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ABSTRACT

In-memory database management systems (DBMSs) outperform
disk-oriented systems for on-line transaction processing (OLTP)
workloads. But this improved performance is only achievable when
the database is smaller than the amount of physical memory avail-
able in the system. To overcome this limitation, some in-memory
DBMSs can move cold data out of volatile DRAM to secondary
storage. Such data appears as if it resides in memory with the rest
of the database even though it does not.

Although there have been several implementations proposed for
this type of cold data storage, there has not been a thorough evalu-
ation of the design decisions in implementing this technique, such
as policies for when to evict tuples and how to bring them back
when they are needed. These choices are further complicated by the
varying performance characteristics of different storage devices, in-
cluding future non-volatile memory technologies. We explore these
issues in this paper and discuss several approaches to solve them.
We implemented all of these approaches in an in-memory DBMS
and evaluated them using five different storage technologies. Our
results show that choosing the best strategy based on the hardware
improves throughput by 92-340% over a generic configuration.

1. INTRODUCTION

In-memory DBMSs provide better throughput and lower latency
for OLTP applications because they eliminate legacy components
that inhibit performance, such as buffer pool management and con-
currency control [17]. But previous work has shown that the perfor-
mance of an in-memory DBMS will drop by up to 66% when the
dataset grows larger than the memory capacity, even if the working
set fits in memory [22]. Enabling an in-memory DBMS to sup-
port databases that exceed the amount of available memory is akin
to paging in operating systems (OS). When the system runs out
of memory, the OS writes cold data pages out to disk, typically
in least-recently-used (LRU) order. When an evicted page is ac-
cessed, it trips a page fault that causes the OS to read the page back
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in. If the OS does not have any free memory for this new page, it
will have to evict other pages first before the requested page can be
brought back. Virtual memory is problematic for a DBMS because
it does not know whether or not a page is in memory and thus it has
no way to predict when it will hit a page fault. This means that the
execution of transactions is stalled while the page is fetched from
disk. This problem has been known since the early 1980s [23] and
more recently has even affected newer DBMSs like MongoDB that
rely on OS-level memory management (pre-WiredTiger) [6].

Several approaches have been developed to allow in-memory
DBMSs to support larger-than-memory databases without sacri-
ficing the higher performance that they achieve in comparison to
disk-oriented systems. The crux of how these techniques work
is that they rely on the skewed access patterns exhibited in OLTP
workloads, where certain data tuples are “hot” and accessed more
frequently than other “cold” tuples. For example, on a website like
eBay, new auctions are checked and bid on frequently by users near
the auction’s end. After the auction is closed, it is rarely accessed
and almost never updated. If the auction data is moved to cheaper
secondary storage, the system can still deliver high performance for
transactions that operate on hot in-memory tuples while still being
able to access the cold data if needed at a later point in time.

But how the DBMS should use secondary storage for its cold
data is highly dependent on the properties of the underlying hard-
ware. Thus, in this paper, we identify policies that are crucial to
the performance of an OLTP DBMS with a larger-than-memory
database. To evaluate these design choices, we implemented all
of them in the H-Store [3] DBMS and analyzed them using dif-
ferent OLTP workloads. We deployed the system with five differ-
ent storage devices that all have distinct performance characteris-
tics: (1) HDD, (2) shingled magnetic recording HDD, (3) NAND-
based SSD, (4) emulator for 3D-XPoint like technologies, and (5)
byte-addressable NVRAM. Our experimental results show that by
properly accounting for the hardware’s properties in the DBMS for
cold-data storage, we can achieve up to 3 x higher throughput.

2. STORAGE TECHNOLOGIES

We first summarize the different storage technologies that are
available today. Let’s assume that the DBMS read/writes tuples
from these devices with a block-granularity. When a transaction
accesses a cold tuple stored on the device, the DBMS needs to read
the entire block containing that tuple back into memory.

Hard-Disk Drive (HDD): Modern HDDs are based on the same
high-level design principles from the 1960s: a magnetic platter
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Figure 1: Storage Comparison — Evaluation of the storage devices using
a microbenchmark that simulates a workload of reading and writing cold
tuples in an in-memory DBMS.

spins and an arm reads data off of it with a block-granularity (typ-
ically 4 KB). Since moving the platter and the arm is a mechanical
process, these drives are the slowest of all the devices except for
the SMR HDDs. As sequential reads and writes to the device do
not require the arm to be re-positioned, they are faster than random
accesses. The main advantage of HDDs is that they have a high
data density and consequently offer more storage space per dollar.

Shingled Magnetic Recording Drive (SMR): SMR is a newer
HDD recording technology that is designed to increase the storage
density and overall per-drive storage capacity [26]. The SMR drive
can pack more data onto the platter by using narrower tracks than
a HDD. However, narrower tracks can cause writes to overwrite
data stored on nearby tracks. The SMR drive must repair the data
on contiguous tracks on each write to protect them. So, writes are
slower and more unpredictable than a regular HDD. However, the
read performance of SMR drives is similar to that of HDDs.

Solid-State Drive (SSD): These devices differ from HDDs in
that they do not have any moving parts. Instead, they use NAND
storage cells (sometimes refered to as “flash”) that retain data even
after power is cut. These devices also provide block-level access
granularity to the data (also typically 4 KB). SSDs are currently
3-10x more expensive per GB than an HDD, but their read and
write latencies are up to 1300x and 1000 x lower, respectively [9].
Another major challenge with them is that each storage cell can
only be written to a fixed number of times before it wears out.

3D XPoint SSD (3DX): 3D XPoint [1] is one type of non-volatile
memory (NVM) that has 1000x lower latency and 1000 higher
endurance than flash-based SSDs. Unlike in DRAM where each
memory cell needs a transistor for selection, this technology uses
perpendicular wires to connect submicroscopic storage columns
that can be addressed by selecting their top and bottom wires. Cur-
rent 3DX devices have 10x higher density than DRAM and export
a PCle NVMe interface with an SSD form factor.

NVRAM: Non-volatile random-access memory (NVRAM) rep-
resents a broad class of byte-addressable persistent storage tech-
nologies. This includes 3DX, PCM [21], memristors [25], and
STT-MRAM [14]. In contrast to the other devices that use PCle
or SATA interfaces, future NVRAM storage will use DIMM slots
to deliver lower latencies and higher bandwidths to the CPU(s).
They are predicted to provide lower read/write latencies and better
endurance than existing SSDs. They will also have higher densities
and larger capacity than DRAM. NVRAM’’s latency is expected to
be 2—8x higher than DRAM latency [8], and they do not require
periodic refreshing unlike DRAM.

To better understand the performance characteristics of these five
devices, we use a microbenchmark that simulates the access pat-
terns of cold-data storage for an in-memory DBMS. We use a disk-
resident hash table similar to the one used in anti-caching [12]. We

first load a database of 10m tuples that are 1 KB each. We then exe-
cute Sm operations (50% reads / 50% writes) with a highly skewed
Zipfian distribution against the hash table using a single thread to
avoid the overhead of concurrency control. Each operation accesses
either 1 or 64 tuples. We use direct I/O to avoid OS-level caching
and invoke the appropriate synchronization primitive (e.g., fsync,
pcommit [8]) after each write operation. We execute three trials
per device and report the average latency of the operations. We
describe these hardware devices in Sect. 5.

The results in Fig. 1 show that the difference between reads and
writes for all the devices is 1.8-93.8%. The difference is more
prominent for magnetic drives than other devices. The time taken
to perform a 64 KB read/write is similar to that required for a 1 KB
operation on HDD/SMR, whereas on DRAM/NVRAM these op-
erations take up to 20x more time. The access latency of 3DX is
up to 10x lower than that of the NAND-based SSD. SMR exhibits
larger variance on writes compared to other devices. We note that
the performance of NVRAM is similar to that of DRAM.

We contend that in-memory DBMSs need to employ the hardware-
specific strategies for cold-data storage. But at the same time there
are other policies that are independent of the hardware. Given
this, we first describe these independent policies in Sect. 3. Then
in Sect. 4 we discuss the policies that are closely tied to the de-
vice. For each policy, we summarize how they are used in existing
DBMSs that support larger-than-memory databases: (1) H-Store’s
anti-caching [12], (2) Apache Geode’s overflow tables [2], (3) Mi-
crosoft’s Project Siberia [16] in Hekaton, (4) a variant of VoltDB
from EPFL [22], and (5) MemSQL’s external tables [4].

3. HARDWARE INDEPENDENT POLICIES

We now discuss DBMS implementation policies that are not af-
fected by the underlying non-volatile device for cold data storage.

3.1 Cold Tuple Identification

In order to move data out of memory to non-volatile storage, the
DBMS must identify which tuples to evict based on some metric.
This issue has been thoroughly studied in buffer managers for disk-
oriented DBMSs and thus there are many techniques that can be
borrowed from them. In general, there are two approaches: (1)
on-line identification and (2) off-line identification.

The on-line approach maintains internal data structures that track
the usage information of tuples. The DBMS updates the data struc-
ture whenever tuples are accessed, and identifies the coldest tuple
directly from the data structure when it needs to evict data. The ma-
jor concern of this approach is that maintaining fine-grained track-
ing information for all of the tuples in a database can be costly, so
in practice certain approximation techniques like sampling can be
applied. This approach is used in H-Store and Apache Geode [2].

The off-line approach uses a dedicated background thread to an-
alyze the DBMS’s write-ahead log to compute the tuples’ access
frequencies. This information is then provided to the DBMS, which
then uses it to identify the cold tuples. Hekaton and EPFL’s variant
of VoltDB adopt this technique. It is more computationally effi-
cient than the on-line approach, but requires more storage space to
log the access tuples. It also only provides access frequency infor-
mation after the analysis of all the log records, whereas the on-line
approach can provide identification result in real-time.

3.2 Evicted Tuple Meta-data

The next design choice is what information the DBMS should
keep in memory for the evicted tuples. This is required to handle
queries that access data that does not reside in memory.



One solution is to leave a marker to represent an evicted tuple
in memory. This is the approach used in H-Store. After a tuple is
moved to secondary storage, a special “tombstone” tuple is created
in its place that contains the storage location of the evicted tuple.
The DBMS then updates every index that references that tuple to
point to the tombstone. Every tuple has a flag in its header to in-
dicate whether it is a tombstone so that the DBMS can determine
whether it needs to retrieve the original data from cold data storage
whenever the tuple is accessed. This only reduces memory usage if
the size of the tombstone (64 bits) is less than the original tuple.

Instead of using tombstones, the DBMS can use a space-efficient
probabilistic data structure (e.g., Bloom filter) to track whether a
tuple exists on the secondary storage. The DBMS checks the filter
before it executes a query to determine whether the data it needs
has been evicted. If the filter indicates that some of the tuples
it needs are in the cold-data storage, the DBMS fetches the data
back into memory. These filters use less memory than tombstones
but may report false positives that cause unnecessary reads to sec-
ondary storage. This approach is employed in Hekaton [16].

The most memory efficient approach is for the DBMS to keep
no information about evicted tuples and instead let the OS manage
the cold data using virtual paging [22]. EPFL’s variant of VoltDB
analyzes transactions’ access patterns and moves cold tuples to a
memory region that the OS is allowed swap out to secondary stor-
age. In the end, however, it is the OS that decides when to move
the data. Because the DBMS has no information about the physical
location of a tuple during query execution, it can incur long stalls
when a transaction accesses a tuple that is not in memory.

Using tombstones enables the DBMS to track evicted tuples with-
out affecting transactions that operate on hot tuples, but it requires
the most memory. Filters consume less memory, but increase the
computational overhead as the DBMS has to check the filters for
each query. Virtual memory requires no extra computation or mem-
ory, but the DBMS is unaware of data location and is unable to
control what happens when an evicted tuple is accessed.

3.3 Eviction Timing

The last policy is when the DBMS should evict cold tuples from
memory out to non-volatile storage. The simplest mechanism is
for DBMS to monitor the database’s memory usage and begin the
eviction process when it reaches a threshold defined by the admin-
istrator. The DBMS can continue to move data until it goes below
this threshold. If this approach is used with on-line identification,
like in H-Store or Geode, then the DBMS can trigger the eviction
process immediately when it detects that it is running out of mem-
ory. With off-line identification, however, it must first wait for the
analysis process to finish before it can start evicting tuples.

If the DBMS uses virtual memory (as in EPFL’s variant of VoltDB),

then the OS decides to swap the cold data to secondary storage
when it runs out of physical memory. The DBMS cannot explicitly
instruct the OS to invoke the eviction process and thus it cannot
control the exact amount of memory used by the DBMS.

Lastly, the DBMS can entirely defer the decision about when to
move data out of memory to a human administrator. As an example,
the DBA can declare a table to be in on-disk column-based stores
in MemSQL when they think available memory is not enough.

4. HARDWARE DEPENDENT POLICIES

We next discuss three policies that are tightly coupled to the stor-
age technology used for the DBMS’s cold-data storage. We ana-
lyze how the characteristics of the hardware device relate to each
of these policies.

4.1 Cold Tuple Retrieval

The first policy is how the DBMS should move tuples back into
DRAM from the secondary storage. Again, we assume that the
DBMS reads from and writes to the storage device in blocks.

One method is to abort the transaction that touches cold tuples,
merge the tuples asynchronously into memory, and then restart the
transaction. We call this method abort-and-restart (AR). This re-
moves the overhead of reading the data out of a transaction’s crit-
ical path, which is important if the device has a high read latency.
It also enables the DBMS to use larger blocks for cold storage be-
cause data is read in a background thread, which benefits HDDs and
SMR HDDs where sequential access is much faster than random
access. The disadvantage of this method, however, is that it intro-
duces additional overhead from aborting transactions. Restarting a
long-running transaction can also be costly if the DBMS aborts that
transaction near the end of its execution.

The alternative approach is synchronous retrieval (SR) where the
DBMS stalls a transaction that accesses evicted tuples while the
data is brought back into memory. There is no additional overhead
with respect to aborting and restarting the transaction, but the re-
trieval of data from the secondary storage delays the execution of
other transactions. This delay can be significant for a DBMS that
uses a coarse-grained locking concurrency control scheme (e.g., H-
Store/VoltDB [24]). In other schemes, this stall increases both the
amount of time that a transaction holds a lock and the likelihood
that validation will fail. Thus, the SR policy is ideal when using
smaller eviction block sizes on devices with low latencies.

4.2 Merging Threshold

Another important policy is where the DBMS should put tuples
when they are brought back into memory. It could merge them
back into the regular table storage (i.e., heap) immediately after a
transaction accesses it so that future transactions can use it as well.
This is important if the cost of reading from the device is high. But
given that OLTP workloads are often skewed, then it is likely that
the data that was just retrieved is still cold and will soon be evicted
again. This thrashing will degrade the DBMS’s performance.

One way to reduce this oscillation is to delay the merging of
cold tuples. When a transaction accesses evicted tuples, the DBMS
stores them in a temporary in-memory buffer instead of merging
them back into the table. Then when that transaction finishes, the
DBMS discards this buffer and reclaims the space. This avoids the
thrashing problem described above, but requires that the DBMS
also track the access frequency of evicted data so that when access
pattern changes and certain cold data becomes hot, the DBMS can
bring them back into the regular table. The storage overhead of this
tracking information should be minimal. Our implementation of
this approach maintains a count-min sketch to approximate the ac-
cess frequency of evicted data because it only uses a small amount
of storage space that is proportional to the total frequency of all
tracked items [11]. The DBMS needs to perform more reads from
the secondary storage when the merging threshold is higher. Thus,
this setting benefits storage technologies with lower read costs.

4.3 Access Methods

Up until now, we have assumed that the DBMS manages cold
tuples in a block-oriented manner. That is, the system reads and
writes data from the secondary storage device in batches that are
written sequentially. Although this mitigates the high latency of
storage device by reducing the number of reads/writes, it causes
the DBMS to almost always read more data in than it actually needs
whenever a transaction accesses a single evicted tuple.
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Figure 2: Cold Tuple Retrieval — Throughput for the YCSB workload in H-Store with anti-caching when using different storage devices with the two retrieval
policies from Sect. 4.1. For each device and retrieval configuration, we scale up the size of the cold tuple blocks from 1 to 1024 KB.

This block-oriented model could be inappropriate for the future
NVRAM storage that is able to support byte-level operations. In-
stead of organizing tuples into blocks, an alternative approach is
to map a portion of the DBMS’s address space to files on storage
devices using mmap system call and then move the cold data to the
mapped region. This is similar to the approach taken in EPFL’s
variant of VoltDB [22] except that the DBMS controls the flushing
process (rather than the OS). We adopt this approach by using a file-
system designed for byte-addressable NVRAM (PMFS) [15]. This
enables the DBMS to operate directly on NVRAM-resident data as
if it existed in DRAM, thereby obviating the need for merging it.

S. EXPERIMENTAL ANALYSIS

In this section, we present our analysis of how hardware affects
the choice of the policies the DBMS adopts. For cold tuple retrieval
and merging policies, we show the effect of them on each hardware
type and discuss what the better policy is for each of them. For ac-
cess method policies, we restrict our analysis to NVRAM as it is the
only device that can bypass the OS’s filesystem API for byte-level
access. We finish with an evaluation of the benefits of choosing
policies that are tailored for each device.

In these experiments, we use a single machine with a dual-socket
Intel Xeon E5-4620 @ 2.60 GHz (8 cores per socket) and 4 x32 GB
DDR3 RAM (128 GB total). This single server supports the five
storage devices that we described in Sect. 2:

HDD: Seagate Barracuda (3 TB, 7200 RPM, SATA 3.0)
SMR: Seagate Archive HDD v2 (5 TB, 5900 RPM, SATA 3.1)
SSD: Intel DC S3700 (400 GB, SATA 2.6)

3DX: This is a PCle emulator from Intel Labs that supports la-
tencies that closely matches the real hardware prototype.

NVRAM: This is another emulator from Intel Labs that sup-
ports byte-addressable reads/writes [15]. We configure the
emulator’s latency to be 4x that of DRAM [8§].

We implemented the three hardware dependent policies in the
anti-caching component [12] for the H-Store DBMS [18]. Anti-
caching performs on-line cold data identification by keeping tomb-
stones in memory to represent evicted tuples, and monitoring its
memory usage. We note that the hardware dependent policies that
we examine in this analysis are equally useful in other DBMSs.

5.1 Cold Tuple Retrieval

For our first experiments, we use the YCSB [10] workload com-
prised of 90% read transactions and 10% write transactions. We
start with comparing the cold tuple retrieval policies: (1) abort-
and-restart (AR), and (2) synchronous retrieval (SR). We also vary
the size of the eviction block for each of these two policies. We use
a 10 GB database with 1.25 GB DRAM available to the DBMS for
hot tuple storage. Each YCSB tuple is 1 KB. The workload gener-
ator is configured to use a highly skewed distribution for transac-
tions’ access patterns (factor=1.0). Under this distribution, 90% of
the transactions are accessing only 10% of the tuples.

We now discuss the results for each of the storage devices shown
in Fig. 2. Each graph also includes the upper-bounds performance
measurement of when the database fits entirely in DRAM.

HDD: The results in Fig. 2a show that the AR policy achieves
the best performance with large block sizes because HDD’s read la-
tency is high and it is faster to perform sequential writes. Likewise,
because of their high write latencies, reducing the number of writes
by using larger blocks improves the performance. These larger
blocks make reading data take longer, but it does not affect the
throughput with AR since the retrieval is outside the critical path of
transactions. The SR policy, however, stalls the DBMS from exe-
cuting transactions for a long time when they access evicted data.

SMR: In Fig. 2b, we see that the SMR’s performance trend with
different block sizes is similar to HDD’s because these two devices
have similar characteristics. The AR policy also achieves the best
performance with large block sizes. Another observation is that the
larger variance in the read/write latency does not affect the SMR’s
performance that much as compared to HDD.

SSD: Fig. 2c shows that larger block sizes do not provide better
performance with SSDs like with HDDs because sequential writes
are not much faster. As we showed in Fig. 1, writing a 64 KB
block is 80% slower than writing a 1 KB block with a SSD. Smaller
block size enables finer-grained data retrieval, which is beneficial
to the SR policy. But using a size less than 4 KB hurts performance
because it is smaller than what the hardware supports. The best
performance of the two policies are similar because the overhead of
aborting and restarting transactions negates the advantage of non-
blocking data retrieval. Nevertheless, the performance with the AR
policy is more stable across different block sizes.
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3DX: The results in Fig. 2d are similar with SSD’s except that
the overall performance is slightly higher. According to Fig. 1, the
3DX is 5.5-10x faster than the SSD, but this does not significantly
improve the performance when the workload is highly skewed and
the cold storage is accessed infrequently. In Sect. 5.4, we show
results when the workload distribution is more uniform.

NVRAM: Assuming that NVRAM’s latencies will be compara-
ble to DRAM, we would expect that the overhead of the AR policy
is higher than with SR. Indeed, Fig. 2e shows that the advantage to
use larger blocks to reduce random writes is insignificant. The best
policy for NVRAM is to use SR with the smallest block size. We
note that the SR’s performance with 1 KB block is slightly lower
than with 4 KB block. This is because reducing the number of ran-
dom writes still has little benefit given the latency of NVRAM is
4 higher than DRAM, and thus writing 4 KB at once to NVRAM
is faster than writing 1 KB four times.

5.2 Merging Threshold

We next analyze the impact of merging thresholds on the DBMS’s
performance with YCSB. When an evicted tuple is accessed but not
modified by a transaction, the DBMS determines whether a tuple
should either be put into a temporary buffer or merged back into
the table based on its access frequency. If a tuple is updated, then
the DBMS always merges it back into the table because otherwise
it has to be written back to the secondary storage. The four policies
that we evaluated are (1) to only merge when a tuple is updated,
(2) to only merge when a tuple is the top 5% most accessed, (3) to
only merge when a tuple is the top 20% most accessed, and (4) to
always merge a tuple. We use one Count-Min Sketch per table to
track the cold tuple access frequencies; each Sketch uses ~100 KB
of memory for a table with 10m tuples. We use the same workload
settings as in Sect. 5.1, and pick the best retrieval policy and block
sizes for each device based on those results.
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Figure 5: Access Methods — Comparison between block-based or tuple-

based access methods for cold-data storage using DRAM and NVRAM.

HDD & SMR: The first thing to notice is that the AR policy does
not work well for these devices with selective merging because it
increases the number of reads from secondary storage. This is es-
pecially harmful when using 1024 KB blocks. For comparison, we
also test the performance of SR policy with HDD/SMR with 16 KB
blocks. The result in Fig. 3 shows that for that policy the merging
threshold can help the performance of the DBMS improve to a sim-
ilar throughput as with AR policy.

SSD, 3DX, & NVRAM: The results in Fig. 3 show that selec-
tively merging data always improves performance with the three
solid-state devices. This is because the DBMS does not have to
keep moving data in and out of secondary storage. On average,
setting the merging threshold to the top 5% frequently accessed tu-
ples increases the eviction interval by 6 x for all the three devices.
To measure this effect, Fig. 4 shows times-series graphs of the sus-
tained throughput of the DBMS when it only merges the top 5% of
evicted tuples back into memory. These graphs also indicate that
the DBMS has smallest throughput drop with NVRAM when data
is evicted compared to the other devices.

5.3 Access Methods

We now investigate the impact of access method policies with
NVRAM. We use the same YCSB workload as in the previous two
sections, except we vary the skew setting in the transaction’s access
patterns from low (factor=0.5) to high (factor=1.25).

The results in Fig. 5 show that directly accessing NVRAM im-
proves overall performance, especially for low-skew workloads.
When the latency of the persistent device is comparable to DRAM,
the overhead of tuple-to-block transformation and the file-system
cache becomes significant. The performance difference with higher
skew is minor because the data exchange between memory and sec-
ondary storage is infrequent. Because the H-Store DBMS we use
for evaluation executes queries serially at disjoint partitions each of
which is handled by a single thread, the throughput of the DBMS
is limited by the CPU speed when the number of quries operate on
a specific partition is significantly larger than others. This leads
to the performance degradation when the workload skew is higher.
The takeaway from this experiment is that future DBMSs will want
to use NVRAM as an extension of their address space rather than
treating it as just a faster SSD.



| Block Size | Retrieval | Merging | Access Method

Default | 1024 KB AR Merge-All | Block-level
HDD | 16 KB SR Top-5% Block-level
SMR | 16 KB SR Top-5% Block-level

SSD | 4KB SR Top-5% Block-level
3DX | 4KB SR Top-5% Block-level
NVRAM | N/A SR Top-5% Byte-level

Table 1: Policy configurations for the different storage devices.

5.4 Additional Workloads

Lastly, we measure the performance of the DBMS using all best
policy configurations for each storage device on other OLTP work-
loads (see Table 1). We compare each optimized configuration with
a single “default” configuration from the original anti-caching pa-
per [12]. For HDD and SMR, the default configuration performs
the same as their optimized policies in YCSB, but we still test them
for comparison. The tables in each database are partitioned in such
way that there are only single-partition transactions [20]

Voter: This benchmark simulates a phone-based election appli-
cation. It is designed to saturate the DBMS with many short-lived
transactions that each updates a small number of tuples. Fig. 6a
shows that the DBMS’s performance with the optimized and generic
configurations is similar for all devices. That is because Voter’s
transactions insert tuples that are never read. Thus, the DBMS’s
cold-data component just writes tuples out to secondary storage,
which does not occur too frequently since the tuples are relatively

small (0.23 KB). The performance of the optimized strategy is slightly

lower than that of the default configuration, because writes are less
sequential with smaller block sizes.

TPC-C: This benchmark is the industry standard for evaluating
the performance of OLTP systems [27]. It consists of five transac-
tion types that simulate an order processing application, but only
one of them accesses evicted tuples (OrderStatus) and it is only
4% of the workload. Thus, the results in Fig. 6b show that there is
not a significant improvement in performance for most devices be-
cause the movement of data back-and-forth between memory and
secondary storage is not as frequent in TPC-C as itis in YCSB. It is
only with 3DX and NVRAM do we see a more prominent improve-
ment over the generic configuration (36% and 26%, respectively).

TATP: This last workload simulates a caller location system
used by cellphone providers. In Fig. 6c we see that the optimized
configurations always outperform the default configuration. This is
for two reasons. First, the TATP workload is not skewed, and thus
there are more transactions that access evicted data than in TPC-C
or Voter. This amplifies the advantage of hardware-optimized poli-
cies. Second, the tuple sizes in TATP (0.18-0.57 KB) are much
smaller than in YCSB, and each transaction may access multiple
evicted tuples. This makes using smaller eviction block sizes ideal
because the DBMS is able to retrieve evicted tuples with a finer
granularity. Further, the throughput of the default policy is unpre-
dictable because the DBMS is unable to bring back the evicted tu-
ples to memory fast enough. This shows that faster storage devices
do not always improve performance if they are used incorrectly.

6. RELATED WORK

The main challenge in supporting larger-than-memory databases
on an in-memory DBMS lies in accessing the data stored on a sec-
ondary storage device without slowing down the regular in-memory
operations. That is, allowing the DBMS to move data back and
forth between memory and disk without relying on a buffer pool
and other legacy components [17]. We now describe how previous
systems achieve this. There are other DBMSs that claim to support
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Figure 6: Additional Workloads — Throughput measurements for H-Store
with anti-caching when using the optimal hardware-dependent policy con-
figuration for each storage device compared to a default configuration.

larger-than-memory databases (P*TIME and SolidDB), but we are
unable to find documentation on their techniques.

The anti-caching architecture for the H-Store [3] DBMS moves
cold tuples from DRAM to a disk-resident hash table [12]. The
original version tracks the LRU information on a per-tuple basis us-
ing a linked list that is embedded in their headers. Storing the list in
this manner reduces the storage overhead and improves cache local-
ity by avoiding a separate data structure. To evict data, the DBMS
invokes a special transaction that blocks other transactions while it
combines the coldest tuples into a block and writes them out to the
anti-cache. The DBMS maintains a tombstone for each evicted tu-
ple that stores where the data can be found in the hash table. When
a transaction attempts to access an evicted tuple through its tomb-
stone, the DBMS aborts the transaction and then asynchronously
fetches the requested tuple in a separate thread. Once the data is
brought back into memory, the DBMS removes the tombstone, up-
dates index pointers, and then re-executes the transaction.

Microsoft’s Project Siberia [16] for Hekaton [13] identifies what
tuples to evict in a background thread that analyzes the DBMS’s
logs [19]. This avoids the overhead of having to maintain a tracking
data structure that is updated during execution. The cold tuples are
moved to secondary storage using a special migration transaction
that is composed of insert and delete operations. Instead of using
tombstones, Siberia maintains a Bloom filter for each index to track
evicted tuples. Range queries are supported by another special kind
of filter [7]. The DBMS needs to check both the regular indexes and
filters for each query. An evicted tuple is merged back into memory
only when it is updated by a transaction, otherwise it is stored in a
private cache and then released after that transaction terminates.

Researchers at EPFL created a variant of VoltDB that used the
OS’s virtual memory to support large-than-memory databases [22].
The DBMS divides its address space into pinned and unpinned re-
gions (using madvise). The former is used to store cold tuples
that the OS is allowed to evict, whereas the pinned region is for
hot data that the OS is prohibited from moving to disk. Similar to
anti-caching, the DBMS collects statistics about how transactions
access tuples. However, it uses a separate background thread to
analyze this information off-line. Instead of explicitly moving the



data to disk as done in anti-caching and Siberia, the DBMS moves
the cold tuples to the unpinned region. The advantage of this ap-
proach is that the DBMS does not need to track evicted tuples. It is
susceptible, however, to stalls due to page faults.

Apache Geode supports the ability to declare an in-memory ta-
ble as evictable. It identifies cold tuples simply based on their in-
sert order (FIFO). Evicted tuples are written out to a log file stored
on HDFS and the DBMS maintains some additional meta-data in-
memory to avoid false negatives.

The current version of MemSQL supports external tables [5].
When an in-memory table gets too large, the DBA can manually
extract cold tuples and then reload them into a column-based table
stored on an SSD. These tables appear to the application as a sep-
arate logical table that can be used together with in-memory data
for queries. This means that a developer has to rewrite their appli-
cation’s queries if they want to combine data from the in-memory
and the external tables.

7. CONCLUSION

This paper presented policies for managing cold data storage in
an in-memory DBMS. We outlined policies that are both indepen-
dent and tightly coupled to the underlying storage technology. We
then evaluated these policies in the H-Store DBMS using five dif-
ferent hardware devices. Our results showed that tailoring the strat-
egy for each storage technology improves throughput by up to 3x
over a generic configuration. We found that smaller block sizes and
synchronous retrieval policy are generally good choices for stor-
age devices that have low access latencies, such as SSD, 3DX, and
NVRAM. Limiting the number of cold tuples that are merged back
into table storage is effective on reducing the throughput oscilla-
tion. Finally, the performance of the DBMS with NVRAM can be
as good as with DRAM if treated correctly.
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