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Motivation Experiment

Background

* ML enhanced databases are emerging e ECP Task: given a query plan, predict its execution cost
» E.g., academic contributions on ML enhanced query * PRP Task: given two query plans, predict which is cheaper
optimizer, index advisor, or query latency predictor * Applications: ML enhanced query optimizer or index advisor
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production workloads

* Actively collect additional training data for individual
databases during deployments
» Using B-instances or replicas to execute additional
queries without impacting normal business operation
» Focus on "target test data" for specific prod. workload
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* A general platform supporting various ML tasks for DBs
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 Challenge: target test data can be large
» E.g., optimizer enumerates hundreds of thousands of
plans for complex queries
* Active learining: select best training data from a pool of
test data to improve ML model
» Typically define an informativeness score (e.g., -
uncertainty), then acquire the most informative labels
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Holistic Active Learner

 Challenge: canonical active learning has not focused on several holistic challenges arising from DB deployments
> Noisy uncertainty, labeling cost differences, and batch-labeling before retraining

e HAL: a new active learning strategy that is robust, cost-sensitive, and batch-friendly
» Techniques: biased sampling, cost weighting, and redundancy rejection
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