The Combinatorics of Nearest and Furthest Smaller Values

Trevor Clokie, Jeffrey Shallit, Lily Wang

School of Computer Science, University of Waterloo Waterloo, Ontario N2L 3G1, Canada

trevor.clokie@uwaterloo.ca shallit@uwaterloo.ca
x654wang@uwaterloo.ca

Nearest Smaller Value

- Given A, an array of integers, we consider two corresponding arrays:
- C, the nearest smaller value array, where $C[i]$ is the position of the nearest smaller (or equal) element of $A[i]$ on its left, or 0 if all elements to its left are larger. Formally, we set $A[0]=-\infty$, and

$$
C[i]:=\max \{0 \leq j<i: A[j] \leq A[i]\}
$$

- E.g. if $A=[3,4,1,5,2]$, then $C=[0,1,0,3,3]$.

Furthest Smaller Value

- B, the furthest smaller value array, where $B[i]$ is the position of the furthest smaller (or equal) element of $A[i]$ on its left, or i if all elements to its left are larger. Formally,

$$
B[i]=\min \{1 \leq j \leq i: A[j] \leq A[i]\}
$$

- e.g., if $A=[3,4,1,5,2]$, then $B=[1,1,3,1,3]$.
- Let S_{n} denote the set of all permutations of $\{1,2, \ldots, n\}$. For each A in S_{n}, we consider generating the corresponding arrays B and C.

Distinct Nearest Smaller Value Arrays

Result of generating C for all A in S_{3} :

$$
\begin{array}{ll}
{[1,2,3] \rightarrow[0,1,2]} & {[1,3,2] \rightarrow[0,1,1]} \\
{[2,1,3] \rightarrow[0,0,2]} & {[2,3,1] \rightarrow[0,1,0]} \\
{[3,1,2] \rightarrow[0,0,2]} & {[3,2,1] \rightarrow[0,0,0] .}
\end{array}
$$

How many distinct arrays can we generate over S_{n} ?
Let us denote the set of C over all A in a set S by $n s v(S)$. If we compute the values of $\left|n \operatorname{sv}\left(S_{n}\right)\right|$ for small n, we get $1,2,5,14,42$, ... the first few terms of the Catalan numbers.

$C_{n+1}=\sum_{0 \leq i \leq n} C_{i} C_{n-i}$

- We'll prove that $\left|\operatorname{nsv}\left(S_{n}\right)\right|=C_{n}$ using the recurrence relation.
- Consider the possible positions of 1 in any $A \in S_{n}$. If 1 is at position i in A, then $C[1 \ldots i-1]$ corresponds to the nearest smaller values of $A[1 \ldots i-1]$ and $C[i+1 \ldots n]$ corresponds to the nearest smaller values of $A[i+1 \ldots n]$ increased by i.
- Conversely, given any C, we can construct an A generating it by placing 1 at the index of the rightmost 0 , and recursively constructing the two subarrays.
- This gives us a bijection from $n s v\left(S_{n+1}\right)$ to $\bigcup_{i=0}^{n} n s v\left(S_{i}\right) \times n s v\left(S_{n-i}\right)$

Sum of all Values

- If we sum over all values of all arrays generated by each array from S_{n}, we get
- Theorem: Let T_{n} denote the sum of all elements of all entries corresponding to all arrays generated by $A \in\left(S_{n}\right)$. Then $T_{n}=(n+1)!\left(n+2-2 H_{n+1}\right) / 2$, where $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$, the n 'th Harmonic Number
- For any value we fix at the last index of A, the first $n-1$ values can be arranged to be any ordering of S_{n}; the sum of the first $n-1$ values of C is $n T_{n-1}$.
- The sum of the last values of C over S_{n} is $n!\left(n-H_{n}\right)$.
- We can verify

$$
(n+1)!\left(n+2-2 H_{n+1}\right) / 2=n!\left(n-H_{n}\right)+n!n\left(n+1-2 H_{n}\right) / 2 .
$$

Standard Algorithm for Nearest Smaller Value

The stack consists of (value, index) pairs.

1. $C:=\operatorname{array}[1 . . n]$ of integer;
2. Initialize stack S with pair $(-\infty, 0)$.
3. For $i:=1$ to n do
4. While $(\operatorname{top}(S))[1] \geq A[i]$ do $\operatorname{pop}(S)$;
5. $C[i]:=(\operatorname{top}(S))[2]$;
6. $\operatorname{push}(S,(A[i], i))$;
7. Return (C)

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[]$
- Stack $=(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0]$
- Stack $=(4,1),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0]$
- Stack $=(4,1),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0]$
- Stack $=(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0]$
- Stack $=(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0]$
- Stack $=(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2]$
- Stack $=(3,3),(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2]$
- Stack $=(3,3),(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2]$
- Stack $=(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2,2]$
- Stack $=(2,4),(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2,2]$
- Stack $=(2,4),(1,2),(-\infty, 0)$

Example of the Algorithm

- $A=[4,1,3,2,5]$
- $C=[0,0,2,2,4]$
- Stack $=(5,5),(2,4),(1,2),(-\infty, 0)$

The Stack at the End of the Algorithm

- Define $i_{0}=0$ and iteratively define i_{j+1} to be the position of the smallest element in $A\left[i_{j}+1 . . n\right]$, to get an increasing sequence $i_{0}=0, i_{1}, i_{2}, \ldots, i_{t}=n$.
- Lemma: On input $A=A[1 . . n]$ the stack contents at the end of the algorithm is

$$
\left(A\left[i_{t}\right], i_{t}\right),\left(A\left[i_{t-1}\right], i_{t-1}\right), \ldots,\left(A\left[i_{1}\right], i_{1}\right),(-\infty, 0)
$$

Cycles from the Stack

- Theorem: The number of permutations for which the algorithm has stack height k at the end of the computation is $\left[\begin{array}{c}n \\ k-1\end{array}\right]$ for $2 \leq k \leq n+1$, a stirling number of the first kind.
- A value is permanently added to the stack from A when it is less than all values to its right; this motivates a natural bijection for A into cycles, where we end each cycle with the least remaining value in the list.
- e.g. $[41325] \rightarrow(41)(32)(5)$.
- Corollary: The number of size-n permutations for which the algorithm performs k stack pops is $\left[\begin{array}{c}n \\ n-k\end{array}\right], 0 \leq k<n$.

Expected Height

- What is the expected height of the stack at the end of the algorithm?

$$
\begin{aligned}
\frac{1}{n!} \sum_{2 \leq k \leq n+1} k\left[\begin{array}{c}
n \\
k-1
\end{array}\right] & =\frac{1}{n!} \sum_{1 \leq j \leq n}(j+1)\left[\begin{array}{l}
n \\
j
\end{array}\right] \\
& =\left(\frac{1}{n!} \sum_{1 \leq j \leq n} j\left[\begin{array}{l}
n \\
j
\end{array}\right]\right)+1 \\
& =H_{n}+1 \\
& =\Theta(\log (n))
\end{aligned}
$$

Limited Space

- If we limit the maximum height of the stack during the entire computation, how many permutations achieve the limit?
- let $M(n, i)$ denote the number of permutations in S_{n} which have max stack height at most i during the algorithm.

$n \backslash i$	1	2	3	4	5	6	7	8	9
1	0	1	1	1	1	1	1	1	1
2	0	1	2	2	2	2	2	2	2
3	0	1	5	6	6	6	6	6	6
4	0	1	15	23	24	24	24	24	24
5	0	1	52	106	119	120	120	120	120
6	0	1	203	568	700	719	720	720	720
7	0	1	877	3459	4748	5013	5039	5040	5040
8	0	1	4140	23544	36403	39812	40285	40319	40320

Furthest Smaller Value

- We'll now look at B, the array of furthest smaller values generated from A.
- How many distinct arrays B can we generate from A over S_{n} ?
- Let $\operatorname{fsv}\left(S_{n}\right)$ denote the set of furthest smaller value arrays generated from S_{n}.

Furthest Smaller Value

- Successive minima of A are a set of values where each is least among all values to its left. E.g. in [4, 3, 1, 5, 2], the successive minima are $[4,3,1]$.
- We'll define $T(n, k)$ to be the number of distinct furthest smaller arrays over $A \in S_{n}$ where A has k successive minima.
- Lemma: $T(n+1, k)=k T(n, k)+T(n, k-1)$ for all n and $2 \leq k \leq n$.

$T(n+1, k)=k T(n, k)+T(n, k-1)$

- Let A be any permutation of S_{n+1} with k successive minima, which generates B as its furthest smaller value array.
- If $B[n+1]=n+1$, then the last value of A must be 1 and it is a successive minimum. If we subtract 1 from all other values of A and remove the last value, we get a permutation of S_{n} with $k-1$ successive minima which generates $B[1 . . n]$. This gives us a bijection to count $T(n, k-1)$ values of B.
- Otherwise, then the last value of A is not 1 and not a successive minimum. If we subtract 1 from values of A greater than $A[n+1]$ and remove the last value, we preserve the relative orders and generate the same $B[1 . . n]$ except at the last value. Since each furthest smallest value is also a successive minimum, there are k possible $B[n+1]$ and we get $k T(n, k)$ values of B.

Counting Distinct Arrays

- The result of $T(n+1, k)=k T(n, k)+T(n, k-1)$ resembles the recurrence relations for the Stirling number of the second kind, which counts the number of ways to parition n values into k sets:

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}=k\left\{\begin{array}{l}
n \\
k
\end{array}\right\}+\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\}
$$

- We can verify that $T(1,1)=\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$ and use induction to show that $T(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$.
- Then $\left|f s v\left(S_{n}\right)\right|=\sum_{k=0}^{n} T(n, k)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}=B_{n}$, the Bell numbers, which also count the ways to partition a set.

Further Work - Asymptotic Estimate

- We end with an unsolved question: Returning to our stack height question from the nearest smaller value algorithm, what is our expected maximum stack height?
- Theorem: We have $M(1, i)=1$ for $i \geq 2 ; M(n, 2)=1$ for $n \geq 1$; and $M(n+1, i)=\sum_{0 \leq k \leq n}\binom{n}{k} M(k, i) M(n-k, i-1)$ for $n \geq 1$ and $i \geq 1$.

$$
\begin{aligned}
\mathbb{E}\left(\operatorname{StackHeight}\left(A_{n}\right)\right) & =\frac{1}{n!} \sum_{i=1}^{n+1} i(M(n, i)-M(n, i-1)) \\
& =\frac{1}{n!}\left[(n+1) n!-\sum_{i=1}^{n+1} M(n, i-1)\right] \\
& =n+1-\frac{1}{n!} \sum_{i=0}^{n} M(n, i)
\end{aligned}
$$

