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ABSTRACT

The first step towards an autonomous database management system
(DBMS) is the ability to model the target application’s workload.
This is necessary to allow the system to anticipate future work-
load needs and select the proper optimizations in a timely manner.
Previous forecasting techniques model the resource utilization of
the queries. Such metrics, however, change whenever the physical
design of the database and the hardware resources change, thereby
rendering previous forecasting models useless.

We present a robust forecasting framework called QueryBot 5000
that allows a DBMS to predict the expected arrival rate of queries
in the future based on historical data. To better support highly
dynamic environments, our approach uses the logical composition
of queries in the workload rather than the amount of physical re-
sources used for query execution. It provides multiple horizons
(short- vs. long-term) with different aggregation intervals. We also
present a clustering-based technique for reducing the total num-
ber of forecasting models to maintain. To evaluate our approach,
we compare our forecasting models against other state-of-the-art
models on three real-world database traces. We implemented our
models in an external controller for PostgreSQL and MySQL and
demonstrate their effectiveness in selecting indexes.
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1 INTRODUCTION

With the increasing complexity of DBMSs in modern data-driven
applications, it is more difficult now than ever for database ad-
ministrators (DBAs) to tune these systems to achieve the best per-
formance. Many DBAs spend nearly 25% of their time on tuning
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activities [15]. But personnel is estimated to be 50% of a DBMS’
total cost [45]. If the DBMS could optimize itself automatically, then
it would remove many of the complications and costs involved with
its deployment [35, 40]. Such a “self-driving” DBMS identifies which
aspects of itself should optimize without human intervention.

There are two reasons why new efforts to develop a self-driving
DBMS are promising even though other attempts have been less
than successful. Foremost is that the improved capabilities of mod-
ern storage and computational hardware enable the DBMS to collect
enough data about its behavior and then use it to train machine
learning (ML) models that are more complex than what was possi-
ble before. The second reason is that the recent advancements in
ML, especially in deep neural networks and reinforcement learning,
will allow the DBMS to continually improve its models over time
as it learns more about an application’s workload.

To be fully autonomous, the DBMS must be able to predict what
the workload will look like in the future. If a self-driving DBMS
only considers the behavior of the application in the past when
selecting which optimizations to apply, these optimizations may be
sub-optimal for the workload in the near future. It can also cause re-
source contention if the DBMS tries to apply optimizations after the
workload has shifted (e.g., it is entering a peak load period). Instead,
a self-driving DBMS should choose its optimizations proactively
according to the expected workload patterns in the future. But the
DBMS’s ability to achieve this is highly dependent on its knowledge
of the queries and patterns in the application’s workload.

Previous work has studied database workload modeling in dif-
ferent contexts. For example, one way is to model the demands
of resources for the system, rather than a direct representation of
the workload itself [14, 44]. Other methods model the performance
of the DBMS by answering “what-if” questions about changes in
OLTP workloads [37, 38]. They model the workload as a mixture
of different types of transactions with a fixed ratio. There is also
work to predict how the workload will shift over time using hidden
Markov models [28-31] or regressions [19, 36]. Earlier work has
also modeled database workloads using more formal methods with
pre-defined transaction types and arrival rates [48, 49].

All of these methods have deficiencies that make them inade-
quate for an autonomous system. For example, some use a lossy com-
pression scheme that only maintains high-level statistics, such as av-
erage query latency and resource utilization [14, 37, 38, 44]. Others
assume that the tool is provided with a static workload [48, 49], or
they only generate new models when the workload shifts, thereby
failing to capture how the volume of queries and the workload
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Admissions BusTracker MOOC

DBMS Type MySQL PostgreSQL MySQL
Num of Tables 216 95 454
Trace Length (Days) 507 58 85
Avg. Queries Per Day 5M 19.9M 1.1IM

Num of SELECT Queries | 2541M [99.8%] 19.5M [98%] | 0.97M [88%]

Num of INSERT Queries 1.8M [0.07%] 15K [0.8%] 14K [1.3%]
Num of UPDATE Queries 2.6M [0.1%] 22K [1%] 66K [6%]
Num of DELETE Queries | 0.4M [0.02%] 3K [0.2%] 51K [4.7%]

Table 1: Sample Workloads — Summarization of the workload traces
collected from the database applications described in Section 2.1.

trends change over time [19, 36, 48, 49]. Lastly, some models are
hardware and/or database design dependent [28-31], which means
the DBMS has to retrain them whenever its configuration changes.

In this paper, we present a method to succinctly forecast the
workload for self-driving DBMSs. Our approach continuously clus-
ters queries based on the their arrival rate temporal patterns. It
seamlessly handles different workload patterns and shifts. It then
builds models to predict the future arrival patterns for the query
clusters. Such predictions are necessary to enable an autonomous
DBMS’s planning module to identify optimizations to improve the
system’s performance and apply them proactively [40]. The key ad-
vantage of our approach over previous forecasting methods is that
the data we use to train our models is independent of the hardware
and the database design. Thus, it is not necessary to rebuild the
models if the DBMS’s hardware or configuration settings change.

To evaluate our forecasting models, we integrated this frame-
work into both MySQL [1] and PostgreSQL [5], and measure its
ability to model and optimize three real-world database applica-
tions. The results demonstrate that our framework can efficiently
forecast the expected future workload with only a minimal loss in
accuracy. They also show how a self-driving DBMS can use this
framework to improve the system’s performance.

The remainder of this paper is organized as follows. Section 2
discusses common workload patterns in database applications. We
next give an overview of our approach in Section 3 and then present
the details of its components: Pre-Processor (Section 4), Clusterer
(Section 5), and Forecaster (Section 6). We provide an analysis of our
methods in Section 7 and conclude with related work in Section 8.

2 BACKGROUND

The goal of workload forecasting in an autonomous DBMS is to
enable the system to predict what an application’s workload will
look like in the future. This is necessary because the workloads for
real-world applications are never static. The system can then select
the optimizations to prepare based on this prediction.

We contend that there are two facets of modern database ap-
plications that make robust, unsupervised workload forecasting
challenging. The first is that an application’s queries may have
vastly different arrival rates. Thus, an effective forecasting model
must be able to identify and characterize each of these arrival rate
patterns. The second is that the composition and volume of the
queries in an application’s workload change over time. If the work-
load deviates too much from the past, then the forecasting models
become inaccurate and must be recomputed.

We now investigate the common characteristics and patterns
in today’s database applications in more detail. We begin with an
introduction of the three real-world database application traces
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Figure 1: Workload Patterns — Examples of three common workload
patterns in database applications.

used in our discussions and experiments, followed by an overview
of the common patterns that these traces exhibit. We then discuss
the challenges that effective forecasting models must overcome.

2.1 Sample Workloads

We now give a high-level description of the three sample workload
traces collected from real-world database applications. Table 1 pro-
vides a more detailed summary of their properties.

Admissions: An admissions website for a university’s graduate
program. Students submit their application materials to programs
in different departments. Faculties review the applications after the
deadline and give their decisions.

BusTracker: A mobile phone application for live-tracking of the
public transit bus system. It ingests bus location information at
regular intervals from the transit system, and then helps users find
nearby bus stops and get route information.

MOOC: A web application that offers on-line courses to people
who want to learn or teach [3]. Instructors can upload their course
materials, and students can check out the course content and submit
their course assignments.

2.2 Workload Patterns

We now describe the three common workload patterns prevalent in
today’s database applications. The first two patterns are examples
of different arrival rates that the queries in database applications
can have. The third pattern exhibits how the composition of the
queries in the workload can change over time.

Cycles: Many applications are designed to interact with humans,
and as such, their workloads follow cyclic patterns. For example,
some applications execute more queries at specific ranges of a day
than at others because this is when people are awake and using
the service. Figure 1a shows the number of queries executed per
minute by the BusTracker application over a 72-hour period. The
DBMS executes more queries in the daytime, especially during the
morning and afternoon rush hours since this is when people are
taking buses to and from work. This cycle repeats every 24 hours.



Not all applications have such peaks at the same time each day, and
the cycles may be shorter or longer than this example.

Growth and Spikes: Another common workload pattern is
when the query volume increases over time. This pattern is typical
in start-ups with applications that become more popular and in
applications with events that have specific due dates. The Admissions
application has this pattern. Figure 1b shows the number of queries
per minute executed over a week-long period leading up to the
application deadline. The arrival rate of queries increases as the
date gets closer: It grows slowly at the start of the week but then
increases rapidly for the final two days before the deadline.

Workload Evolution: Database workloads evolve over time.
Sometimes this is a result of changes in the arrival rate patterns of
existing queries (e.g., new users located in different time zones start
using an application). The other reason this happens is that the
queries can also change (e.g., new application features). Of our three
applications, MOOC incurs the most changes in its workload mix-
ture. Figure 1c shows the accumulated number of distinct queries
that the MOOC application executes over time. The graph shows
that there is a large shift in the workload after the organization
released a new feature in their application in early May.

2.3 Discussion

There are three challenges that one must solve for a forecasting
framework to work in real-world DBMS deployments. Foremost
is that in order to exploit the various arrival rate patterns in the
workloads for optimization planning, there is a need for good ar-
rival rate forecasting models. Not only do different workloads have
different patterns, but a single workload can also have separate
patterns for sub-groups of queries. Thus, an effective forecasting
model must be able to identify and characterize patterns that are
occurring simultaneously within the same workload.

The second challenge is that since applications execute millions
of queries per dayj, it is not feasible to build forecasting models for
each query in the workload. This means that the framework must
reduce the complexity of the workload that it analyzes without
severely reducing the accuracy of its predictions.

Lastly, the framework must handle the changes in the workload’s
patterns as well as the query mixtures. All of this must be done
without any human intervention. That is, the framework cannot
require for a DBA to tune its internal parameters or provide hints
about what the application’s workload is and when it changes.

3 QUERYBOT 5000 OVERVIEW

The QueryBot 5000 (QB5000) is a workload forecasting framework
that runs as either an external controller or as an embedded module.
The target DBMS connects to the framework and forwards all the
queries that applications execute on it. Decoupling the framework
from the DBMS allows the DBA to deploy it on separate hardware
resources. Forwarding the queries to QB5000 is a lightweight oper-
ation and is not on the query executor’s critical path. As QB5000
receives these queries, it stores them in its internal database. It then
trains models that predict which types of queries and how many of
them the DBMS is expected to execute in the future. A self-driving

DBMS can then use this information to deploy optimizations that
will improve its target objective (e.g., latency, throughput) [40].

As shown in Figure 2, QB5000’s workflow is comprised of two
phases. When the DBMS sends a query to QB5000, it first enters the
Pre-Processor and the Clusterer components. This is the part of
the system that maps the unique query invocation to previously
seen queries. This enables QB5000 to reduce both the computational
and storage overhead of tracking SQL queries without sacrificing
accuracy. The Pre-Processor converts raw queries into generic tem-
plates by extracting constant parameters out of the SQL string. It
then records the arrival rate history for each template.

It is still, however, not computationally feasible to build models
to capture and predict the arrival patterns for each template. To
further reduce the computational resource pressure, QB5000 then
maps the template to the most similar group of previous queries
based on its semantics (e.g., the tables that it accesses). The Clusterer
then performs further compression of the workload using an on-
line clustering technique to group templates with similar arrival
rate patterns together. It is able to handle evolving workloads where
new queries appear and older ones disappear.

In the final phase, the Forecaster selects the largest template
clusters (i.e., clusters with the highest query volumes) and then
trains forecasting models based on the average arrival rate of the
templates within each cluster. These models predict how many
queries in each template cluster that the application will execute in
the future (e.g., one hour from now, one day from now). This is im-
portant because the DBMS will decide how to optimize itself based
on what it expects the application to do in the future, rather than
what happened in the past. QB5000 also automatically adjust these
clusters as the workload changes over time. Every time the cluster
assignment changes for templates, QB5000 re-trains its models.

The Pre-Processor always ingests new queries and updates the
arrival rate history for each template in the background in real
time when the DBMS is running. The Clusterer and Forecaster
periodically update the cluster assignments and the forecasting
models. When QB5000 predicts the expected workload in the future,
it uses the most recent data as the input to the models.

4 PRE-PROCESSOR

Most applications interact with a DBMS in a programmatic way.
That is, the queries are constructed by software in response to some
external mechanism rather than a human writing the query by hand.
For OLTP workloads, the application invokes the same queries with
different input parameters (e.g., prepared statements). For OLAP
workloads, a user is often interacting with a dashboard or reporting
tool that provides an interface to construct the query with different
predicates and input parameters. Such similar queries execute with
the same frequency and often have the same resource utilization
in the system. Thus, QB5000 can aggregate the volume of queries
with identical templates together to approximate the characteristics
of the workload. This reduces the number of queries that QB5000
tracks since it only needs to maintain arrival rate information for
each template rather than each individual query. Given this, we
now describe how QB5000’s Pre-Processor collects and combines
the queries that it receives from the DBMS.
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Figure 2: QB5000 Workflow — The framework receives SQL queries from the DBMS. This data is first passed into the Pre-Processor that identifies distinct
templates in the workload and records their arrival rate history. Next, the Clusterer combines the templates with similar arrival rate patterns together. This

information is then fed into the Forecaster where it builds models that predict the arrival rate of templates in each cluster.

The Pre-Processor processes each query in two steps. It first
extracts all of the constants from the query’s SQL string and replaces
them with value placeholders. This converts all of the queries into
prepared statements. These constants include:

e The values in WHERE clause predicates.
e The SET fields in UPDATE statements.

e The VALUES fields in INSERT statements. For batched INSERTSs,
QB5000 also tracks the number of tuples.

The Pre-Processor then performs additional formatting to nor-
malize spacing, case, and bracket/parenthesis placement. We use
the abstract syntax tree from the DBMS’s SQL parser to identify
the tokens. The outcome of this step is a generic query template.

QB5000 tracks the number of queries that arrive per templates
over a given time interval and then stores the final count into an
internal catalog table at the end of each interval. The system aggre-
gates stale arrival rate records into larger intervals to save storage
space. We explain how to choose the time interval in Section 6.

QB5000 also maintains a sample set of the queries’ original pa-
rameters for each template in its internal database. We use reservoir
sampling to select a fixed amount of items with low variance from
a list containing a large or unknown number of items [53]. An au-
tonomous DBMS’s planning module uses these parameter samples
when estimating the cost/benefit of optimizations [40].

The Pre-Processor then performs a final step to aggregate tem-
plates with equivalent semantic features to further reduce the num-
ber of unique templates that QB5000 tracks. Evaluating semantic
equivalence is non-trivial, and there has been extensive research on
this topic [33, 47, 52]. QB5000 uses heuristics to approximate the
equivalence of templates. It considers two templates as equivalent
if they access the same tables, use the same predicates, and return
the same projections. One could use more formal methods to fully
exploit semantic equivalence [13]. We found, however, that heuris-
tics provide reasonable performance without reducing accuracy.
We defer investigating more sophisticated methods as future work.

Table 2 shows that QB5000’s Pre-Processor is able to reduce the
number of queries from millions to at most thousands of templates
for our sample workloads.

5 CLUSTERER

Even though the Pre-Processor reduces the number of queries that
QB5000 tracks, it is still not feasible to build models for the arrival
patterns of each template. Our results in Section 7.5 show that it can

Admissions | BusTracker | MOOC
Total Number of Queries 2546M 1223M 95M
Total Num of Templates 4060 334 885
Num of Clusters 1950 107 391
Reduction Ratio 1.3M 10.5M 0.24M

Table 2: Workload Reduction - Breakdown of the total number of queries
that QB5000 must monitor after applying the reduction techniques in the
Pre-Processor and Clusterer.

take over three minutes to train a single model. Thus, we need to
further reduce the total number of templates that QB5000 forecasts.

The Clusterer component combines the arrival rate histories of
templates with similar patterns into groups. It takes templates in a
high-dimensional feature space and identifies groups of comparable
templates using a similarity metric function. To support modeling
an application in a dynamic environment (i.e., one where the work-
load, database physical design, and the DBMS’s configuration can
change), the clustering algorithm must generate stable mappings
using features that are not dependent on the current state of the
database. This is because if the mapping of templates to clusters
changes, then QB5000 has to retrain all of its models.

We now examine the three design decisions in our implementa-
tion of QB5000’s clustering phase. We begin with a discussion of
the features that it extracts from each template. We then describe
how it determines whether templates belong to the same cluster.
Lastly, we present QB5000’s clustering algorithm that supports in-
cremental updates as the application’s workload evolves, and how
the framework quickly determines whether to rebuild its clusters.

5.1 Clustering Features

There are three types of features that the framework can derive
from templates: (1) physical, (2) logical, and (3) arrival rate history.
Physical features are the amount of resources and other runtime
metrics that the DBMS used when it executed the query, such
as the number of tuples read/written or query latency. Previous
clustering algorithms for database applications have used physical
features for query plan selection [24], performance modeling [37],
and workload compression [11]. The advantage is that they provide
fine-grained and accurate information about an individual query.
But they are dependent on the DBMS’s configuration and hardware,
the database’s contents, and what other queries were running at the
same time. If any of these change, then the previously collected fea-
tures are useless and the framework has to rebuild its models. Such
instability makes it difficult for the DBMS’s planning module to
learn whether its decisions are helping or hurting the performance.
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Figure 3: Arrival Rate History — The past arrival rates for the largest
cluster and the top four queries within that cluster from BusTracker.

Another approach is to use the template’s logical features, such
as the tables/columns it accesses and the properties of the query’s
syntax tree. Unlike physical features, these logical features do not
depend on the DBMS’s configuration nor the characteristics of the
workload (e.g., which queries execute more often than others). The
disadvantage, however, is that they may generate clusters without
a discernible workload pattern because there is limited information
from the logical feature and thus the forecasting models make poor
predictions. The inefficiency of logical features has also been iden-
tified in previous work on predicting query runtime metrics [23].

QB5000 uses a better approach to cluster queries based on their
arrival rate history (i.e., the sequence of their past arrival rates). For
example, consider the cluster shown in Figure 3 from the BusTracker
application that is derived from four templates with similar arrival
rate patterns. The cluster center represents the average arrival rate
of the templates within the cluster. Although the total volume per
template varies at any given time, they all follow the same cyclic
patterns. This is because these queries are invoked together as part
of performing a higher level functionality in the application (e.g., a
transaction). Since templates within the same cluster exhibit similar
arrival rate patterns, the system can build a single forecasting model
for each cluster that captures the behavior of their queries.

Calculating the similarity between a pair of arrival rate history
features is straightforward. QB5000 first randomly samples times-
tamps before the current time point. Then for each series of arrival
rate history, QB5000 takes the subset of values at those timestamps
to form a vector. The similarity between the two features is defined
as the cosine similarity of the two vectors. If the template is new,
we compare its available timestamps with the corresponding subset
in the vectors of other templates. Our current implementation uses
10k time points in the last month of a template’s arrival rate history
as its feature vector. We found that this is enough to capture the
pattern of every arrival rate history in our experiments.

Logical features and arrival rate history features express different
characteristics of the queries. But as we show in Section 7.7, cluster-
ing on the arrival rate features produce better models for real-world
applications because they capture how queries impact the system’s
performance. Though using the template’s arrival rates avoids re-
building clusters whenever the DBMS changes, it is still susceptible
to workload variations, such as when the system identifies a new
template or the arrival rates of existing ones change.

5.2 On-line Clustering

QB5000 uses a modified version of DBSCAN [21] algorithm. It is
a density-based clustering scheme: given a set of points in some
space, it groups together points with many nearby neighbors (called
core objects), and marks points that lie alone in low-density regions
as outliers (i.e., points whose nearest neighbors are too far away).

Unlike K-means, this algorithm is not affected by the number of
small clusters or the cluster densities!.

The original DBSCAN algorithm evaluates whether an object
belongs to a cluster by checking the minimum distance between
the object and any core object of the cluster. But we want to assign
templates to clusters based on how close they are to a cluster’s
center and not just any random core object. This is because QB5000
uses the center of a cluster to represent the templates that are
members of that cluster, and builds forecasting models with the
center. An on-line extension of the canonical DBSCAN algorithm
also has high overhead when updating clusters [20].

Our on-line variant of DBSCAN uses a threshold, p (0 < p < 1),
to decide how similar the arrival rates of the templates must be
for them to belong to the same cluster. The higher p is, the more
similar the arrival rates of the templates within a cluster are, so
the modeling result will be more accurate. But the computational
overhead will also be higher given the larger number of generated
clusters. We conduct a sensitivity analysis on setting this value in
Appendix A. As shown in Figure 4, QB5000’s incremental clustering
algorithm periodically performs the following three steps together:

Step #1: For each new template, QB5000 first checks whether
the similarity score between its arrival rate history and the center
of any cluster is greater than p. The template is assigned to the
cluster with the highest similarity score that is greater than p. We
use a kd-tree to allow QB5000 to quickly find the closest center of
existing clusters to the template in a high-dimensional space [8].
Then QB5000 will update the center of that cluster, which is the
arithmetic average of the arrival rate history of all templates in that
cluster. If there is no existing cluster (this is the first query) or none
of the clusters’ centers are close enough to the template, QB5000
will create a new cluster with that template as its only member.

Step #2: QB5000 checks the similarity of previous templates with
the centers of the clusters they belong to. If a template’s similarity is
no longer greater than p, QB5000 removes it from its current cluster
and then repeat step (1) to find a new cluster placement. Sometimes
moving a template from one cluster to another causes the centers of
the two clusters to change, and recursively forces other templates
from the two clusters to move. QB5000 defers modifying the clusters
until the next update period. QB5000 removes a template if it has
not received one of its queries for an extended period.

Step #3: QB5000 computes the similarity between the clusters’
centers and merges two clusters with a score greater than p.

In addition to periodically executing these three steps, QB5000
monitors the new templates in the workload. If the percentage of
previously unseen templates is above a threshold, it then triggers
these steps to adapt to the workload change. Setting this threshold
properly is dependent on the performance attributes of the target
DBMS. We defer investigating this problem as future work.

QB5000’s incremental algorithm adaptively adjusts the clusters
for a dynamic workload without requiring a warm-up period or
having prior knowledge of the workload. More importantly, it guar-
antees that the similarity between a template’s arrival rate history

1We also evaluated K-means clustering, but it has a known problem when the workload has a large
number of small clusters, or the clusters have different sizes or densities. These issues have also
been observed for previous database workload modeling techniques [11].



® New Template KD Tree Remain Cluster #1
SELECT * FROM foo Cluster #1 Unchanged
i || A, P
A/Y. cos- > p?
A ©
Cluster #1 % Roo cos- > p?
Cluster #2
Cluster #3
Template with changed
< iate Arrival Re Arrival Rate Pattern cos- > 07
emplate Arrival Rate :
> o7 P [ VAVAVSY Apply Step #1 P
to the template
(a) Step #1 (b) Step #2 (c) Step #3
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similarities between the arrival rate history features of new templates with the centers of existing clusters. Then it removes the templates from their clusters if
the arrival rate patterns of a template and its cluster center have deviated. Finally, it merges the clusters with high similarities between their centers together.

| LR._ARMA KR RNN FNN PSRNN
Linear | v/ 4 X X X X
Memory | X v X v X 4
Kernel | X X v X X v

Table 3: Forecasting Models — The properties of the forecasting models
that we investigated for QB5000.

and the center of its cluster is smaller than p, which improves the
accuracy of QB5000’s forecasting models. The complexity of these
steps is bounded by O(n log n), where n is the number of templates
in the workload. Since Step #2 does not apply cluster changes re-
cursively, this approach does not guarantee the convergence of the
clusters at any specific time. Thus, QB5000 might not achieve the
optimal clustering given the similarity metric. We found, however,
this does not affect the efficacy of its forecasting models in practice.

Table 2 shows the number of clusters determined by Clusterer
and the reduction ratio from the total number of queries in the
three workloads. Since QB5000 periodically updates its clustering
results, we show the average number of clusters per day.

5.3 Cluster Pruning

Even after using clustering techniques to reduce the total number
of queries that QB5000 needs to model, real-world applications still
tend to have lots of clusters because of the long-tailed distribution
of the arrival rate patterns. There are only a few large clusters
that exhibit the major workload patterns, but several small clusters
with noisy patterns. Those small clusters usually contain queries
that only appear a few times and increase the noise in the models
with little to no benefit since they are not representative of the
application’s main workload. QB5000 does not build models for
them since their impact on the DBMS’s performance is limited. Our
experiments in Section 7.1 show that the five largest clusters cover
up to 95% of the query volume for our three sample workloads.

6 FORECASTER

At this point in QB5000’s pipeline, the framework has converted raw
SQL queries into templates and grouped them into clusters. QB5000
is also recording the number of queries executed per minute for
each cluster. The final phase is to build forecasting models to predict
the arrival rate patterns of the clusters’ queries. These models allow
the DBMS’s planning module to estimate the number of queries
that the application will execute in the future and select the proper

optimizations to meet SLAs [4, 40]. In this section, we describe
how QB5000 constructs and uses its forecasting models. We begin
with an explanation of its underlying data structures and training
methods. We then discuss how QB5000 supports different prediction
horizons and intervals for the same cluster over multiple models.

6.1 Forecasting Models

There are many choices for forecasting models of the query arrival
rates with different prediction properties. Table 3 shows a summary
of the six models that we considered in the development of QB5000.
The first property is whether the model is linear, which means that
it assumes that there is a linear relationship between the input
and output data. Next, a model can retain memory that allows
it to use both the input data and the information “remembered”
from the past observations to predict the future. Lastly, a model
can support kernel methods to provide another way to model non-
linear relationships. In contrast to models that employ non-linear
functions, kernel methods achieve non-linearity by using linear
functions on the feature maps in the kernel space of the input.

Linear models are good at avoiding overfitting when the intrin-
sic relationship in the data is simple. They take less computation
to build and require a smaller amount of training data. On the
other hand, more powerful non-linear models are better at learning
complex data patterns. They do, however, take longer to train and
are prone to overfitting. Thus, they require more training data. As
we will show in Section 7.2, linear models often perform better at
making predictions in the near future (e.g., one hour) whereas the
non-linear models are better at making predictions further out in
time (e.g., over a day). But it is non-trivial to determine which type
of model to use for different time horizons on different workloads.
Likewise, there are also trade-offs between memory-based models.
Retaining memory allows the model to exploit the dynamic tem-
poral behavior in an arbitrary sequence of inputs, but this adds
training complexity and makes the model less data-efficient.

A well-known solution that works well in other application
domains is to use an ensemble method (ENSEMBLE) that combines
multiple models together to make an average prediction. Ensemble
methods are used in prediction tasks to combine several machine
learning techniques into one predictive model in order to decrease
variance or bias (e.g., boosting) [39]. Previous work has shown that
ensemble methods work well on challenging datasets and they are
often among the top winners of data science competitions [43, 57].



We now discuss the two types of forecasting models that QB5000
combines to make its ENSEMBLE model.

Linear Regression (LR): LR models are also known in the sta-
tistics and time series prediction literature as linear auto-regressive
models. They are simple linear models that have closed-form so-
lutions, which means that they do not require an additional opti-
mization step to find a global optima. In QB5000, the framework
regresses the future arrival rate of queries in a cluster based on the
arrival rate of the query over a specified period of time in the past.
LR has been used for DBMS operator modeling in prior work [6].

Recurrent Neural Network (RNN): Previous work has shown

RNNs to be effective at predicting patterns for non-linear systems [54].

It is a class of network where its neurons have a cyclic connection.
QB5000 uses a variant of the RNN called long short-term memory
(LSTM) [27]. LSTMs contain special blocks that determine whether
to retain older information and when to output it into the network.
This allows the networks to automatically learn the periodicity
and repeating trends of data points in a time-series beyond what is
possible with regular RNNs [22]. This approach has been used to
predict the host-load in data centers [50].

We apply an ensemble method by equally averaging the predic-
tion results of the LR and RNN models. We also tried averaging the
models with weights derived from the training history, but that led
to overfitting and generated worse results.

Although the ensemble method achieves good average prediction
accuracy, we found that it fails to predict the periodic spikes in
the workload that are far apart from each occurrence. For example,
the December 15th deadline shown in Figure 1b occurs each year
on the same date, but both the LR and RNN models are unable to
predict this annual pattern. This is a common workload pattern,
and the ability to predict such spikes ahead of time is necessary
for many database optimizations, such as resource provisioning.
Thus, we now describe the third forecasting model that we employ
in QB5000 that is able to correctly handle this scenario.

Kernel Regression (KR): This is a non-linear variant of LR mod-
els that uses the Nadaraya-Watson estimator to achieve its non-
linearity without iterative training [9]. The prediction for a given
input is a weighted average of training outputs where the weights
decrease with distance between the given input and corresponding
training inputs.

KR is a non-parametric method, which means that it assumes no
particular functional form. It instead only assumes that the function
is smooth. This provides it with the necessary flexibility to model
different non-linear functions between the inputs and the outputs.
Thus, it is able to predict when a spike will repeat in the future even
if the spike has only occurred a few times in the past. KR, however,
does not extrapolate well with data it has not seen before. As we
show in Section 7.2, it performs worse than ENSEMBLE in terms
of the average prediction accuracy. But it is the only investigated
model that is able to handle the yearly spike in Admissions.

Given this, QB5000 uses a hybrid forecast model (HYBRID) that
we developed to automatically determine when to use predictions
from ENSEMBLE versus ones generated from KR. Since KR is good
at predicting spikes with a small number observations, if its pre-
dicted workload volume is above that of ENSEMBLE by more than a

specified threshold, y (y > 0), then QB5000 uses the result from KR
as its prediction. Otherwise, it uses the result generated from the
ENSEMBLE model. In QB5000, we set y to 150% as this provided the
most accurate forecasts for all of the application workloads that we
tested. We provide a sensitivity analysis of y in Appendix C.

6.2 Prediction Horizons & Intervals

The scope of a forecasting model is defined in terms of its horizon
and interval. How far into the future a model can predict is known
as its prediction horizon. In general, the longer the horizon is, the
less accurate its predictions are expected to be. This is important
for self-driving DBMSs since it improves their ability to prepare
for immediate workload and resource demand changes. The time
granularity at which the model can predict is called its prediction
interval. For example, a model can predict the number of queries
that will execute in one-minute or one-hour intervals. Like the
horizon, using a shorter interval often improves the accuracy of its
models, but increases the storage and computational overhead.

OB5000 sets the interval at which it records the query arrival
rates to be one minute, which is the finest level of prediction that
QB5000 is able to provide to the DBMS. When the planning module
of a self-driving DBMS evaluates potential optimizations, it can de-
cide how to aggregate the per-minute history into longer intervals
for training the forecasting models. We evaluate QB5000’s perfor-
mance when aggregating over different time intervals in Section 7.4.
To predict the spikes, QB5000 trains the KR model used by HYBRID
using the entire history of an application aggregated into one-hour
intervals to reduce the computational and storage overhead.

The planning module of a self-driving DBMS also decides how
far ahead of time its models need to make predictions. QB5000
builds a forecasting model for each required prediction horizon.

7 EXPERIMENTAL ANALYSIS

We now present an evaluation of QB5000’s ability to model a data-
base application’s workload and predict what it will look like in the
future. We implemented QB5000’s algorithms using scikit-learn,
Tensorflow, and PyTorch. We use the three real-world workload
traces described in Section 2.1. We performed our experiments on
a single server with an Intel Xeon E5-2420v2 CPU and 32 GB RAM.
Unless otherwise noted, we use a GeForce GTX 1080 GPU with
8 GB RAM for training QB5000’s forecasting models.

We first analyze the effectiveness of the Clusterer’s compression
techniques. We then evaluate the accuracy of the Forecaster’s mod-
els. We also examine the computation time and storage footprint
for QB5000’s components. Finally, we demonstrate the benefits of
QB5000 for self-driving DBMSs for an example application.

7.1 Number of Clusters

The goal of this first experiment is to show that QB5000 can model
the majority of a database workload using a small number of the
highest-volume clusters. Although modeling more clusters may
allow QB5000 to capture more information about the workload, it
also increases the computational overhead, data requirements, and
memory footprint. We use the method described in Section 5 to
perform on-line query clustering for all the three workloads. We set
QB5000’s threshold as p=0.8 and the frequency at which it performs
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Figure 6: Cluster Change — The number of clusters that changed among
the five largest clusters between two consecutive days.

incremental clustering algorithm to be once per day. We provide a
sensitivity analysis for selecting p in Appendix A.

We first calculate the average ratio between the volume of the
largest clusters and the total workload volume for each day through-
out the entire workload execution. It is calculated by dividing the
volume of a given cluster by the total volume of all the clusters for
that day. The results in Figure 5 show that the highest-volume clus-
ters cover the majority of the queries in the workload. For example,
in BusTracker most of the queries come from people checking bus
schedules during the morning and evening rush hours. In particular,
the five largest clusters comprise over 95% of the queries for all
three workloads. This shows that even though a real-world applica-
tion may consist of several arrival rate patterns among sub-groups
of queries, we can still obtain a good estimation of the workload by
modeling only a few of its major patterns. Recall that QB5000 tracks
the ratio between the volume of the templates within a cluster.

We then calculate how frequently the five highest-volume clus-
ters change from one day to the next. Figure 6 shows the number
of days where zero or more changes occurred in the five largest
clusters of the three workloads. For Admissions and BusTracker, there
is at most one change in the five largest clusters for over 90% of the
days. This shows that QB5000’s on-line clustering method is not
only efficient regarding the characterization of the workload, but is
also stable under the usual fluctuations in the workload. The MOOC
workload has more cluster changes than the other two because new
queries appear as instructors create and launch new classes. This
shows that QB5000’s incremental clustering algorithm can capture
shifts in the application’s workload as it changes over time.

7.2 Prediction Accuracy Evaluation

We now evaluate the prediction accuracy of QB5000’s forecasting
models for different prediction horizons. Recall from Section 6.2
that the prediction horizon defines how far into the future a model
predicts. In this experiment, QB5000 models the highest-volume
clusters that cover more than 95% of the total queries in the work-
load. Our previous results in Figure 5 show that we can achieve this
by modeling the three largest clusters for Admissions and BusTracker,
and the five largest clusters for MOOC. QB5000 trains a single fore-
casting model that jointly predicts the query arrival rates for all
of the clusters on each prediction horizon. This allows for sharing

information across clusters, which improves the prediction accu-
racy. It uses up to three weeks of the latest query arrival rate data
for the training. We use the log of the mean squared error (MSE)
as the metric for measuring the accuracy of QB5000’s forecasting
models. The smaller the MSE, the better the prediction accuracy.
We use one-hour prediction horizon in this experiment.

For a self-driving DBMS, a desirable property of its forecasting
models is that they are not overly sensitive to their hyperparameters.
This is because fine-tuning a model’s hyperparameters is by itself a
hard optimization task. To evaluate this, we fix the hyperparameters
for all models to be the same across the different prediction horizons
and workloads. We obtained these settings using cross-validation.
Except for the KR used by HYBRID, we use the last day’s arrival rate
as the input for the LR and KR models. For RNN, we use a linear
embedding layer of size 25 followed by two LSTM layers each with
20 cells. We take the log of the input before training the models,
and convert them back by taking the exponentials of the output.

We compare the accuracy of QB5000’s forecasting models dis-
cussed in Section 6.1 against other models used for forecasting
arrival rate patterns. They are used in existing approaches for mod-
eling system workloads and resource usages, as introduced below.

Autoregressive Moving Average (ARMA): ARMA is a general-
ization of LR models that consists of an autoregressive part and a
moving average part acting on residuals. When making predictions,
ARMA makes use of all previous observations, either directly or
through its residuals. This approach was used for predicting work-
loads in cloud service environments [7, 46].

Feed-forward Neural Network (FNN): This is a non-linear
version of the LR models in which the linear function that approxi-
mates the output is replaced by a feed-forward neural network that
separates a sequence of linear transformations to the input vector
by non-linear activations [51]. FNNs differ from RNNs in that their
neurons do not form a cycle that feeds information from all previ-
ous observations back into the model. This approach was used to
predict the resource usage for transactions in an OLTP DBMS [32].

Predictive State Recurrent Neural Network (PSRNN): This
a newer RNN variant that outperforms LSTMs in a variety of pre-
diction tasks [17]. The key advantage of RNNs is that they have an
initialization algorithm based on a method of moments that aims
to start the optimization process in a better position towards the
global optima, as opposed to typical RNN/LSTM initializations.

Figure 7 shows the average prediction accuracy of the forecasting
models over horizons ranging from one hour to one week for the
three workloads. These results exhibit similar trends for how the
horizon impacts the prediction accuracy of the models. First, we
observe that for shorter horizons, the LR models perform as well
as or better than the more complex RNN models. This is because
when the horizon is short, the relationship between the arrival
rate observed in the recent past and the arrival rate in the near
future is more linear than for longer horizons. Thus, a simple model
like LR is sufficient for making predictions. In contrast, complex
models often overfit the noise in the training data and generate
less accurate results when the horizon is short. But as the horizon
increases, the relationship between the past and the future also
grows in complexity. In this case, more powerful models like RNNs
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Figure 7: Forecasting Model Evaluation - The average prediction accuracy of the different forecasting models over prediction horizons ranging from one

hour to one week for the Admissions, BusTracker, and MOOC workloads.

that are adept at learning complex relationships achieve better
accuracy. This is consistent with our results; RNN outperforms LR
when the horizon is greater than or equal to one day. This effect is
also observed in sequence prediction in other domains [10].

These results also show that the accuracy of ARMA is not stable
across the different horizons. For all of the trials in Figure 7, it
achieves the best performance for only 10% of them, but it has
the worst performance 38% of the time. This is because the model
is sensitive to its hyperparameters. The optimal hyperparameter
settings for ARMA are highly dependent on the statistical properties
of the data, such as stationarity and the autocorrelation structure.

The FNN models generally have worse prediction accuracy com-
pared to the RNN models. FNN achieves the best and the worst
accuracy in both 5% of the trials. The FNN models cannot remember
the state of the workload like RNNs. They also lack the simplicity
of LR that protects against overfitting.

KR has the best performance in 19% of the experiments, but the
worst in 24% of the experiments. This model is able to model non-
linear functions, but it is prone to error when it has not seen inputs
in training that are close to the input to make the prediction with.

PSRNN also performs worse than RNN. It is supposed to have a
better initialization than RNN, but this does not always guarantee a
better performance because (1) it uses approximation algorithms to
find the initialization and (2) its benefit from smarter initialization
is restricted when the size of the training data is limited [17]. Since
RNN takes less training time than PSRNN and is more available in
ML frameworks, we did not use PSRNN in ENSEMBLE.

As shown in Figure 7, ENSEMBLE provides the best overall pre-
diction accuracy. It performs better than all the stand-alone models

in 61% of the experiments and never has the worst performance.
Ensemble methods often have lower variance than their underlying
models and produce better results when their models have comple-
menting characteristics [34]. LR and RNN have distinct properties:
LR only uses a limited number of observations from the past when
making linear predictions, whereas RNN is non-linear and maintains
state to memorize the information from all previous observations.
Since LR has comparable performance to ENSEMBLE for horizons
shorter than a day, using LR on these short horizons may also be
desirable for a DBMS that is short of computational resource.

Even though ENSEMBLE achieves the best accuracy of all the
models, recall from Section 6.1 that it cannot predict the spikes
that repeat infrequently in the workload. HYBRID solves this issue
by correcting the result of ENSEMBLE with the help of the predic-
tion from KR. Figure 7 shows that HYBRID has little impact on the
average prediction accuracy compared to ENSEMBLE.

We now demonstrate how QB5000 uses its HYBRID models to pre-
dict queries’ arrival rates for each cluster. We compare the predicted
arrival rates of the queries belonging to the highest-volume clus-
ter in the BusTracker application with their actual arrival rates for
one-hour and one-week horizons. Figure 8 shows that the one-hour
horizon prediction is more accurate than the one-week horizon.
This is consistent with Figure 7 where the prediction accuracy de-
creases for longer horizons. The results also show that QB5000’s
models provide good predictions for both horizons since the pre-
dicted patterns of the arrival rates closely mimic the actual patterns.
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Figure 9: Prediction Results — Actual vs. predicted query arrival rates
for the combined clusters in the Admissions workload with spike patterns.

7.3 Spike Prediction Evaluation

Next, we evaluate QB5000’s ability to forecast the growth and spike
workload pattern. As mentioned in Section 6.2, QB5000 uses the
full workload history aggregated into one-hour intervals to predict
spikes. It tries to identify workload spikes one week before they
will occur. The other settings are the same as in Section 7.2. We
again evaluated all of the models and present the forecasting results
from Nov 15 to Dec 31 (2017), which include two spikes from the
admission deadlines on Dec 1 and Dec 15. The Admissions trace
contains the similar spikes from the previous year (2016).

The results in Figure 9 show that ENSEMBLE and its two base
models are unable to predict the spikes in the workload. Although
they are not shown here, the other models also perform poorly
in this scenario. The linear models’ failure is likely due to the
scarcity of the spike data and the limited capacity of the models. In
contrast, models with higher capacity, like RNNs, may get caught
in local optima and thus are also not able to produce good results.
KR is the only model that successfully predicts the spikes. This is
because its prediction is based on the distance between the test
points and training data, where the influence of each training data
point decreases exponentially with its distance from the test point.
We further demonstrate why KR can separate data points with high
query volumes from the other data points in Appendix B.

7.4 Prediction Interval Evaluation

We next evaluate the prediction accuracy and the training time
of our ENSEMBLE forecasting models with varying prediction in-
tervals. Since KR from HYBRID always uses one-hour intervals, it
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Figure 10: Prediction Interval Evaluation - The average prediction ac-
curacy and training time with different intervals for BusTracker.

is unnecessary to evaluate it for other intervals. To provide a fair
comparison, we compute the total prediction for each hour in the
horizon by summing the predictions across the intervals within
that hour. We then use these per-hour predictions to compute the
MSE. For two-hour intervals, we calculate the prediction for each
hour by dividing the interval that contains that hour into two.
The results in Figure 10a show that the accuracy of the models
increases as the intervals become shorter. This is because shorter
intervals provide more training samples and better information for
learning the patterns in the data. Shorter intervals are especially
beneficial for longer horizons since the relationship between the fu-
ture and the past arrival rate is more complex. But shorter intervals
increase the noise in the data and require more intervals to include
the same extent of time. Thus, models trained on shorter intervals
are larger (e.g., higher input dimension) and more complex.
Figure 10b shows the training time for each model at different
intervals. It takes less time to train the models on longer intervals,
which is expected since these models are smaller and less complex.
Increasing the interval from 10 to 120 minutes reduces the training
time by roughly 2.5X across all horizons, but decreasing the horizon
provides only a minor training time reduction across all intervals.
One must consider these trade-offs when setting the interval,
along with the planning capabilities of the target self-driving DBMS.
We found that a one-hour interval works well for our operating
environment in Section 7.6. As such, we use this interval for the
remainder of the evaluation. Automatically determining the interval
is beyond the scope of this paper and we leave it as future work.

7.5 Computation & Storage Overhead

To better understand the computational and storage overhead of
QB5000, we instrumented its code to record the amount of time
and space it spends in its four components:

Pre-Processor: The time to templatize a query and update its
arrival rate history, and the amount of history data generated daily.

Clusterer: The time to update the clustering results once per
day according to the latest history, and the size of the result data.



Pre-Processor | Clusterer LR RNN KR
GPU:0.3 GPU:9 GPU:0.16
E Admissions | 0.043ms/query | 15s/day CPU:O.S: CPU:SSSS CPU:0.18s
&
B CPU:0.12s | GPU:33s | GPU:0.02
£ | BusTracker | 0.05ms/query |  3s/day GPU:o.laz CPU:Zles CPU:0.02:
3 GPU:0.54s | GPU5s | GPU:0.04s
S| MOOC | 0.048ms/query | 125/day | Cpig'sys | CPULLSs | CPU:0.04s
2 | Admissions 1.6MB/day 6.7KB 100B 28KB 11MB
usTracker 0.25 a 2.2 100 28 1.9
% [ BusTrack MB/day KB B KB MB
E MOOC 1.4MB/day 0.8KB 100B 28KB 0.4MB

Table 4: Computation & Storage Overhead — The measurements for
QB5000’s different components.

LR Model: The time to train one LR model, and the size of the
learned weights.

KR Model: The time to predict one test point with the KR model,
and the size of the historical data maintained for the model.

RNN Model: The time to train one RNN model, and the size of
the serialized model object from PyTorch, which contains both the
model parameters and network structure.

For LR, RNN, and KR, we use a one-hour interval and measure
the model’s time and space requirements over seven horizons. We
report the average overhead of these horizons in our results.

Table 4 shows that all of QB5000’s components have reasonable
storage overhead. The results also show that training the RNN
models is the most computationally expensive task. We stop training
the RNN models when the validation accuracy stops improving. This
means that the number of iterations performed and the training
time differ per workload. Using a GPU improves the training time of
RNN models by 3.6-7X. The overhead of training LR models is low
compared to RNN models, and that the CPU/GPU performances are
similar for the LR models since they are so simple. KR requires no
training time and little testing time. But its testing time and training-
data size increases linearly with the length of the workload history.
QB5000 reduces this overhead by always aggregating the training
for KR to one-hour intervals (see Section 6.2).

7.6 Automatic Index Selection

We now demonstrate how self-driving DBMSs can use QB5000’s
workload forecasts to make proactive optimizations that improve
the system’s performance. We integrate QB5000 with MySQL [1]
and PostgreSQL [5] to process, cluster, and predict SQL workloads
to automatically builds indexes for the predicted workload. We
select a representative workload for PostgreSQL (BusTracker) and
for MySQL (Admissions) for the evaluation. We use a 10 GB database
for the Admissions and a 5 GB database for the BusTracker. We set
each DBMS’s buffer pool size to be 1/5 of the database size.

We use an index selection technique based on the one introduced
by AutoAdmin to generate the set of indexes to build [12]. AutoAd-
min first selects the best index for each query in a sample workload
to form a candidate set of indexes. It then uses a heuristic search
algorithm to find the best-bounded subset of indexes within the
candidates. Instead of using a sample workload to generate the can-
didate indexes, we use the predicted workload of the three largest
clusters generated by Clusterer. We note that the purpose of this
evaluation is to demonstrate QB5000’s ability to dynamically model
and predict workloads, and not the efficacy of the index selection
algorithm. We compare the performance of the automatic index
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Figure 12: Index Selection (PostgreSQL) — Performance measurements
for the BusTracker workload using different index selection techniques.

selection (AUTO) against a static index selection method, which
uses the same index selection algorithm but applies it to a fixed
workload sample over the entire query history that is prepared
manually before the start of the experiment (STATIC).

In both of the workloads, we initialize the DBMSs with the pri-
mary key and foreign key indexes defined in the applications’ origi-
nal schemas but remove all secondary indexes. We choose a random
date to start the index selection process and train QB5000’s fore-
casting models from the previous three weeks history. The system
builds a new index at hourly intervals based on QB5000’s real-time
workload predictions for one-hour and twelve-hour prediction hori-
zons. We weight the predictions from the one-hour horizon higher
since models for shorter horizons are more accurate. We run the
index selection technique for a 16 hour period. To control the to-
tal experiment time, we replay the workload 600x faster than the
actual workload execution speed. That is, one second in our exper-
iment represents 10 minutes of workload execution in the traces.
During the experiment AUTO builds 20 indexes in total, and thus
we set STATIC to also build 20 indexes before the experiment begins.

Figures 11 and 12 show the performance of MySQL and Post-
greSQL using the AUTO and STATIC index selection techniques. The
vertical green dotted lines indicate when the DBMS builds a new
index. The results in Figure 11 show that the throughput and la-
tency of MySQL executing the Admissions workload improve by 5x
and 78% over the 16 hour period, respectively. AUTO initially per-
forms worse than STATIC since it has not yet created any secondary
indexes, but achieves 28% better throughput and 23% better latency



by the end of the experiment. This is because AUTO selects four
indexes that were not chosen by STATIC since it is able to lever-
age QB5000’s forecasts. Figure 12 shows that PostgreSQL achieves
180X better throughput and 99% better latency for the BusTracker
workload over this period. AUTO selects only one different index
than STATIC, and thus their final performances are similar.

Automatic index selection is just one example of how QB5000’s
workload forecasting could be applied in a self-driving DBMS. There
are other application scenarios that would serve as more powerful
examples, such as resource provisioning. Such scenarios require a
planning module for a self-driving DBMS, which requires a fore-
casting framework like what we present in this paper.

7.7 Logical vs. Arrival Rate History Feature

In this final experiment, we compare the effectiveness of the arrival
rate history feature that QB5000’s Clusterer uses against the logical
feature (AUTO-LOGICAL). We repeat the same experiments from
Section 7.6, except that we group templates based on the similarity
of the logical structures of SQL strings. More specifically, the logical
feature vector of a templates consist of the query type (e.g., INSERT,
SELECT, UPDATE, or DELETE), tables that it accesses, the columns
that it references, number of clauses (e.g., JOIN, HAVING, or GROUP
BY), and number of aggregations (e.g., SUM, or AVG). We use the
L2 distance to measure the similarity between two templates. We
adjust the threshold p so that the volumes of the largest clusters
are similar to those generated with the arrival rate history features.
The results in Figures 11 and 12 show that the DBMSs’ through-
put is ~20% slower for AUTO-LOGICAL than for AUTO for both
workloads. Figure 11 shows that the latencies are similar for AUTO-
LOGICAL and AUTO for MySQL running the Admissions workload.
But the results in Figure 12 show BusTracker in PostgreSQL has 38%
higher latency with AUTO-LOGICAL. There are two reasons why
logical features lead to worse index selection. The first is that the
SQL queries are insufficient for determining whether two templates
will have similar impacts on the system. The second reason is that
templates within the same logical feature cluster may have multiple
arrival rate patterns (including anomalies like one-time queries);
this makes it more difficult for the Forecaster to identify these
patterns and predict the trends according to the cluster centers.

8 RELATED WORK

We classify the previous work on workload modeling in systems
into several categories: resource estimation and auto-scaling, per-
formance diagnosis and modeling, shift detection, workload char-
acterization for system design, and metrics prediction for queries.

There are works on automatically identifying the trends of the
workload and scaling resources for provisioning. Das et al. proposed
an auto-scaling solution for database services using a manually con-
structed hierarchy of rules [14]. The resource demand estimator
derives signals from the DBMS’s internal latency, resource utiliza-
tion, and wait statistics to determine whether there is a high or low
demand for resource. Their work focuses on short-term trends and
estimates the demand for each resource in isolation. Other works in-
vestigated scaling resources proactively in cloud platforms [25, 46].
All of these methods estimate whether there will be a demand for
each type of resource in the near future. In contrast, we model

the query arrival rates for both short- and long-term horizons to
support complex optimization planning decisions.

There is previous research on the modeling and diagnosis of
DBMS performance. DBSeer predicts the answer of “what-if” ques-
tions given workload changes, such as estimating the disk I/O for
future workload fluctuations [37]. The model clusters the workload
based on transaction types and predicts the resource utilization of
the system based on transaction mixtures. It is an off-line model
that assumes fixed types of transactions. Our work not only looks
at the current workload mixtures but also predicts the future work-
load. DBSherlock is a diagnostic tool for transactional databases
that uses causal models to identify the potential causes of abnormal
performance behavior and provides a visualization [55]. The mod-
eling in this line of work aims to help the DBAs understand their
system and identify bottlenecks. The authors in [38] use analytical
models to continuously monitor the relationship between system
throughput, response time, and buffer pool size.

Others have used Markov models to predict the next SQL state-
ment that a user will execute based on what statements the DBMS
is currently executing [31, 41]. The authors in [18] combine Markov
models with a Petri-net to predict the next transactions. The tech-
nique proposed in [31] extends this model to detect workload shifts.
Previous work combines these techniques with a workload clas-
sification method to model periodic and recurring patterns of the
workload [28, 29]. These methods capture certain patterns in a
workload, but none of them are able to predict the volume, dura-
tion, and changes of workloads in the future.

The workload compression technique in [11] shares a similar
goal with our work. A set of SQL DML statements are compressed
by searching which queries to remove from the workload with
an application-specific distance function D(q;, ;) for any pair of
SQL queries q; and g;. This technique does not model the temporal
pattern of the queries. Previous works also use set representation
to model a database workload [48, 49]. They assume that all trans-
actions arriving at the system belong to a fixed set of pre-defined
transaction types. Various collected/aggregated run-time statistics
are also used to analyze the structure and complexity of SQL state-
ments and the run-time behaviors of the workload [56].

Other works have looked at how to predict the run-time metrics
of specific queries. PQR uses a variant of the decision tree to deter-
mine which bucket the latency of a query belongs to using the query
plan and system load metrics as input features [26]. Ganapathi et al.
applied Kernel Canonical Correlation Analysis to project query plan
vectors and performance metric vectors into the same subspace
to estimate the metrics for a new query [23]. Such a prediction is
invalidated when the hardware/database design changes.

9 CONCLUSION

We presented a forecasting framework that allows a DBMS to pre-
dict the expected arrival rate of queries in the future based on his-
torical data. Our approach uses the logical composition of queries
to reduce the number of queries that it needs to monitor, an on-line
clustering method to group query templates with similar patterns
together, and a hybrid learning method to forecast the query arrival
rate. Our results show that QB5000 is effective in helping the DBMS
select the optimal indexes for the target workload in real time.
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of the three largest clusters and the total workload volume with different
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Figure 14: Prediction Accuracy with p - Normalized prediction accuracy
for one-hour horizon with different similarity threshold p.

APPENDIX
A SENSITIVITY ANALYSIS OF p

We now the analyze QB5000’s cluster coverage ratio and prediction
accuracy for different p values. As discussed in Section 5.2, p is
the sensitivity threshold used by the on-line clustering component
to determine whether a template should belong to a cluster. In
these experiments, we perform on-line clustering and arrival rate
forecasting for values of p ranging from 0.5 to 0.9 for each of the
three workloads. Setting p=1.0 results in every template having its
own cluster, whereas setting it to 0.0 would group all the templates
into a single cluster. We set both the prediction interval and the
horizon to be one hour for the forecasting. We then measure the
cluster coverage ratio and the prediction accuracy for the three
highest-volume clusters.

Figure 13 shows the average volume ratio between the three
largest clusters and the total workload volume for increasing values
of p. The higher the p is, the more similar the templates within the
same cluster are. But the number of templates contained in each
cluster is also smaller, which means that the three largest clusters
cover less of the workload when p is high. The results show that
the coverage of the largest clusters is stable when p increases from
0.5 to 0.8 for all three workloads, but it drops when p reaches 0.9.

Figure 14 shows the sensitivity of the prediction accuracy to
different values of p for the three largest clusters. The results show
that the prediction accuracy improves as p increases for all three
workloads. Since the similarity of the templates within the same
cluster increases with p, the prediction results also improve since
the centers of the clusters provide a more accurate representation
of the arrival rate patterns captured by each cluster.

Given this analysis, we set p=0.8 in our evaluation since we find
that it provides the best balance between the prediction accuracy
and the coverage ratio for all three of the workloads.

B INPUT SPACE FOR SPIKE PREDICTION

We now demonstrate why KR is able to better predict spikes in a

workload compared to the other forecasting models we considered.

Recall from Section 6.1 that the prediction of KR for a given input is
a weighted average of all of the training inputs, where the weights

® 2016 Dec 01 A 2016 Dec 31
@ 2017 Dec 01 A 2017 Dec 31
Y% 2016 Dec 15 @® 2016 Sep 01
% 2017 Dec 15 @ 2017 Sep 01

Figure 15: Input Space Time-Progress — The 3D-projected input space
for the Admissions workload with spikes. The trajectory color follows dates.

decrease with the distance between the given input and the cor-
responding training inputs in the kernel space. QB5000 uses the
arrival rate history from the previous three weeks (aggregated into
one-hour intervals) as the input for KR.

Figure 15 shows the inputs for KR at each hour-interval in the
Admissions workload trace. The input is projected into 3D space
using a common dimensionality reduction technique, PCA [42].
Inputs on nearby dates have similar colors in the trajectory. From
this figure, we see the points that correspond to the spike activity are
clearly separated from the “normal” activity points. The trajectories
from December 1st to December 31st in both 2016 and 2017 travel
a much longer distance in the 3D space than in other months. The
results also show that inputs that correspond to the same spikes
in each of the two years have closer positions in the space. This
demonstrates how kernel methods can easily recognize points with
high query volumes and predict the future spikes based on the ones
observed in the previous year. KR enables QB5000 to predict which
dates spikes might occur on throughout the year without explicit
domain knowledge.

C SENSITIVITY ANALYSIS OF y

We next analyze the impact of the threshold y on the prediction per-
formance of QB5000’s HYBRID models for workloads with growth
and spike patterns. We use the same experimental settings as in
Section 7.3.

Figure 16 shows the combined query arrival rate predictions
from all clusters when the threshold y is set to be 100%, 150%, and
200%. The model is able to predict the major spike patterns for
all three settings of y. When y is lower, HYBRID uses the result
from KR more often than ENSEMBLE, thus improving its ability
to predict spikes. However, lower values of y have increasingly
negative impacts on the MSE of the predictions when no spike
patterns are present in the workload. In our experiments, we found
out that HYBRID has a negligible effect on the MSE of ENSEMBLE
when y > 100%. Given this analysis, we set y to 150% in QB5000.
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Figure 16: Prediction Results — Actual vs. predicted query arrival rates for the combined clusters in the Admissions workload with HYBRID (ENSEMBLE

model corrected by KR).
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Figure 17: Prediction Results — Actual vs. predicted query arrival rates for a synthetic noisy workload.

D PREDICTING NOISY WORKLOADS

In Section 2.2, we presented three workload patterns that are preva-
lent in today’s applications. But some workloads may not exhibit
strong temporal patterns, and thus their arrival rates from the re-
cent past may differ substantially from the present. This section
extends our evaluation of QB5000 by demonstrating its ability to
predict the arrival rates of a noisy workload without any tempo-
ral patterns to exploit. We use the HYBRID forecast models in this
experiment. Such a workload represents a worst-case forecasting
scenario for QB5000 since the arrival rates are unpredictable.

We constructed a synthetic workload trace that consists of bench-
marks from the OLTP-Bench testbed that differ in complexity and
system demands [2, 16]. We execute the following eight bench-
marks consecutively with varying average arrival rates: Wikipedia,
TATP, YCSB, Smallbank, TPCC, Twitter, Epinions, and Voter. Each
benchmark is executed for 10 hours. We add white noise to the
arrival rate that has a variance set to be 50% of its mean. We also
inject random anomalies (i.e., spikes) into the arrival rate of the
queries. As we described in Section 5.2, QB5000 monitors the ratio
of previously unseen templates in the workload, and re-clusters
the templates once it detects that the workload has switched from
one to another. We set the prediction horizon to be one hour and

the prediction interval to be one minute. Since each workload is
executed for only 10 hours, QB5000 does not have enough training
data to predict long horizons.

The results in Figure 17 show the combined predicted arrival
rates of all clusters. Each time tick represents when the benchmark
shifts from one to another. The results show that QB5000 is able
to automatically identify these shifts in the workload and adapt to

the new queries. This demonstrates that even when the workload
is noisy and the arrival rate is unpredictable, QB5000 is still able to

predict the average query volume most of the time.
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