation to set the hyper-
parameters for the redundancy rejection mechanism (Sec-
tion 5.3). For ECP, we set the DBSCAN'’s neighbor distance
as 0.1 and the minimum samples in a core point’s neighbor-
hood as 5 for all workloads. For PRP, we set them as 1 and
4, respectively. We set the uncertainty clip percentile S as
60% and 70% for ECP and PRP, respectively. And we set the
submodular threshold parameter a as 0.1 for both tasks.

7.3 Baselines

We compare our HAL strategy with nine baselines based on
either heuristics or AL literature. Table 3 categorizes how the
baselines use different AL signals and selection approaches.
Our baselines include:

Rand: Randomly select data points from the target data.
As discussed in Section 5.1, Rand is a simple but surpris-
ingly effective strategy that can outperform advanced AL
strategies in many cases [48]. Rand is robust to unreliable
AL signals, e.g., the informativeness and the cost estimates.

Cheap: Select data points with the lowest cost ¢(x). Cheap
is cost-sensitive, and maximizes the number of labeled points.

Index: Sample queries with a fixed weight p for queries
that use indexes, and with the weight 1 — p for the other
queries. Index is implicitly cost-sensitive without a cost esti-
mator. We tune p to 0.4 where Index performs the best.

Uncertain: Select data points with the highest uncer-
tainty u(x) [36] to maximize the newly labeled points’ total
uncertainty. We also evaluate a variant of this strategy that
selects points ordered by % Because c¢(x) has a wider and
more skewed distribution than u(x) in many workloads, this
variant ends up similar to the Cheap baseline. Since the vari-
ant performs worse than Uncertain on average, we do not
include it in our baselines.

Hybrid: This strategy uses Uncertain to select points with
a fixed portion of the budget (tuned to 0.5), and it uses Rand
for the remaining budget. Hybrid is a batch-friendly AL strat-
egy used in database crowdsourcing [24].

RBMAL: RBMAL is a state-of-the-art batch-friendly AL
strategy [9] that augments Uncertain with a weighted dis-
tance of each data point to the labeled training data. The
weight for the distance degrades as more points are selected.
Empirically, we found that calculating the weight and the
distance to the entire training set performs better than only
to the labeled/selected points in the target data. Specifically,
RBMAL selects points in order sorted by wy = u(x) + a *

1We use v/ to denote that the original strategy has that property, and +- to denote that

we extended the strategy to have that property in our evaluation.
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Figure 4: Baseline Performance — The performance im-
provement on the ML models with baseline strategies.

Iteration

dis(x, X1 U Xa), where dis(x, Xy U X,) is a distance metric
between x and the labeled training data.

Round: Cluster the target data, then select one point from
each cluster in a round-robin fashion ranked by the points’
“informativeness score”. This is a state-of-the-art AL strategy
that considers redundancy and is batch-friendly [62]. Round
can be cost-sensitive by using the HAL’s sampling weight
as the score, and yields better performance.

Similar: Define w, for each point as the difference be-
tween the point’s distances to the labeled training data and
the unlabeled target data, and select points in sorted w, order.
Similar is batch-friendly and captures the redundancy [73].
We further divide wy by log ¢(x): w(x) = Togc®)

This makes Similar cost-sensitive and yields better results.

OPT: A crude baseline that directly derive the labels for
the ML tasks through the optimizer’s cost estimation. We
assign labels for PRP by comparing the optimizer’s costs for
the plan pair. To derive ECP’s labels, we use Huber regres-
sion [28], which is robust to outliers, on the labeled training
data with the optimizer’s cost as input. OPT does not require
any additional label or model retraining.

7.4 Baseline Improvements

We first evaluate ADCP with all the baseline strategies. For
both ML tasks, we run 15 continuous iterations of active data
collection with a 10x avg(c(x)) budget for each iteration.
Figure 4a and Figure 4b show ECP’s normalized L, error and
PRP’s F1 error (discussed in Section 7.1) on the target data
after each iteration.

Directly using the optimizer’s estimate (OPT) performs
similar or better than the ML models without additional
labels in the target data (iteration 0). This reinforces the need
for active data collection to improve the model’s predictions.

Maximizing the number of labeled points (Cheap), which
is arguably the most simple and intuitive strategy, fails to

dis(x, X UXa)-dis(x,Xy)

deliver reasonable model error reduction; this is because it
may select many uninformative and redundant points.

The two more sophisticated AL strategies in literature
(Similar and Round) do not achieve satisfactory error reduc-
tion, either. The informativeness signal can be unreliable.
Combining other signals related to cost and redundancy ag-
gravates the noise and variance in the informativeness score,
and make these deterministic selection methods brittle.

Rand, which is robust to unreliable signals, outperforms
Similar and Round in most cases. However, the error reduc-
tion is limited since Rand is oblivious to the informativeness
values. Index adds a naive cost signal to Rand but does not
bring much performance improvement either.

The uncertainty-based strategies generally have reason-
able performance. Although Uncertain only uses the infor-
mativeness signal, it outperforms many advanced strategies.
Hybrid, which combines Uncertain and Rand, outperforms
both of them. This confirms our intuition that randomness
can robustify AL under noisy signals. RBMAL adds a more
complex distance metric to Uncertain, but performs similar
(ECP) or worse (PRP) than Uncertain. This further demon-
strates the problem’s difficulty and a complex strategy that
partially addresses the challenges in Section 3.3 may perform
worse than a simple approach.

HAL, which holistically addresses ADCP’s AL challenges,
significantly outperforms the baselines. It especially reduces
the model prediction error with small budgets. For example,
with 10X avg(c(x)) budget (iteration 1), it reduces ECP’s L;
error by 27% and PRP’s F1 error by 24%.

We further evaluate the baseline strategies in a wide range
of settings, such as different budget sizes or cost types. Un-
certain and Hybrid are the best performing baselines across
all settings. Hence, for the remaining results, we use these
two strategies along with the rudimentary baseline, Rand, as
representatives for comparing with HAL.

7.5 Budget Sizes

We now evaluate the AL strategies for the ADCP with dif-
ferent budget sizes per iteration, and subsequently different
number of iterations. Results in Figure 5 show that HAL
significantly outperforms all the other baselines.

Many ML models can be expensive to retrain. However,
the retraining cost might not be directly comparable with
the plan execution costs. Thus, we use the experiments in
this section and Section 7.4 to evaluate how the ADCP per-
forms with cheap/expensive models with different retraining
frequencies. The results show that HAL performs well even
when the retraining frequency (number of iterations) is low.
For example, with an 100X avg(c(x)) budget, HAL reduces
ECP’s L error by 61% with both 10 iterations (Figure 4a) and
2 iterations (Figure 5a). In contrast, Hybrid and Uncertain,



—@— Rand —aA— Uncertain V- Hybrid —> HAL = OPT
1.0 -\
g
1 0.8
]
B
N 0.6
©
£
S
Z 0.4
T T T T T T 0.0+ T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration

(a) ECP: 30x Avg Cost/Iteration (b) PRP: 30X Avg Cost/Iteration

1.0 -\

5 0.3
1 0.8
O S
£ 0.2 A
E ]
= 0.6 h "
£ 0.1 v
o
Z0.44
T T 0.0 T T T T
0 1 2 3 0 1 2 3
Iteration Iteration

(c) ECP: 50x Avg Cost/Iteration (d) PRP: 50x Avg Cost/Iteration

Figure 5: Budget Sizes — The improvement on the ML mod-
els with different ML tasks and budget sizes.

which are the best performing baselines, reduces ECP’s L
error by ~60% with 10 iterations (Figure 4a) and only 50%
with 2 iterations (Figure 5a). Since Hybrid and Uncertain do
not reason about redundancy, they select more redundant
points with larger batch sizes. We observe similar trends for
PRP in Figure 4b and Figure 5b.

Since users are often cost-sensitive, they may decide to ter-
minate the data collection sooner with smaller resource cost
and model retraining time. Thus, improving the model’s pre-
diction on the target data in the early iterations is important.
The results in Figure 5 show that after the first iteration, HAL
reduces PRP’s F1 error or ECP’s L; error 1.5X-2X compared
to all the baselines under two different budget sizes. Note
that the labeling resource cost varies with the budget size
when the iteration count is the same. These results show that
HAL efficiently improves the model’s target data prediction
with small resource budget and model retraining iterations.

7.6 Cost Type

The ADCP supports database applications with different cost
types. We have so far focused on the index tuner where the
labeling cost of points includes both the plan execution and
the index creation cost. We now consider a different applica-
tion, query optimization, where the optimizer estimates the
plan execution costs in the current index configuration. In
such an application, the labeling cost does not contain the
index creation cost. Thus, we evaluate the ADCP’s perfor-
mance with the index cost excluded from the cost estimation
c(x). We set the budget for each iteration as 30X avg(c(x)).
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Figure 6: Cost Type — The model’s performance improve-
ment when the active data collection only includes the plan
execution cost, but not the index creation cost.
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Figure 7: Model error reduction under Plan Budgeting
Interface — Each iteration has a budget on the number of
plans that the AL strategy can select regardless of the cost.

The results in Figure 6 show that HAL significantly outper-
forms the baselines with the optimizer’s cost type. Especially,
HAL reduces PRP’s F1 error at least 2X compared to all the
baselines after the first iteration (Figure 6b). The change in
the cost affects how the strategy uses the budget, and the
results show that HAL handles both cost types well. Note
that Hybrid performs worse for the index tuner cost type
(e.g., Figure 5a vs. Figure 6a) because cost-oblivious strate-
gies struggle to reason about the interdependent index cost.

7.7 Budgeting Interface

We now evaluate the ADCP by a different budgeting inter-
face, i.e., by the number of executed plans, as discussed in Sec-
tion 3.2. We set the ADCP to execute 2% of the target data’s
total number of plans in each iteration, with the remaining
setup the same as Section 7.1. We denote our adapted sam-
pling strategy for this plan budgeting interface as HAL-PBI,
where we remove the denominator c(x) from the compu-
tation of the sampling weight wy (Section 5.2). HAL-PBI is
especially useful when a good cost estimator is unavailable.
Besides evaluating how well HAL-PBI reduces the model’s
prediction error, we also study (1) how much resource cost
the cost-oblivious HAL-PBI spends, and (2) assuming a cost
estimator is still available, how HAL performs.



EEE Uncertain E= HAL [ZZ2 HAL-PBI

== Rand
x10°

BA Hybrid

x10%

Cost (Optimizer Unit)

0.6 0.5 0.4
Reach Normalized L1 Error

(a) ECP Cost - Error Target

Figure 8: Costs under Plan Budgeting Interface — The
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The results in Figure 7 show that HAL-PBI outperforms
all the baselines after the same number of iterations. Espe-
cially, it reduces the prediction error 1.6X-2.2x after the first
iteration compared to the baselines for both tasks. Since the
strategies can spend different amount of costs in an iteration,
we also measure the total cost spent by each strategy to re-
duce the model’s prediction error to certain targets. Figure 8
shows that HAL-PBI spends similar or lower cost for the
data collection to achieve the same error target compared to
the baselines. This demonstrates that HAL-PBI is robust and
batch-friendly even without accurate cost estimation.

The results in Figure 8 also show that if a reasonable cost
estimator is available, the cost-sensitive HAL spends signifi-
cantly less cost than other strategies to reach a fixed error
target. For example, HAL uses at most 0.35X cost to reduce
PRP’s F1 error to 0.15 compared to all the other strategies
(Figure 8b). However, HAL may also select points that are
only moderately informative when the cost is low. Thus,
with the same number of labeled points, HAL can yield less
total information. The results in Figure 7 show that HAL re-
quires many more iterations to achieve the same error target
compared to the baselines, which is undesirable when the
ML model has high training cost (e.g., for DNNs or SVMs).

HAL and HAL-PBI show different advantages over the
baselines in this scenario, depending on the ratio between
the ML model retraining cost and the labeling cost. Balancing
this tradeoff is an interesting avenue for future work.

7.8 Additional Analysis

We now conduct a deeper analysis on HAL’s performance
compared to other strategies. We focus on the PRP task with
the default setup (Section 7.1), and set the budget per iteration
to 30X avg(c(x)); we observe similar results in other setups.

We first measure the ratio between the number of labeled
points by the ADCP and the target data’s total number of
points. Figure 9 shows that HAL labels more points than the
baselines at each iteration, which suggests that the average
cost of HAL’s labeled points is lower. This demonstrates that
HAL is cost-sensitive and selects cheaper points.
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Figure 9: Strategy Properties — The ratio of the labeled
points and the prediction error on the expensive points.

—*— None - Linear =@— Sub —A— LinearClip =< Sub-Clip
0.6
0.16
§0.41 5
w 1 0.12+
i b
0.2
0.08
0.0— , T T . | ! | | ! 7
o 1 2 3 4 5 1 2 3 4 5
Iteration Iteration

(a) PRP Error - Customer8 (b) PRP Error - Average

Figure 10: Redundancy Rejection Design Space — Per-
formance with different options in the design space of the
redundancy rejection mechanism.

Since HAL on average selects cheaper points than the
baselines, we then investigate whether HAL reduces less
error of the model’s predictions on the more expensive points.
This is important because expensive points may have higher
performance impact to the DBMS than cheaper ones, such
as consuming more resource or resulting in longer query
latency. We measure the ML model’s prediction error on
the points with a cost c(x) higher than the median cost in
the target data. Figure 9b shows that HAL still yields lower
prediction error on the expensive points compared to the
baselines, which indicates that HAL does not sacrifice the
label’s value (informativeness) while selecting points.

Finally, we examine the design space of the redundancy re-
jection mechanism (Section 5.3). We denote the strategy that
excludes the redundancy rejection from HAL as None. On top
of None, we denote the direct adaptation of the clustering-
based approach that samples one point from each cluster in
turn as Linear. We denote the submodular threshold adapta-
tion for Linear as Sub. We add the uncertainty clip adaptation
on top of both Linear and Sub, denoted as Linear-Clip and
Sub-Clip. Sub-Clip is equivalent to HAL.

We observe that Sub-Clip performs significantly better
compared to None on a few workloads, with an example



shown in Figure 10a. This confirms the importance of cap-
turing the redundancy in the AL strategy. In many work-
loads, however, Sub-Clip has similar performance with None.
Figure 10b shows the average error reduction for different
rejection mechanisms, where we zoom in the y-axis and omit
iteration 0 for clarity. Sub-Clip has a moderate average advan-
tage over None, and does not perform worse than None on
any workload. Other rejection mechanisms either perform
similar or worse than None. This is because (1) capturing the
redundancy is challenging (Section 5.3), and (2) None already
spreads the samples across different regions, which reduces
the potential redundancy in a batch of selected points.

8 RELATED WORK

ML models have been used to enhance several aspects of
databases, like query run-time prediction [18, 37], query op-
timization [35, 44, 50], self-administration [39, 51], physical
design [5, 61], knob configuration [66], and index recommen-
dation [14]. Their performance typically degrades when they
serve a production workload that was unseen during train-
ing time; (see [14] for a case study in index recommendation;
and [37] for an example in query run-time prediction).

One solution to combat this performance degradation is
to passively collect telemetry from the production work-
load [63]. Although this approach does not incur extra ex-
ecution overhead, the database does not control when or
what plans to execute. Our solution, in contrast, employs
active learning [57]. Active learning is known to be more
sample-efficient than passive supervised learning in many
problem settings [62, 73], which can mean that ML models
are re-trained on collected data in a more cost-effective way.

Active Learning is a vast field, but many tailored AL solu-
tions do not work in the database setting. For example, some
works require the models to be differentiable [4, 8, 57, 60],
which do not apply to many ML models such as random
forests. Other methods require a large amount of retrain-
ing [23, 40, 72], rendering them computationally prohibitive
for many complex ML models.

Most database applications, including ours, require batch
data collection. Batch AL is well studied (e.g., see [9]), and
aims to find datapoints that maximize model uncertainty
as well as diversity [4]. We compare to the state-of-the-art
techniques (e.g., by explicitly capturing the data distribu-
tion [49, 62] or applying density weighted methods [58, 73]
or ranking [9]) in our experiments, and incorporate simple
notions of uncertainty and diversity into HAL.

Several AL strategies are also cost-sensitive [59]. Some
techniques use return on investment to guide labeling ef-
fort [25, 67], which HAL draws inspiration from. Recent
benchmarks [75] also show that uniform random sampling is

a formidable baseline and uncertainty sampling [55, 56, 68]
is a useful heuristic, especially when the data is noisy [48].

Robustness (or, AL with distribution shift) is the key chal-
lenge in our work that is relatively understudied in the liter-
ature. Related approaches compose domain adaptation tech-
niques with active learning [53, 64]. Other approaches use
transfer learning [70, 71]. The key idea is to adapt the initial
ML model to hopefully provide better signals in situations
when domain adaptation/transfer learning can succeed. In
our problem settings, the mismatch in training and target
is so severe (e.g., see Figure 1) that these techniques (like
covariate shift correction) are doomed to fail.

There is a long and successful history of using active learn-
ing in database systems for tasks like crowdsourcing [24, 47]
or data mining [3, 27, 74]. These works use human labeling
to improve the performance of the front-end applications.
However, in these settings labels are noisy and signals/costs
are accurate. In our setting of AL with distribution shift, the
labels we collect are accurate and signals/costs are noisy. This
requires us to incorporate mechanisms in HAL to remain
robust to noisy and varying signals using Gumbel sampling.

9 CONCLUSION AND FUTURE WORK

The training-test data mismatch can significantly limit the
applicability of ML techniques in databases, especially in pro-
duction deployments. We propose an active data collection
platform (ADCP) to address this issue by collecting more
labeled data with extra resources. We formulate an AL prob-
lem to collect labels for specific target test data, and design a
simple yet effective AL strategy, HAL, that is robust to unre-
liable signals, cost-sensitive, and batch-friendly. Empirically,
ADCP greatly improves the ML model’s performance with
small resource budget, and HAL significantly outperforms
state-of-the-art AL baselines in a wide range of scenarios.
We contend that this is a crucial step towards building a
complete ML pipeline to enhance database systems.

There are several interesting future directions for this
work. For example, ADCP may jointly learn a labeling cost
estimation model with the newly labeled points. There is also
the opportunity to combine the additionally collected labels
for the individual production workload into a global model
with better generalization. Our early investigations also show
that adjusting the training weight after collecting more labels,
like covariate shift correction, can further benefit the model
error reduction on the target data. We view this work as the
first step towards tackling the holistic AL problem that arises
from applying ML to complex database systems.
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