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ABSTRACT

Graph partitioning is one of the key components in parallel
graph computation, and the partition quality significantly
affects the overall computing performance. In the existing
graph computing systems, “good” partition schemes are pre-
ferred as they have smaller edge cut ratio and hence reduce
the communication cost among working nodes. However, in
an empirical study on Giraph[1], we found that the perfor-
mance over well partitioned graph might be even two times
worse than simple partitions. The cause is that the local
message processing cost in graph computing systems may
surpass the communication cost in several cases.

In this paper, we analyse the cost of parallel graph com-
puting systems as well as the relationship between the cost
and underlying graph partitioning. Based on these observa-
tion, we propose a novel Partition Aware Graph computa-
tion Engine named PAGE. PAGE is equipped with two new-
ly designed modules, i.e., the communication module with
a dual concurrent message processor, and a partition aware
one to monitor the system’s status. The monitored informa-
tion can be utilized to dynamically adjust the concurrency
of dual concurrent message processor with a novel Dynamic
Concurrency Control Model (DCCM). The DCCM applies
several heuristic rules to determine the optimal concurrency
for the message processor.

We have implemented a prototype of PAGE and conduct-
ed extensive studies on a moderate size of cluster. The ex-
perimental results clearly demonstrate the PAGE’s robust-
ness under different graph partition qualities and show its
advantages over existing systems with up to 59% improve-
ment.
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1. INTRODUCTION

With the stunning growth of graph data and related ap-
plications, parallel processing becomes the de facto graph
computing paradigm for large scale graph analysis tasks. A
lot of parallel graph computation systems are introduced,
e.g. Pregel, Giraph, GPS, GraphLab and PowerGraph [2,
1, 3, 4, 5]. In these parallel systems, graph partitioning is
one of the key components that affect the computing perfor-
mance. It usually splits an input graph into several balanced
subgraphs,and then each subgraph is processed by an indi-
vidual worker in parallel. The general partition objective is
to let these subgraphs have minimum cross edges between
different ones, thus diminishing the communication cost a-
mong parallel workers [6, 7].

However, integrating a suitable graph partitioning method
into parallel graph computation systems is not a trivial task.
In most of the current systems, a good balanced graph parti-
tion even leads to a decrease in the overall computing perfor-
mance. Figure 1 displays a PageRank experiment result on
six different partition schemes of a large web graph dataset.
We apparently notice that the overall cost of PageRank per
iteration increases with the quality improving across differ-
ent graph partitioning schemes. It indicates that curren-
t parallel graph systems cannot benefit from high quality
graph partitioning.
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Figure 1 also reveals that with the decrease of edge cut,
the sync remote communication cost® is reduced as expect-
ed. However, the local communication cost increases fast
unexpectedly, and directly leads to the downgrade of over-
all performance. The processing of local messages becomes

1uk-2007-05-u, http://law.di.unimi.it/datasets.php,please
refer to the detailed experiment setup in Section 4
Zrefer to Figure 5(a) for the illustration of this cost



a bottleneck in the system and dominates the overall cost
when the workload of local message processing increases.

Lots of current parallel graph system design does not
take the underlying partitioned subgraphs into considera-
tion, and can not detect the increasing workload of local
message processing. Though there are some recent tenta-
tive work by introducing the centralized message buffer to
process local and remote incoming messages[3], most of cur-
rent graph systems can not effectively utilize the benefit of
high quality graph partitioning.

In this paper, we present a novel graph computation en-
gine, i.e. Partition Aware Graph computation Engine(PAGE).
It is designed to support computation tasks with different
partitioning qualities. There are some unique features in
its new framework. First, in PAGE’s worker unit, commu-
nication module is extended with a new dual concurrent
message processor. The concurrent message processor al-
lows PAGE to concurrently process both local and remote
incoming messages and thus speed up message processing.
Second, a partition aware module is added in worker unit
to monitor the characters of partitioning and adjust the re-
sources adaptively.

To fulfill the goal of efficient concurrency control, we intro-
duce a dynamic model(Dynamic Concurrency Control Mod-
el) to better capture the information. Based on the online
metrics provided by the monitor, DCCM sets near optimal
parameters for PAGE’s message processor. Several heuris-
tic rules are also derived from our empirical study, which we
will present the details later in this paper. PAGE has suffi-
cient message process units to handle the current workload
and each message process unit has balanced workload.

A prototype of PAGE has been set up on top of Gi-
raph(version 0.2.0). Extensive experiments demonstrate its
superb performance and effectiveness. The results show that
PAGE provides up to 59% improvement over Giraph, and it
can also achieve 14% enhancement when we use a state of
the art graph partitioning method METIS instead of random
partitioning.

The main contributions of our work can be summarized
as follows:

e First, we identify the problem of partition unaware in-
efficiency in current state of the art graph computation
systems. Most of them can not obtain the benefits of
graph partitioning, which severely affects the perfor-
mance of many graph applications.

e Second, we set up a new partition aware graph compu-
tation engine. It can effectively harness the online s-
tatistics of underlying graph partitioning results, guide
parallel processing resources and improve computation
performance.

e Third, we design a Dynamic Concurrency Control Mod-
el based on several heuristic rules to better profile the
characters of graph partition. The DCCM can produce
optimal configurations for the graph computation sys-
tems.

e At last, we test PAGE on a real large web graph dataset
with a moderate size of cluster. Experiments obvious-
ly demonstrate that PAGE performs efficiently under
a variety of graph partitioning schemes with different
qualities.

The remaining of this paper is organized as follows: in
Section 2, we first review related literatures. Then in Sec-
tion 3 we elaborate on PAGE’s framework design, details of
message processor, partition aware module and the DCCM
model. Section 4 reveals the experiment results. At last, we
conclude this work and outline future research directions.

2. RELATED WORK

Here we briefly discuss the related research directions as
follows.

Graph Computation Systems: Parallel graph compu-
tation is a popular technique to process and analyze large s-
cale graphs. Unlike traditional parallel process framework(i.e.
MapReduce), most of the current graph systems store graph
data in memory instead of file and worker nodes exchange
data in a message passing paradigm [8].

For example, Pregel [2] and its open source implemen-
tation, Giraph, both follow the Bulk Synchronous Paral-
lel(BSP) model [9] to execute graph algorithms in parallel.
A graph computation task in Pregel is divided into several
supersteps by the global synchronization barriers. However,
the default partition scheme in Pregel is hash partition, and
it can not utilize the benefit brought by high quality graph
partitioning.

Graph Processing System(GPS) [3], another open source
implementation of Pregel, has three additional enhancements
and applies several other optimizations to improve perfor-
mance. One optimization is that GPS uses a centralized
message buffer in a worker to utilize high quality graph par-
titioning and decrease the number of synchronization. But
this optimization is still preliminary and can not extend to
support a variety of graph computation systems.

Graph Partitioning Algorithms: As a well studied
research area, graph partition attracts lots of attention, es-
pecially in recent parallel graph processing era. METIS [10]
is a state of the art off-line graph partitioning package, and
it can bring off high quality graph partitioning subject to a
variety of requirements.

More recently, streaming graph partitioning models be-
come appealing [11, 12]. They usually partition the large
input graph in distributed loading stage for incoming graph
or dynamic ones. [11] identifies ten heuristic rules, among
which the Linear Deterministic Greedy(LDG) performs best.

We should emphasize that though there are remarkable
progresses in these above areas, the parallel graph processing
and foremost partition are usually isolated. In this paper,
we are not aiming to invent new graph partition algorithms,
but instead we exploit the information from graph partition
to guide the parallel graph computing. It guarantees that
these systems can efficiently execute the tasks on various
graph partitioning schemes with different qualities.

3. DESIGN OF PARTITION AWARE GRAPH
COMPUTATION

PAGE stands for a novel Partition Aware Graph com-
putation Engine. In this section, we first outline its overall
framework and then introduce two new modules to support
partition aware processing.

3.1 Framework of PAGE

PAGE is designed to support different graph partition
qualities and maintain high performance by the online ad-
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Figure 2: Architecture of PAGE

justing mechanism and some new cooperation methods. Fig-
ure 2 illustrates the architecture of PAGE. Similar to most
of the current parallel graph computation systems, PAGE
follows the Master-Worker paradigm. The master is respon-
sible for aggregating global statistics and coordinating glob-
al synchronization. The new worker in Figure 3 is equipped
with an enhanced communication module and a newly intro-
duced partition aware module. Now workers in PAGE take
on the graph computation task aware of underlying graph
partitioning information.

In our novel design, the enhanced communication mod-
ule integrates a dual concurrent message processor, which
concurrently processes local and remote incoming messages.
The partition aware module monitors several online metric-
s and adjusts the concurrency of dual concurrent message
processor through a dynamic estimation model.

The computation in PAGE still consists of several super-
steps separated by global synchronization barriers. In each
superstep, each vertex runs a vertex-program with messages
from the previous superstep concurrently, and then sends
messages to other vertices if necessary. The computation
finishes when no vertexes send out messages.

The simplest way to support the dual concurrent mes-
sage processor is to add a sufficiently large number of mes-
sage process units and distribute them into local and remote
message processor at the begin of running the system. How-
ever, it is costly and also challenging to determine a reason-
able number of message process units ahead of actual exe-
cution without any reasonable assumption [13]. In PAGE,
we dynamically adjust the concurrency of message proces-
sor through a partition aware module so that the system can
run fluently and efficiently.

3.2 Communication Module

The traditional communication module is unable to scale
well with the high quality graph partitioning. Here, we de-
sign a dual concurrent message processor to accept local
and remote incoming message blocks. With proper configu-
rations for this new message processor, PAGE can efficiently
deal with incoming messages over a variety of graph parti-
tioning schemes with different partitioning qualities. Here
we first introduce the basic concepts used in message pro-
cessor, and then explain its mechanism in detail.

PAGE Worker

-

Computation }

Communication

Sender Receiver

Figure 3: New Designed PAGE worker

3.2.1 Message Processor

It is well known that network communication is a costly
operation [14], and we always try to reduce the number of
network IO operations. A useful optimization is to combine
several outgoing messages with the same destination into a
single message block and thus we can reduce several network
IO operations into one. Most of the current parallel graph
computation systems apply this method in communication
module.

But the above mentioned optimization also brings up side-
effects. When one worker receives some incoming message
blocks, it needs to parse the message blocks and dispatch ex-
tracted message to the specific worker’s message queue. The
overhead brought by this operation depends on the specific
implementation. The following of this section first gives two
basic concepts used in the paper, and then discuss methods
to identify the cost and strategies to reduce it:

Message Process Unit: It is a minimal independen-
t process unit in communication module that is responsi-
ble to extract messages of each vertex from incoming mes-
sage blocks and update the corresponding vertex’s message
queue. The message process unit that only processes re-
mote(local) incoming message blocks is called remote(local)
message process unit.

Message Processor: It is a collection of message process
units. The remote(local) message processor only contains
remote(local) message process units.

Figure 4 illustrates the pipeline that the message process
unit receives incoming message blocks, parses them into sep-
arate messages, and appends the message to corresponding
vertex’s message queue.

Message Process Unit

e = g
Message Block

Figure 4: Message Processing Pipeline in PAGE

A worker in most of the current parallel graph computa-
tion systems deals with incoming message blocks from both
local and remote sources. In general, we can use a central-
ized buffer to store both kinds of incoming message blocks,
and concurrent message process units get message blocks to
be parsed from the centralized buffer. But the two sources
of incoming message blocks have been naturally concurrent
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Figure 5: Different Combinations of Computation
Cost, Local/Remote Communication Cost. The Ar-
rows Indicate The Components of Overall Cost.

when they receive message blocks. If we merge them into a
centralized buffer, the centralized buffer would mandatorily
increase the length of message block’s parsing path and may
become the bottleneck.

3.2.2 Dual Concurrent Message Processor

First, let’s take a look at different types of cost in a graph
computation system. The cost of a communication mod-
ule consists of local communication cost which is caused by
processing local incoming message blocks and remote com-
munication cost from processing remote incoming message
blocks. With the addition of the computation cost in com-
putation module, there are kinds of combinations among the
above three types of cost.

Figure 5 lists two kinds of combination and illustrates the
other components of the overall performance under each
case. From it, we can find that the combination (b) is
better at separately processing local and remote incoming
messages. The separated processing design can improve the
overall performance when the local communication cost is
high.

Moreover, the incoming messages are finally appended to
the vertex’s message queue, so different vertices can easily
be updated concurrently. Based on this observation, we ap-
ply the concurrent message process units at the internal of
local and remote message processor. Therefore, both local
and remote message processors can concurrently process the
incoming message blocks if the workload exceeds the ability
of a single message process unit.

Dual concurrent message processor consists of a local and
a remote message processor respectively. The first concur-
rency of message processor is that local and remote incom-
ing messages are concurrently processed. The second con-
currency is at the internal of the local and remote message
processors.

3.3 Partition Aware Module

To guarantee the high performance, PAGE needs to pro-
vide a mechanism to satisfy the following two requirements.
First, PAGE should have sufficient message process units to
make sure that the new incoming message blocks can be pro-
cessed immediately, and at the same time do not block the
whole system. Second, the assignment strategy of these mes-
sage process units should ensure that each local or remote
message process unit has balanced workload since dispari-
ty seriously destroys the overall performance of any parallel
processing.

The above requirements indicate the following two heuris-
tic rules:

Algorithm 1 Superstep Processing in PAGE
1: if DCCM detects key metrics changed significantly then
2:  DCCM reconfigures dual concurrent message proces-
sor parameter.
3: end if
4: for each active vertex v in partition P do
5:  call vertex program of v;
6
7

send message to neighborhood;
/*monitor tracks related statistics in the back-
ground.*/

8: end for

9: synchronization barrier

10: monitor updates key metrics, and feeds to DCCM

1. Ability Lower-bound: the message processing abil-
ity of the total message process units should be no less
than the total workload of message processing.

2. Workload Balance Ratio: the assignment of total
message process units should satisfy the ratio between
local and remote workload.

Partition aware module monitors the underlying graph
partitioning and adjusts PAGE’s runtime parameters. It
contains two key components: a monitor and a Dynamic
Concurrency Control Model. The monitor is used to main-
tain several necessary metrics and provide these information
to DCCM. The DCCM generates the optimal parameters for
dual concurrent message processor according to the current
metrics.

In Algorithm 1, we illustrate the new procedure of a su-
perstep in PAGE with integrating the partition aware mod-
ule. At the beginning, the DCCM in partition aware mod-
ule calculates the optimal parameters based on metrics from
previous superstep, and then updates the configurations(i.e.
concurrency, assignment strategy) of dual concurrent mes-
sage processor. During this superstep, the monitor tracks
the related statistics of key metrics in the background. The
monitor updates key metrics based on these collected statis-
tics and feeds up to date values of the metrics to the DCCM
at the end of the superstep.

The DCCM quantifies the above two rules and calculates
the optimal parameters, such as the total number of the
message process units, the number of local message process
units and the number of the remote message process units,
based on metrics provided by the monitor.

Meanwhile, the monitor maintains the following three high-
level metrics to assist the DCCM:

1. Incoming Speed of Local Messages: represents
the workload of local message processing. It has inte-
grated the message generation speed and edge cut of
the local partition. This metric can be obtained by
tracking the number of local incoming messages and
the corresponding time cost.

2. Incoming Speed of Remote Messages: represents
the workload of remote message processing. It not
only encodes the message generation speed and edge
cut of the local partition, but also encodes the penalty
of network influence. It can be calculated similarly to
the speed of local incoming messages.



3. Message Processing Speed: defines the velocity of
message processing, and reflects the ability of a mes-
sage process unit to process messages. The number of
messages processed by a message process unit and the
corresponding time cost can derive the this metrics.

4. EMPIRICAL STUDY

We have developed a PAGE prototype on top of the open
source project, Giraph[l]. To demonstrate its performance,
we conducted extensive experiments on an in-house cluster
of 24 nodes and proved its advantages. Here we first intro-
duce the environment, datasets, baselines and the metrics
used. Then wereveal the partition awareness performance
and counterpart comparison experiments.

4.1 Experimental Setup

In our in-house cluster, each processing node has an AMD
Opteron 4180 2.6Ghz CPU, 48GB memory and a 10TB disk
RAID. Nodes are connected by 1Gbt routers.

Datasets: The graph dataset is uk-2007-05-u [15, 16].
It is an undirected one created from the original release by
adding reciprocal edges as well as eliminating loop circles
and isolated nodes. Table 1 lists the overview information
of the dataset with both directed and undirected versions.

Graph Vertices Edges Type
uk-2007-05 105,896,555 | 3,738,733,648 directed
uk-2007-05-u | 105,153,952 | 6,603,753,128 | undirected

Table 1: Graph Dataset Information

Graph Partitioning Scheme : We partitioned the graph
with three strategies: Random, METIS and Linear Deter-
ministic Greedy(LDG). The uk-2007-05-u graph is parti-
tioned into 60 subgraphs. The balance factors of all these
partitions do not exceed 1%. The parameter setting of
METIS is the same with METIS-balanced approach in GP-
S[3].

In order to produce a variety of partition qualities of a
graph, we extend the original LDG algorithm to an iterative
version. Here, LDG partitions the graph based on the pre-
vious partition result, and gradually improves the partition
quality in each following iteration. We name the partition
result from iterative LDG as LDGid. A larger id indicates
the higher quality of graph partitioning and that the more
iterations are executed.

Baselines :Here we select two baselines to compare the
advantages of the proposed PAGE.

First, as we notice from Figure 5(a), the default Giraph
executes local message processing directly in computation
thread, and it blocks following computations. This mean-
s that local message processing and computation are se-
quentially run in the default Giraph. And this combination
model is inconsistent with our evaluation. We modified it
to asynchronously process the local messages, so that the
Giraph also concurrently runs computation, local message
processing and remote message processing. Be aware that,
the modification will not decrease the performance. In the
following experiments, Giraph means the modified Giraph
version.

As mentioned in Section 2, one optimization in GPS, ap-
plies a centralized message buffer and processes incoming

messages sequentially without synchronizing operations. It
would also eliminate partition unaware problem in a way.
We implemented this optimization on Giraph, noted as
Giraph-GPSop later.

Metrics For Evaluation We ran PageRank algorithm to
test the performance, in 10 iterations and used the follow-
ing metrics to evaluate the performance of different graph
computation systems:

e Overall Cost. It indicates the overall performance of
the graph computation system. Due to the property
of concurrent computation and communication model,
this metric is determined by the slower between com-
putation and communication. PAGE has three con-
current components as described in Figure 5(b).

e Sync Remote Communication Cost. It presents
the cost of waiting for all the IO operations to be ac-
complished successfully after computation finished.

e Sync Local Communication Cost. It measures the
cost of waiting for all local messages to be processed
successfully after syncing remote communication.

All three metrics are measured by average time cost per
iteration. We can refer to Figure 5(b) for the relationship
among these metrics.

4.2 Partition Awareness in PAGE

Here we demonstrate the PAGE’s partition aware advan-
tage over Giraph. Figure 6 reveals the PageRank perfor-
mance. We find that, with the increasing quality of graph
partitioning, Giraph suffers from the workload growth of lo-
cal message processing and the sync local communication
cost raises fast. In contrast, PAGE can scalably handle the
upsurging workload of local message processing, and main-
tain the sync local communication cost close to 0.
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Figure 6: PageRank on Different Implementations

Figure 6(a) also shows that in PAGE the overall perfor-
mance increases along with the improvement of graph parti-
tioning. When the edge cut decreases from 98.52% to 3.48%,
the performance is improved by 14% in PAGE. However, in
Giraph, the performance is downgraded about 100% at the
same time.

As a partition aware system, PAGE can obtain the ben-
efit brought by high quality graph partitioning, and still
efficiently process low quality graph partitioning.

4.3 Optimization Rules Improvement

Here we demonstrate that, Giraph-GPSop is not an effi-
cient approach without any other optimizations. In contrast,
PAGE is an efficient partition aware system, and its method
is extensible to other graph computation systems.



Figure 7 shows the comparison result of PAGE, Giraph-
GPSop and Giraph. We notice that both Giraph-GPSop and
PAGE achieve better performance with the quality of graph
partitioning improving. But PAGE is more efficient than
Giraph-GPSop over various graph partitioning with different
qualities. Compared to Giraph, PAGE always wins over
various qualities of graph partitioning, and the improvement
ranges from 7% to 59%. However, Giraph-GPSop only beats
Giraph and gains 8% improvement over METIS partition
scheme which produces a pretty well partitioned graph. For
Random partition, Giraph-GPSop is about 2.2 times worse
than Giraph.

In [3], GPS is around 12 times faster than Giraph(old ver-
sion). This is because the GPS applied several optimizations
to reduce memory usage. These optimizations would speed
up message processing, and finally a small number of mes-
sage process units would satisfy the requirements. But in
Giraph, without these optimizations, the speed of message
processing is relatively slow, so the Giraph-GPSop suffers.
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Figure 7: Performance Comparison among Giraph,
Giraph-GPSop, PAGE.

The above results imply that the optimization in GPS for
partition unaware problem is heavily dependent on other
optimizations to extend to different graph computation sys-
tems. In contrast, PAGE performs well on top of Giraph
without sophisticated optimizations and is more versatile.

5. CONCLUSION

In this paper, we identify the partition unaware problem
in current graph computation systems and its severe draw-
backs for efficient parallel large scale graphs processing .
Then we introduce PAGE, a partition aware graph com-
putation engine that monitors three high-level key running
metrics and dynamically adjusts the system configurations.
In the adjusting model, we discuss several heuristic rules to
effectively cover the system characters and get near optimal
parameters. We have successfully set up a prototype and
conducted extensive experiments to prove that PAGE is an
efficient and general parallel graph computation engine.

There are some principles inspired from our PAGE prac-
tice, which can serve as guidelines for lots of future work:

e Concurrency is indispensable. Message processors
in the parallel graph system should be concurrent, not
only because of the hardware support, but also due to
the requirement of the natural vertex-centric update
model.

e Dynamic is elastic. The system should dynamically
determine the degree of concurrency for the message
processor. The fixed number of message process units
is limited.

e Runtime statistics are valuable. Since the local
and remote message processing workloads are correlat-
ed to the quality of graph partitioning to some extent,
the system should choose proper metrics and efficiently
gather related statistics of the local partition.
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