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PAGE: A Partition Aware Engine for
Parallel Graph Computation

Yingxia Shao, Bin Cui, Senior Member, IEEE and Lin Ma

Abstract—Graph partition quality affects the overall performance of parallel graph computation systems. The quality of a graph
partition is measured by the balance factor and edge cut ratio. A balanced graph partition with small edge cut ratio is generally
preferred since it reduces the expensive network communication cost. However, according to an empirical study on Giraph, the
performance over well partitioned graph might be even two times worse than simple random partitions. This is because these
systems only optimize for the simple partition strategies and cannot efficiently handle the increasing workload of local message
processing when a high quality graph partition is used. In this paper, we propose a novel partition aware graph computation
engine named PAGE, which equips a new message processor and a dynamic concurrency control model. The new message
processor concurrently processes local and remote messages in a unified way. The dynamic model adaptively adjusts the
concurrency of the processor based on the online statistics. The experimental evaluation demonstrates the superiority of PAGE
over the graph partitions with various qualities.

Index Terms—Graph Computation, Graph Partition, Message Processing
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1 INTRODUCTION

Massive big graphs are prevalent nowadays. Promi-
nent examples include web graphs, social networks
and other interactive networks in bioinformatics. The
up to date web graph contains billions of nodes and
trillions of edges. Graph structure can represent vari-
ous relationships between objects, and better models
complex data scenarios. The graph-based processing
can facilitate lots of important applications, such as
linkage analysis [8], [18], community discovery [20],
pattern matching [22] and machine learning factoriza-
tion models [3].

With these stunning growths of a variety of large
graphs and diverse applications, parallel processing
becomes the de facto graph computing paradigm for
current large scale graph analysis. A lot of parallel
graph computation systems have been introduced,
e.g., Pregel, Giraph, GPS and GraphLab [23], [1], [27],
[21]. These systems follow the vertex-centric program-
ming model. The graph algorithms in them are split
into several supersteps by synchronization barriers.
In a superstep, each active vertex simultaneously up-
dates its status based on the neighbors’ messages from
previous superstep, and then sends the new status as
a message to its neighbors. With the limited workers
(computing nodes) in practice, a worker usually stores
a subgraph, not a vertex, at local, and sequentially
executes the local active vertices. The computations
of these workers are in parallel.
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Therefore, graph partition is one of key compo-
nents that affect the graph computing performance. It
splits the original graph into several subgraphs, such
that these subgraphs are of about the same size and
there are few edges between separated subgraphs.
A graph partition with high quality indicates there
are few edges connecting different subgraphs while
each subgraph is in similar size. The ratio of the
edges crossing different subgraphs to the total edges
is called edge cut (ratio). A good balanced partition
(or high quality partition) usually has a small edge
cut and helps improve the performance of systems.
Because the small edge cut reduces the expensive
communication cost between different subgraphs, and
the balance property generally guarantees that each
subgraph has similar computation workload.

Scheme Edge Cut
Random 98.52%
LDG1 82.88%
LDG2 75.69%
LDG3 66.37%
LDG4 56.34%
METIS 3.48%

(a) Partition quality
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Fig. 1. PageRank on various web graph1partitions

However, in practice, a good balanced graph par-
tition even leads to a decrease of the overall per-
formance in existing systems. Figure 1 shows the
performance of PageRank algorithm on six different

1. uk-2007-05-u, http://law.di.unimi.it/datasets.php,please refer
to the detailed experiment setup in Section 6.
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partition schemes of a large web graph dataset, and
apparently the overall cost of PageRank per iteration
increases with the quality improvement of different
graph partitions. As an example, when the edge cut
ratio is about 3.48% in METIS, the performance is
about two times worse than that in simple random
partition scheme where edge cut is 98.52%. It indicates
that the parallel graph system may not benefit from
the high quality graph partition.

Figure 1(b) also lists local communication cost and
sync remote communication cost (explained in Sec-
tion 2). We can see that, when the edge cut ratio
decreases, the sync remote communication cost is re-
duced as expected. However, the local communication
cost increases fast unexpectedly, which directly leads
to the downgrade of overall performance. This ab-
normal outcome implies the local message processing
becomes a bottleneck in the system and dominates
the overall cost when the workload of local message
processing increases.

Lots of existing parallel graph systems are unaware
of such effect of the underlying partitioned subgraphs,
and ignore the increasing workload of local message
processing when the quality of partition scheme is
improved. Therefore, these systems handle the local
messages and remote messages unequally and only
optimize the processing of remote messages. Though
there is a simple extension of centralized message
buffer used to process local and remote incoming mes-
sages all together [27], the existing graph systems still
cannot effectively utilize the benefit of high quality
graph partitions.

In this paper, we present a novel graph computa-
tion engine, Partition Aware Graph computation En-
gine (PAGE). To efficiently support computation tasks
with different partitioning qualities, we develop some
unique components in this new framework. First, in
PAGE’s worker, communication module is extended
with a new dual concurrent message processor. The
message processor concurrently handles both local
and remote incoming messages in a unified way, thus
accelerating the message processing. Furthermore, the
concurrency of the message processor is tunable ac-
cording to the online statistics of the system. Second,
a partition aware module is added in each worker to
monitor the partition-related characters and adjust the
concurrency of the message processor adaptively to fit
the online workload.

To fulfill the goal of estimating a reasonable concur-
rency for the dual concurrent message processor, we
introduce the Dynamic Concurrency Control Model
(DCCM). Since the message processing pipeline sat-
isfied the prodcuer-consumer model, several heuris-
tic rules are proposed by considering the producer-
consumer constraints. With the help of DCCM, PAGE
provides sufficient message process units to handle
current workload and each message process unit has
similar workload. Finally, PAGE can adaptively accept

various qualities of the integrated graph partition.
A prototype of PAGE has been set up on top of

Giraph (version 0.2.0). The experiment results demon-
strate that the optimizations in PAGE can enhance
the performance of both stationary and non-stationary
graph algorithms on graph partitions with various
qualities.

The main contributions of our work are summa-
rized as follows.

• We propose the problem that existing graph com-
putation systems cannot efficiently exploit the
benefit of high quality graph partitions.

• We design a new partition aware graph compu-
tation engine, called PAGE. It can effectively har-
ness the partition information to guide parallel
processing resource allocation, and improve the
computation performance.

• We introduce a dual concurrent message pro-
cessor. The message processor concurrently pro-
cesses incoming messages in a unified way and
is the cornerstone in PAGE.

• We present a dynamic concurrency control
model. The model estimates concurrency for dual
concurrent message processor by satisfying the
producer-consumer constraints. The model al-
ways generate proper configurations for PAGE
when the graph applications or underlying graph
partitions change.

• We implement a prototype of PAGE and test it
with real-world graphs and various graph al-
gorithms. The results clearly demonstrate that
PAGE performs efficiently over various graph
partitioning qualities.

This paper extends a preliminary work [32] in
the following aspects. First, we detailed analyze the
relationship among the workload of message process-
ing, graph algorithms and graph partition. Second,
technical specifics behind the dynamic concurrency
control model are analyzed clearly. Third, the practical
dynamic concurrency control model, which estimates
the concurrency in incremental fashion, is discussed.
Fourth, to show the effectiveness of DCCM, the com-
parison experiment between DCCM and manual tun-
ing are conducted. Fifth, to show the advantage and
generality of PAGE, more graph algorithms, such as
diameter estimator, breadth first search, single source
shortest path, are ran on PAGE.

The remaining paper is organized as follows. Sec-
tion 2 discusses the workload of message processing
in graph computation systems. We introduce PAGE’s
framework in Section 3. Sections 4 and 5 elaborate the
dual concurrent message processor and dynamic con-
currency control model respectively. The experimental
results are shown in Section 6. Finally, we review the
related work and conclude the paper in Section 7 and
Section 8.
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2 THE WORKLOAD OF MESSAGE PROCESS-
ING

In Pregel-like graph computation systems, vertices
exchange their status through message passing. When
the vertex sends a message, the worker first deter-
mines whether the destination vertex of the message
is owned by a remote worker or the local worker. In
the remote case, the message is buffered first. When
the buffer size exceeds a certain threshold, the largest
one is asynchronously flushed, delivering each to the
destination as a single message. In the local case, the
message is directly placed in the destination vertex’s
incoming message queue [23].

Therefore, the communication cost in a single
worker is split into local communication cost and
remote communication cost. Combining the computa-
tion cost, the overall cost of a worker has three com-
ponents. Computation cost, denoted by tcomp, is the
cost of execution of vertex programs. Local communi-
cation cost, denoted by tcomml, represents the cost of
processing messages generated by the worker itself.
Remote communication cost, denoted by tcommr, in-
cludes the cost of sending messages to other workers
and waiting for them processed. In this paper, we
use the cost of processing remote incoming messages
at local to approximate the remote communication
cost. There are two reasons for adopting such an
approximation. First, the difference between two costs
is the network transferring cost, which is relatively
small compared to remote message processing cost.
Second, the waiting cost of the remote communication
cost is dominated by the remote message processing
cost.

The workload of local (remote) message processing
determines the local (remote) communication cost.
The graph partition influences the workload distribu-
tion of local and remote message processing. A high
quality graph partition, which is balanced and has
small edge cut ratio, usually leads to the local mes-
sage processing workload is higher than the remote
message processing workload, and vice versa.

2.1 The Influence of Graph Algorithms

In reality, besides the graph partition, the actual work-
load of message processing in an execution instance
is related to the characteristics of graph algorithms as
well.

Here we follow the graph algorithm category in-
troduced in [17]. On basis of the communication
characteristics of graph algorithms when running on
a vertex-centric graph computation system, they are
classified into stationary graph algorithms and non-
stationary graph algorithms. The stationary graph
algorithms have the feature that all vertices send and
receive the same distribution of messages between
supersteps, like PageRank, Diameter Estimation [14].

In contrast, the destination or size of the outgo-
ing messages changes across supersteps in the non-
stationary graph algorithms. For example, traversal-
based graph algorithms, e.g., Breadth First Search and
Single Source Shortest Path, are the non-stationary
ones.

In the stationary graph algorithms, every vertex
has the same behavior during the execution, so the
workload of message processing only depends on
the underlying graph partition. When a high quality
graph partition is applied, the local message process-
ing workload is higher than the remote one, and
vice versa. The high quality graph partition helps
improve the overall performance of stationary graph
algorithms, since processing local messages is cheaper
than processing remote messages, which has a net-
work transferring cost.

For the traversal-based graph algorithms belonging
to the non-stationary category, it is also true that
the local message processing workload is higher than
the remote one when a high quality graph partition
is applied. Because the high quality graph partition
always clusters a dense subgraph together, which is
traversed in successive supersteps. However, the high
quality graph partition cannot guarantee a better over-
all performance for the non-stationary ones, because
of the workload imbalance of the algorithm itself. This
problem can be solved by techniques in [17], [33].

In this paper, we focus on the efficiency of a worker
when different quality graph partitions are applied.
The systems finally achieve better performance by
improving the performance of each worker and leave
the workload imbalance to the dynamic repartition
solutions. The next subsection will reveal the draw-
back in the existing systems when handling different
quality graph partitions.

comp. comm.
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tcomp

(a) Combination in Giraph
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(b) Combination in PAGE

Fig. 2. Different combinations of computation cost,
local/remote communication cost. The arrows indicate
the ingredients of overall cost.

2.2 The Cost of a Worker in Pregel-like Systems

As mentioned before, the cost of a worker has three
components. Under different designs of the commu-
nication module, there are several combinations of
above three components to determine the overall cost
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Fig. 3. The framework of PAGE

of a worker. Figure 2 lists two possible combinations
and illustrates fine-grained cost ingredients as well.
Components in a single bar mean that their costs
are additive because of the sequential processing.
The overall cost equals the highest one among these
independent bars.

The cost combination in Giraph is illustrated in
Figure 2(a). The computation cost and local com-
munication cost are in the same bar, as Giraph di-
rectly processes local message processing during the
computation. The sync remote communication cost,
tsyncr = tcommr − tcomp − tcomml, is the cost of
waiting for the remote incoming message process-
ing to be accomplished after the computation and
local message processing finished. This type of the
combination processes local incoming messages and
remote incoming messages unequally, and the compu-
tation might be blocked by processing local incoming
messages. When the workload of processing local
incoming messages increases, the performance of a
worker degrades severely. This is the main cause that
Giraph suffers from a good balanced graph partition
which is presented in Section 1.

3 PAGE

PAGE, which stands for Partition Aware Graph com-
putation Engine, is designed to support different
graph partition qualities and maintain high perfor-
mance by an adaptively tuning mechanism and new
cooperation methods. Figure 3(a) illustrates the archi-
tecture of PAGE. Similar to the majority of existing
parallel graph computation systems, PAGE follows
the master-worker paradigm. The computing graph is
partitioned and distributively stored among workers’
memory. The master is responsible for aggregating
global statistics and coordinating global synchroniza-
tion. The novel worker in Figure 3(b) is equipped with
an enhanced communication module and a newly in-
troduced partition aware module. Thus the workers in

PAGE can be aware of the underlying graph partition
information and optimize the graph computation task.

3.1 Overview of two modules

The enhanced communication module in PAGE in-
tegrates a dual concurrent message processor, which
separately processes local and remote incoming mes-
sages, and allows the system to concurrently process
the incoming messages in a unified way. The concur-
rency of dual concurrent message processor can be
adjusted by the partition aware model online, to fit the
realtime incoming message processing workload. The
detailed mechanism of the dual concurrent message
processor will be described in Section 4.

The partition aware module contains two key com-
ponents: a monitor and a Dynamic Concurrency Con-
trol Model (DCCM). The monitor is used to maintain
necessary metrics and provide these information to
the DCCM. The DCCM generates appropriate param-
eters through an estimation model and changes the
concurrency of dual concurrent message processor.
The details of monitor and DCCM will be presented
in Section 5.

With the help of the enhanced communication mod-
ule and the partition aware module, PAGE can dy-
namically tune the concurrency of message processor
for local and remote message processing with light-
weight overhead, and provide enough message pro-
cess units to run itself fluently on graph partition with
different qualities.

3.2 Graph Algorithm Execution in PAGE

The main execution flow of graph computation in
PAGE is similar to the other Pregel-like systems.
However, since PAGE integrates the partition aware
module, there exist some extra works in each su-
perstep and the modified procedure is illustrated in
Algorithm 1. At the beginning, the DCCM in partition
aware module calculates suitable parameters based on
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metrics from previous superstep, and then updates
the configurations (e.g., concurrency, assignment strat-
egy) of dual concurrent message processor. During a
superstep, the monitor tracks the related statistics of
key metrics in the background. The monitor updates
key metrics according to these collected statistics and
feeds up to date values of the metrics to the DCCM
at the end of each superstep.

Note that PAGE will reconfigure the message pro-
cessor in every superstep in case of the non-stationary
graph algorithms. As discussed in Section 2, the qual-
ity of underlying graph partition may change between
supersteps for the non-stationary graph algorithms
with dynamic workload balance strategy. Even if the
static graph partition strategy is used, the variable
workload characteristics of non-stationary graph algo-
rithms require the reconfigurations across supersteps.
In summary, PAGE can adapt to different workloads
caused by the underlying graph partition and the
graph algorithm itself.

Algorithm 1 Procedure of a superstep in PAGE
1: DCCM reconfigures dual concurrent message processor

parameter.
2: foreach active vertex v in partition P do
3: call vertex program of v;
4: send messages to the neighborhood of v;
5: /* monitor tracks related statistics in the

background. */
6: end foreach
7: synchronization barrier
8: monitor updates key metrics, and feeds to the DCCM

4 DUAL CONCURRENT MESSAGE PROCES-
SOR

The dual concurrent message processor is the core of
the enhanced communication model, and it concur-
rently processes local and remote incoming messages
in a unified way. With proper configurations for this
new message processor, PAGE can efficiently deal
with incoming messages over various graph partitions
with different qualities.
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Fig. 4. Message processing pipeline in PAGE

As discussed in Section 2, messages are delivered
in block, because the network communication is an
expensive operation [10]. But this optimization raises
extra overhead in terms that when a worker receives

incoming message blocks, it needs to parse them and
dispatches extracted messages to the specific vertex’s
message queue. In PAGE, the message process unit
is responsible for this extra overhead, and it is a min-
imal independent process unit in the communication
module. A remote (local) message process unit only
processes remote (local) incoming message blocks.
The message processor is a collection of message
process units. The remote (local) message processor
only consists of remote (local) message process units.
Figure 4 illustrates the pipeline that the message
process unit handles the overhead.

According to the cost analysis in Section 2.2, we
can see that a good solution is to decouple the local
communication cost from the computation cost, as the
computation will not be blocked by any communica-
tion operation. Besides, the communication module
can take over both local and remote communications,
which makes it possible to process local and remote
messages in a unified way. Furthermore, the incoming
message blocks are concurrently received from both
local and remote sources. It is better to process the
local and remote incoming messages separately. These
two observations help us design a novel message
processor, which consists of a local message processor
and a remote message processor. This novel mes-
sage processor design leads to the cost combination
in Figure 2(b). The sync local communication cost,
tsyncl = tcomml − tcommr, is similar to the sync remote
communication cost. It is the cost of waiting for the lo-
cal incoming message processing to be accomplished
after all the remote messages have been processed.

Moreover, in parallel graph computation systems,
the incoming messages are finally appended to the
vertex’s message queue, so different vertices can be
easily updated concurrently. Taking this factor into
consideration, we deploy the concurrent message pro-
cess units at the internal of local and remote message
processor. Therefore, both local and remote message
processors can concurrently process incoming mes-
sage blocks, and local and remote incoming messages
are processed in a unified way.

In summary, the new message processor consists of
a local and a remote message processor respectively.
This is the first type of the concurrency in the message
processor. The second type of the concurrency is at
the internal of local and remote message processor.
This explains the reason we name this new message
processor as dual concurrent message processor.

5 DYNAMIC CONCURRENCY CONTROL
MODEL

The concurrency of dual concurrent message proces-
sor heavily affects the performance of PAGE. But
it is expensive and also challenging to determine a
reasonable concurrency ahead of real execution with-
out any assumption [25]. Therefore, PAGE needs a
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mechanism to adaptively tune the concurrency of the
dual concurrent message processor. The mechanism is
named Dynamic Concurrency Control Model, DCCM
for short.

In PAGE, the concurrency control problem can be
modeled as a typical producer-consumer schedul-
ing problem, where the computation phase generates
messages as a producer, and message process units
in the dual concurrent message processor are the
consumers. Therefore, the producer-consumer con-
straints [29] should be satisfied when solving the
concurrency control problem.

For the PAGE situation, the concurrency control
problem arises consumer constraints. Since the be-
havior of producers is determined by the graph algo-
rithms, PAGE only requires to adjust the consumers to
satisfy the constraints (behavior of graph algorithms),
which are stated as follows.

First, PAGE provides sufficient message process
units to make sure that new incoming message blocks
can be processed immediately and do not block the
whole system. Meanwhile, no message process unit is
idle.

Second, the assignment strategy of these message
process units ensures that each local/remote message
process unit has balanced workload since the dispar-
ity can seriously destroy the overall performance of
parallel processing.

Above requirements derive two heuristic rules:

Rule 1: Ability lower-bound: the message processing
ability of all the message process units should
be no less than the total workload of message
processing.

Rule 2: Workload balance ratio: the assignment of
total message process units should satisfy the
workload ratio between local and remote mes-
sage processing.

Following subsections first introduce the mathe-
matical formulation of DCCM, and then discuss how
DCCM mitigates the influences of various graph par-
tition qualities. At last, we present the implementation
of DCCM. Table 1 summaries the frequently used
notations in the following analysis.

5.1 Mathematical Formulation of DCCM

In PAGE, DCCM uses a set of general heuristic rules
to determine the concurrency of dual concurrent mes-
sage processor. The workload of message processing
is the number of incoming messages, and it can be
estimated by the incoming speed of messages. Here
we use sl and sr to denote the incoming speed of
local messages and the incoming speed of remote
messages, respectively. The ability of a single message
processing unit is the speed of processing incoming
messages, sp.

Symbols Description
er Edge cut ratio of a local partition.
p Quality of network transfer.
sp Message processing speed.
sg Message generating speed.
srg Speed of remote messages generation
sl Incoming speed of local messages.
sr Incoming speed of remote messages.
nmp Number of message process units.
nrmp Number of remote message process units.
nlmp Number of local message process units.
tcomp Computation cost.
tcomm Communication cost.
tsycnr Cost of syncing remote communication.
tsycnl Cost of syncing local communication.

TABLE 1
Frequently used notations

On basis of aforementioned two heuristic rules, the
following equations must hold.

nmp × sp ≥ sl + sr, Rule 1
nlmp

nrmp
=

sl
sr

. Rule 2 (1)

where nmp stands for the total number of mes-
sage process units, nlmp represents the number of
local message process units, and nrmp is the num-
ber of remote message process unit. Meanwhile,
nmp=nlmp+nrmp.

Solving Equation 1 yields

nlmp ≥ sl
sp

,

nrmp ≥ sr
sp

.
(2)

Finally, DCCM can estimate the concurrency of local
message processor and the concurrency of remote
message processor separately, if the metrics sl, sr, sp
are known. The optimal concurrency reaches when
DCCM sets nlmp=⌈ sl

sp
⌉ and nrmp=⌈ sr

sp
⌉. Because, at this

point, PAGE can provide sufficient message process
units, and it consumes minimal resources as well.

5.2 Adaptiveness on Various Graph Partitions

Section 2 has analyzed that the workload of mes-
sage processing is related to both graph partition
and graph algorithms. In this section, we explain
the reason that previous DCCM can adaptively tune
the concurrency of dual concurrent message proces-
sor when the underlying graph partition quality is
changed.

Before the detailed discussion, we first give three
metrics.

1) Edge cut ratio of a local partition. It is the
ratio between cross edges and total edges in a
local graph partition. It is denoted as er. This
metric judges the quality of graph partitioning
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in a worker. The higher ratio indicates the lower
quality.

2) Message generating speed. It represents the
overall generating velocity of all outgoing mes-
sages in a worker. This metric implies the total
workload for a worker. We denote it as sg.

3) Quality of network transfer. This reflects the
degree of network influence to the message gen-
eration speed sg . When the generated messages
are sent to a remote worker, the speed of gener-
ated messages is cut-off in the view of the remote
worker. This is caused by the factor that network
I/O operation is slower than local operation.
The quality is denoted as p ∈ (0, 1). The larger
p indicates the better network environment. In
addition, we can define the equivalent speed of
remote messages’ generation as srg = sg × p.

Now we proceed to reveal the relationship between
DCCM and the underlying graph partition. Following
analysis is based on the assumption that the station-
ary graph algorithms are ran on a certain partition.
Because stationary graph algorithms have predictable
communication feature.

The local incoming messages are the one whose
source vertex and destination vertex belong to the
same partition. Thus, the incoming speed of local
message, sl, is the same as sg × (1− er), which stands
for the generating speed of local messages. Similarly,
sr equals srg × er. Then Equation 1 can be rewrited
as

nmp × sp = sg × (1− er) + srg × er,

nlmp

nrmp
=

sg × (1− er)

srg × er
=

1− er

p× er
.

(3)

Solving nmp, nlmp, nrmp from Equations 3, we can
have the following results

nmp =
sg
sp

(1− (1− p)× er), (4)

nlmp = nmp ×
1− er

p× er + (1− er)
, (5)

nrmp = nmp ×
p× er

p× er + (1− er)
. (6)

From Equations 4 5 6, we have following obser-
vations that indicate correlated relationships between
graph partition and the behavior of DCCM when
running stationary graph algorithms on PAGE.

First, PAGE needs more message process units with
the quality growth of graph partitioning, but the
upper bound still exists. This is derived from the
fact that, in Equation 4, the nmp increases while er
decreases, since the p is fixed in a certain environment.
However, the conditions, 0 < p < 1 and 0 < er < 1,
always hold, so that nmp will not exceed sg/sp. Ac-
tually, not only the parameters sg , sp dominate the
upper bound of total message process units, but also

p heavily affects the accurate total number of mes-
sage process units under various partitioning quality
during execution.

The accurate total number of message process units
is mainly affected by sg and sp, while er only matters
when the network is really in low quality. Usually
in a high-end network environment where p is large,
the term (1 − p) × er is negligible in spite of er, and
then the status of whole system (sg , sp) determines the
total number of message process units. Only in some
specific low-end network environments, the graph
partitioning quality will severely affect the decision
of total number of message process units.

Unlike the total number of message process units,
the assignment strategy is really sensitive to the pa-
rameter er. From Equation 3, we can see that the
assignment strategy is heavily affected by (1-er)/er, as
the value of p is generally fixed for a certain network.
Lots of existing systems, like Giraph, do not pay
enough attention to this phenomenon and suffer from
high quality graph partitions. Our DCCM can easily
avoid the problem by handling online assignment
based on Equations 5 and 6.

Finally, when the non-stationary graph algorithms
are ran on PAGE, the graph partition influence to the
DCCM is similar as before. The difference is that the
edge cut ratio of a local partition is only a hint, not the
exact ratio for local and remote incoming message dis-
tribution. Because the unpredictable communication
features of non-stationary graph algorithms cannot
guarantee that a lower er leads to higher workload of
local message processing. However it does for many
applications in reality, such as traversal-based graph
algorithms.

5.3 Implementation of DCCM
Given the heuristic rules and characteristic discus-
sion of the DCCM, we proceed to present its im-
plementation issues within the PAGE framework. To
incorporate the DCCM’s estimation model, PAGE is
required to equip a monitor to collect necessary in-
formation in an online way. Generally, the monitor
needs to maintain three high-level key metrics: sp, sl,
sr. However, there is a problem that it is difficult to
measure accurate sp. Because the incoming message
blocks are not continuous and the granularity of time
in the operating system is not precise enough, it is
hard for the DCCM to obtain an accurate time cost of
processing these message blocks. In the end, it leads
to an inaccurate sp.

Therefore, we introduce a DCCM in incremental
fashion based on the original DCCM. Recall the cost
analysis in Section 2, we can materialize the workload
through multiplying the speed and the corresponding
cost. Equation 2 can be represented as follows (use ’=’
instead of ’≥’).

sl × tcomp = sp × n,
lmp × (tcomp + tsyncr + tsyncl) (7)
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sr × tcomp = sp × n,
rmp × (tcomp + tsyncr) (8)

where n,
lmp and n,

rmp are the concurrency of local
and remote message processor in current superstep,
respectively.

The estimated concurrency of the local and remote
message processor for the next superstep can be

nlmp =
sl
sp

= n,
lmp × (1 +

tsyncr + tsyncl
tcomp

) (9)

nrmp =
sr
sp

= n,
rmp × (1 +

tsyncr
tcomp

) (10)

Finally, the new DCCM can estimate the latest
nlmp and nrmp based on the previous values and
the corresponding time cost tcomp, tsyncl, tsyncr. The
monitor is only responsible to track three cost-related
metrics. As the monitor just records the time cost
without any additional data structures or complicated
statistics, it brings the negligible overhead. In our
PAGE prototype system implementation, we apply
the DCCM with incremental fashion to automatically
determine the concurrency of the system.

5.4 Extension to Other Data Processing Scenar-
ios
Although the initial goal of dual concurrent message
processor and dynamic concurrency control model is
to help graph computation system efficiently handle
messages and be partition aware, we found that the
techniques can be beneficial to other data processing
scenarios as well.

First, as a graph computation system, PAGE can
also efficiently handle other structured data on which
the problem can be remodeled as graph. For example
sparse matrix-vector multiplication can be remodeled
as a vertex-centric aggregation operator in a graph
whose adjacent matrix equals the given sparse matrix
and vertex values are from the given vector [26], then
the techniques in PAGE will improve the performance
of sparse matrix-vector multiplication under the cor-
responding graph model.

Second, the techniques in PAGE can also be ex-
tended to enhance other big data processing plat-
form which satisfies the producer-consumer model.
Distributed stream computing platform (e.g., Yahoo
S4 [24], Twitter Storm [2]) is one kind of popular
platforms to process real-time big data. In Storm, the
basic primitives for doing stream transformations are
“spouts” and “bolts”. A spout is a source of streams. A
bolt consumes any number of input streams, conducts
some processing, and possibly emits new streams.
Given an example of word count for a large document
set, the core bolt keeps a map in memory from word
to count. Each time it receives a word, it updates
its state and emits the new word count. In practice,
the parallelism of a blot is specified by user and

this is inflexible. Since the logic of a blot satisfies
the producer-consumer model, by designing an esti-
mation model that is similar to DCCM, the stream
computing platform can also automatically adjust the
proper number of processing elements according to
the workload.

6 EMPIRICAL STUDIES

We have implemented the PAGE prototype on top of
an open source Pregel-like graph computation system,
Giraph [1]. To test its performance, we conducted
extensive experiments and demonstrated the superi-
ority of our proposal. The following section describes
the experimental environment, datasets, baselines and
evaluation metrics. The detailed experiments evaluate
the effectiveness of DCCM, the advantages of PAGE
compared with other methods and the performance
of PGAE on various graph algorithms.

6.1 Experimental setup

Graph Vertices Edges Directed
uk-2007-05 105,896,555 3,738,733,648 yes

uk-2007-05-u 105,153,952 6,603,753,128 no
livejournal 4,847,571 68,993,773 yes

livejournal-u 4,846,609 85,702,474 no

TABLE 2
Graph dataset information

All experiments are ran on a cluster of 24 nodes,
where each physical node has an AMD Opteron
4180 2.6Ghz CPU, 48GB memory and a 10TB disk
RAID. Nodes are connected by 1Gbt routers. Two
graph datasets are used: uk-2007-05-u [7], [6] and
livejournal-u [5], [19]. The uk-2007-05-u is a web
graph, while livejournal-u is a social graph. Both
graphs are undirected ones created from the original
release by adding reciprocal edges and eliminating
loops and isolated nodes. Table 2 summarizes the
meta-data of these datasets with both directed and
undirected versions.

Graph partition scheme. We partition the large
graphs with three strategies: Random, METIS and Lin-
ear Deterministic Greedy (LDG). METIS [16] is a pop-
ular off-line graph partition packages, and LDG [30] is
a well-known stream-based graph partition solution.
The uk-2007-05-u graph is partitioned into 60 sub-
graphs, and livejournal-u graph is partitioned into 2,
4, 8, 16, 32, 64 partitions, respectively. Balance factors
of all these partitions do not exceed 1%, and edge
cut ratios are list in Figure 1(a) and Table 3. The
parameter setting of METIS is the same as METIS-
balanced approach in GPS [27].

Furthermore, in order to generate various partition
qualities of a graph, we extend the original LDG
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algorithm to an iterative version. The iterative LDG
partitions the graph based on previous partition
result, and gradually improves the partition quality
in every following iteration. We name the partition
result from iterative LDG as LDGid, where a larger
id indicates the higher quality of graph partitioning
and the more iterations executed.

Baselines. Throughout all experiments, we use two
baselines for the comparison with PAGE.

The first one is Giraph. However, as we notice
from Figure 2(a) that the local message processing and
computation run serially in the default Giraph. This
cost combination model is inconsistent with our eval-
uation. We modify it to asynchronously process the
local messages, so that Giraph can concurrently run
computation, local message processing and remote
message processing. In the following experiments, Gi-
raph refers to this modified Giraph version. Note that,
this modification will not decrease the performance of
Giraph.

The other one is derived from the technique used in
GPS. One optimization in GPS, applies a centralized
message buffer and sequentially processes incoming
messages without synchronizing operations, which
decouples the local message processing from the
computation and treats the local and remote message
equivalently. We implement this optimization on the
original Giraph and denote it as Giraph-GPSop.

Metrics for evaluation. We use the following met-
rics to evaluate the performance of a graph algorithm
on a graph computation system.

• Overall cost. It indicates the whole execution
time of a graph algorithm when running on a
computation system. Due to the property of con-
current computation and communication model,
this metric is generally determined by the slower
one between the computation and communica-
tion.

• Sync remote communication cost. It presents
the cost of waiting for all I/O operations to be
accomplished successfully after the computation
finished. This metric reveals the performance of
remote message processing.

• Sync local communication cost. It means the cost
of waiting for all local messages to be processed
successfully after syncing remote communication.
This metric indicates the performance of local
message processing.

All three metrics are measured by the average time
cost per iteration. The relationship among these met-
rics can be referred to Figure 2.

6.2 Evaluation on DCCM
Dynamic Concurrency Control Model (DCCM) is the
key component of PAGE to determine the concur-
rency for dual concurrent message processor, balance

the workload for both remote and local message
processing as well, and hence improve the overall
performance. In this section, we demonstrate the
effectiveness of DCCM through first presenting the
concurrency automatically chosen by DCCM based
on its estimation model, and then showing that these
chosen values are close to the manually tuned good
parameters. Finally, we also show DCCM converges
efficiently to estimate a good concurrency for dual
concurrent message processor.

6.2.1 Concurrency chosen by DCCM

Random LDG1
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LDG4
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Partition Scheme
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Fig. 5. Assignment strategy on different partition
schemes in PAGE.

Figure 5 shows the concurrency of dual concurrent
message processor automatically determined by the
DCCM, when running PageRank on uk-2007-05-u
graph. The variation of concurrency on various graph
partition schemes are consistent with the analysis in
Section 5.2.

In Figure 5, there are two meaningful observations.
First, the total number of message process units, nmp,
is always equal to seven across six different partition
schemes. This is because the cluster has a high-speed
network and the quality of network transfer, p, is high
as well. Second, with the decrease of edge cut ratio
(from left to right in Figure 5), the nlmp decided by
the DCCM increases smoothly to handle the grow-
ing workload of local messages processing, and the
selected nrmp goes oppositely. According to above
parameters’ variations across different graph partition
schemes, we also conclude that the assignment strat-
egy is more sensitive to the edge cut ratio than the
total message process units nmp.

6.2.2 Results by manual tuning
Here we conduct a series of manual parameter tuning
experiments to discover the best configurations for
the dual concurrent message processor when running
PageRank on uk-2007-05-u in practice. Hence, it helps
verify that the parameters determined by DCCM are
effective.

We tune the parameters nlmp and nrmp one by one
on a specific partition scheme. When one variable is
tuned, the other one is guaranteed to be sufficiently
large that does not seriously affect the overall perfor-
mance. When we conduct the tuning experiment on
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(d) nlmp tuning on METIS

Fig. 6. Tuning on Random and METIS partition schemes. Black points are the optimal choices.

METIS scheme to get the best number of local message
process units (nlmp), for example, we manually pro-
vide sufficient remote message process units (nrmp)
with the DCCM feature off, and then increase nlmp

for each PageRank execution instance until the overall
performance becomes stable.

Figure 6 shows the tuning results of running PageR-
ank on Random and METIS partition schemes respec-
tively. We do not list results about LDG1 to LDG4, as
they all lead to the same conclusions as above two
schemes. The basic rule of determining the proper
configurations for a manual tuning is choosing the
earliest points where the overall performance is close
to the stable one as the best configuration.

As shown in Figure 6(a), when the number of
remote message process units exceeds five, the over-
all performance is converged and changes slightly.
This indicates the remote message processor with
five message process units inside is sufficient for this
workload, which is running PageRank on random
partitioned uk-2007-05-u. Though, the sync remote
communication cost can still decrease a bit with con-
tinuously increasing nrmp. But the large number of
message process units will also affect other parts
of the system (e.g., consuming more computation
resources), the overall performance remains stable be-
cause of the tradeoff between two factors (i.e., number
of message processor units and influence on other
parts of the systems).

From Figure 6(b), we can easily figure out one
local message process unit is sufficient to handle
the remained local message processing workload in
Random scheme. More message process units do not
bring any significant improvement. Based on this
tuning experiment, we can see that totally six message
process units are enough. Among them, one is for
the local message processor, and the other five are for
remote message processor.

In Figure 5, the parameters chosen by the DCCM
are six message process units for the remote message
processor and one for local message processor, when
the Random partition scheme is applied. Though they
do not exactly match the off-line tuned values, but
they fall into the range where the overall performance
has been converged and the difference is small. So the
DCCM generates a set of parameters almost as good

as the best ones acquired from the off-line tuning.
By analyzing Figures 6(c) and 6(d), we can see seven

message process units are sufficient, in which five be-
long to local message processor and the remained are
for remote message processor. This time the DCCM
also comes out the similar results as the manually
tuned parameters.

Through a bunch of parameter tuning experiments,
we verify the effectiveness of the DCCM and find that
the DCCM can choose appropriate parameters.
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Fig. 7. Performance on adaptively tuning by DCCM

6.2.3 Adaptivity of DCCM
In this subsection, we show the results about the
adaptivity on various graph partition scheme in
PAGE. All the experimental results show that the
DCCM is sensitive to both partition quality and initial
concurrency setting. It responses fast and can adjust
PAGE to a better status within a few iterations.

We run the PageRank on Random and METIS graph
partition schemes, with randomly setting the con-
currency of the remote message processor and local
message processor at the beginning, and let DCCM
automatically adjust the concurrency.

Figure 7(b) illustrates each iteration’s performance
of PageRank running on the METIS partition scheme
of uk-2007-05-u. It clearly shows that PAGE can
rapidly adjust itself to achieve better performance
for the task. It costs about 93 seconds to finish the
first iteration, where the sync local communication
cost is around 54 seconds. After first iteration, PAGE
reconfigures the concurrency of dual concurrent mes-
sage processor, and achieves better overall cost in
successive iterations by speeding up the process of
local messages. The second iteration takes 44 seconds,
and the sync local communication cost is close to
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Fig. 8. PageRank performance on different systems
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Fig. 9. The performance of various graph algorithms

zero already. Similar results can be obtained for the
Random partitioning scheme, shown in Figure 7(a).

6.3 Comparison with Other Methods

In this section, we compare the performance of PAGE
with the Pregel-like baselines, i.e., Giraph and Giraph-
GPSop. We first present the advantage of PAGE by
profiling PageRank execution instance, followed by
the evaluation on various graph algorithms. In the
end, we show that PAGE can also handle the situation
where varying the number of partitions leads to the
change of graph partition quality.

6.3.1 Advantage of PAGE

We demonstrate that PAGE can maintain high perfor-
mance along with the various graph partition quali-
ties. Figures 8(a) and 8(b) describe the PageRank per-
formance across various partition schemes on PAGE
and Giraph. We find that, with the increasing quality
of graph partitioning, Giraph suffers from the work-
load growth of local message processing and the sync
local communication cost rises fast. In contrast, PAGE
can scalably handle the upsurging workload of local
message processing, and maintain the sync local com-
munication cost close to zero. Moreover, the overall
performance of PAGE is actually improved along with
increasing the quality of graph partitioning. In Figure
8(a), when the edge cut ratio decreases from 98.52%
to 3.48%, the performance is improved by 14% in
PAGE. However, in Giraph, the performance is even
downgraded about 100% at the same time.

From Figure 8(c), we notice the Giraph-GPSop
achieves better performance with the improving qual-
ity of graph partition as PAGE does. But PAGE is
more efficient than Giraph-GPSop over various graph
partitions with different qualities. Comparing with
Giraph, PAGE always wins for various graph par-
titions, and the improvement ranges from 10% to
120%. However, Giraph-GPSop only beats Giraph and
gains around 10% improvement over METIS parti-
tion scheme which produces a really well partitioned
graph. For Random partition, Giraph-GPSop is even
about 2.2 times worse than Giraph. It is easy to figure
out that the central message buffer in Giraph-GPSop
leads to this phenomena, as Figure 8(c) illustrates
that the sync local communication cost2 is around
40 seconds, though it is stable across six partition
schemes. Overall, as a partition aware system, PAGE
can well balance the workloads for local and remote
message processing with different graph partitions.

6.3.2 Performance on Various Graph Algorithms

In this section, we show that PAGE helps improve the
performances of both stationary graph algorithms and
non-stationary graph algorithms. The experiments are
ran on PAGE, Giraph and Giraph-GPSop with two
stationary graph algorithms and two non-stationary
graph algorithms. The two stationary graph algo-
rithms are PageRank and diameter estimation, and

2. Due to the central message buffer, we treat all the messages
as local messages and count its cost into the local communication
cost in Giraph-GPSop.
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Fig. 10. Result of various partition numbers on social graph.

the two non-stationary ones are breadth first search
(BFS) and single source shortest path (SSSP).

Figures 9(a) and 9(b) illustrate the performance of
stationary graph algorithms on Random and METIS
partition schemes of uk-2007-05-u graph dataset. We
find that for the stationary graph algorithms, when
the quality of graph partition is improved, PAGE
can effectively use the benefit from a high quality
graph partition and improve the overall performance.
Compared with the Giraph and Giraph-GPSop, PAGE
outperforms them because PAGE concurrently pro-
cesses incoming messages in a unified way.

Figures 9(c) and 9(d) present the performance of
non-stationary graph algorithms. Similar to the sta-
tionary graph algorithms, the performance of PAGE
surpasses those of Giraph and Giraph-GPSop. This
implies PAGE’s architecture can also facilitate the non-
stationary graph algorithms. However, the perfor-
mance is not improved when the quality of partition
scheme is increased. The reason has been discussed in
Section 2. The non-stationary graph algorithms have
a workload imbalance problem, which can be solved
by the dynamic partition strategy [17], [33].

6.3.3 Performance by varying numbers of partitions

Previous experiments are all conducted on a web
graph partitioned into fixed number of subgraphs,
i.e., 60 partitions for uk-2007-05-u. In practice, the
number of graph partitions can be changed, and dif-
ferent numbers of partitions will result into different
partition qualities. We run a series of experiments
to demonstrate that PAGE can also efficiently handle
this situation. Here we present the results of running
PageRank on a social graph, livejournal-u. Table 3 lists
the edge cut ratios of livejournal-u partitioned into 2,
4, 8, 16, 32, 64 partitions by LDG, Random and METIS
respectively.

First, Figures 10(a), 10(b) and 10(c) all show that
both PAGE and Giraph perform better when the parti-
tion number increases across three partition schemes,
which is obvious as parallel graph computing sys-
tems can benefit more from higher parallelism. When
the graph is partitioned into more subgraphs, each

Partition Scheme LDG(%) Random(%) METIS(%)
2 Partitions 20.50 50.34 6.46
4 Partitions 34.24 75.40 15.65
8 Partitions 47.54 87.86 23.54
16 Partitions 52.34 94.04 28.83
32 Partitions 55.55 97.08 32.93
64 Partitions 57.36 98.56 36.14

TABLE 3
Partition quality of livejournal-u

subgraph has smaller size, and hence the overall per-
formance will be improved with each worker having
less workload. On the other hand, the large number
of subgraphs brings heavy communication, so when
the partition number reaches a certain threshold (e.g.,
sixteen in the experiment), the improvement becomes
less significant. This phenomenon reveals parallel pro-
cessing large-scale graph is a good choice, and it will
improve the performance.

Second, the improvement between PAGE and Gi-
raph decreases with the increasing number of parti-
tions. As the number of partitions increases, the qual-
ity of graph partitioning decreases which means the
local message processing workload decreases. Since
Giraph performs well over the low quality graph
partitioning, the performance gap between PAGE and
Giraph is small when the number of partitions is large.
Besides, the point where PAGE and Giraph have close
performance varies with different graph partitioning
algorithms. In METIS scheme, PAGE and Giraph have
similar performance around 64 partitions, while in
Random scheme, it is about four partitions when they
are close. The reason is that different graph partition
algorithms produce different partition quality, and
the bad algorithms will generate low quality graph
partition even the number of partitions is small.

Third, PAGE always performs better than Giraph
across three partition schemes for any fixed num-
ber of partitions and the reason has been discussed
in Section 6.3.1. But with the increasing number of
partitions, the improvement of PAGE decreases. This
is because the workload for each node becomes low
when the partition number is large. For a relatively
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small graph like livejournal, when the partition num-
ber is around 64, each subgraph only contains tens of
thousand vertices. However, the results are sufficient
to show the robustness of PAGE for various graph
partitions.

7 RELATED WORK

This work is related to several research areas. Not only
graph computation systems are touched, but also the
graph partition techniques and effective integration
of them are essential to push forward current parallel
graph computation systems. Here we briefly discuss
these related research directions as follows.

Graph computation systems. Parallel graph com-
putation is a popular technique to process and analyze
large scale graphs. Different from traditional big data
analysis frameworks (e.g., MapReduce [11]), most
of graph computation systems store graph data in
memory and cooperate with other computing nodes
via message passing interface [13]. Besides, these sys-
tems adopt the vertex-centric programming model
and release users from the tedious communication
protocol. Such systems can also provide fault-tolerant
and high scalability compared to the traditional graph
processing libraries, such as Parallel BGL [12] and
CGMgraph [9]. There exist several excellent systems,
like Pregel, Giraph, GPS, Trinity.

Since messages are the key intermediate results
in graph computation systems, all systems apply
optimization techniques for the message processing.
Pregel and Giraph handle local message in computa-
tion component but concurrently process remote mes-
sages. This is only optimized for the simple random
partition, and cannot efficiently use the well parti-
tioned graph. Based on Pregel and Giraph, GPS [27]
applies several other optimizations for the perfor-
mance improvement. One for message processing
is that GPS uses a centralized message buffer in a
worker to decrease the times of synchronization. This
optimization enables GPS to utilize high quality graph
partition. But it is still very preliminary and cannot
extend to a variety of graph computation systems.
Trinity [28] optimizes the global message distribution
with bipartite graph partition techniques to reduce the
memory usage, but it does not discuss the message
processing of a single computing node. In this paper,
PAGE focuses on the efficiency of a worker processing
messages.

At the aspect of message processing techniques, the
real-time stream processing systems are also related.
Usually the stream processing systems are almost
equal to message processing systems, since streams
(or events) are delivered by message passing. N. Back-
man et al. [4] introduced a system-wide mechanism
to automatically determine the parallelism of a stream
processing operator and the mechanism was built
on simulation-based search heuristics. In this paper,

PAGE applies a node-level dynamic control model,
but the basic idea is able to guide the design of
system-wide solution.

Graph partitioning algorithms. To evaluate the
performance of distributed graph algorithm, Ma
et al. introduced three measures, which are visit
times, makespan and data shipment. As efficiency
(makespan) remains the dominant factor, they sug-
gested to sacrifice visit times and data shipment for
makespan, which advocates a well-balanced graph
partition strategy when designing distributed algo-
rithms [22]. Actually, various graph partitioning al-
gorithms focused on this object as well. METIS [16],
[15] is an off-line graph partitioning package which
can bring off high quality graph partitioning subject
to a variety of requirements. But it is expensive to
use METIS partitioning large graphs. More recently,
streaming graph partitioning models became appeal-
ing [30], [31]. In the streaming model, a vertex arrives
with its neighborhood, and its partition id is decided
based on the current partial graph information. The
model is suitable for partitioning the large input
graph in distributed loading context, especially for
the state-of-the-art parallel graph computation sys-
tems. [30] described the difficulty of the problem and
identified ten heuristic rules, in which the Linear
Deterministic Greedy (LDG) rule performs best. The
LDG assigns a vertex to a partition where the vertex
has the maximal neighbors. In addition, it applies a
linear penalty function to balance the workload.

Besides, several studies [17], [33], [27] focus on
dynamic graph repartition strategies to achieve the
well-balanced workload. The work of dynamic graph
repartition and PAGE are orthogonal. To balance
the workload, the proposed strategies repartition the
graph according to the online workload. Thus the
quality of underlying graph partition changes along
with repartitioning. The existing graph computation
systems may suffer from the high-quality graph par-
tition at a certain point, but PAGE can mitigate this
drawback and improve the performance by decreas-
ing the cost of a worker further.

8 CONCLUSION
In this paper, we have identified the partition un-
aware problem in current graph computation systems
and its severe drawbacks for efficient parallel large
scale graphs processing. To address this problem, we
proposed a partition aware graph computation en-
gine named PAGE that monitors three high-level key
running metrics and dynamically adjusts the system
configurations. In the adjusting model, we elaborated
two heuristic rules to effectively extract the system
characters and generate proper parameters. We have
successfully implemented a prototype system and
conducted extensive experiments to prove that PAGE
is an efficient and general parallel graph computation
engine.
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