
The Combinatorics of Nearest and Furthest
Smaller Values

Trevor Clokie, Jeffrey Shallit, Lily Wang

School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

trevor.clokie@uwaterloo.ca

shallit@uwaterloo.ca

x654wang@uwaterloo.ca

1 / 28

Nearest Smaller Value

I Given A, an array of integers, we consider two corresponding
arrays:

I C , the nearest smaller value array, where C [i] is the position
of the nearest smaller (or equal) element of A[i] on its left, or
0 if all elements to its left are larger. Formally, we set
A[0] = −∞, and

C [i] := max {0 ≤ j < i : A[j] ≤ A[i]},

I E.g. if A = [3, 4, 1, 5, 2], then C = [0, 1, 0, 3, 3].

2 / 28

Furthest Smaller Value

I B, the furthest smaller value array, where B[i] is the
position of the furthest smaller (or equal) element of A[i] on
its left, or i if all elements to its left are larger. Formally,

B[i] = min {1 ≤ j ≤ i : A[j] ≤ A[i]}

I e.g., if A = [3, 4, 1, 5, 2], then B = [1, 1, 3, 1, 3].

I Let Sn denote the set of all permutations of {1, 2, . . . , n}. For
each A in Sn, we consider generating the corresponding arrays
B and C .

3 / 28

Distinct Nearest Smaller Value Arrays

Result of generating C for all A in S3:

[1, 2, 3]→ [0, 1, 2] [1, 3, 2]→ [0, 1, 1]

[2, 1, 3]→ [0, 0, 2] [2, 3, 1]→ [0, 1, 0]

[3, 1, 2]→ [0, 0, 2] [3, 2, 1]→ [0, 0, 0].

How many distinct arrays can we generate over Sn?

Let us denote the set of C over all A in a set S by nsv(S). If we
compute the values of |nsv(Sn)| for small n, we get 1, 2, 5, 14, 42,
. . . the first few terms of the Catalan numbers.

4 / 28

Cn+1 =
∑

0≤i≤n CiCn−i

I We’ll prove that |nsv(Sn)| = Cn using the recurrence relation.

I Consider the possible positions of 1 in any A ∈ Sn. If 1 is at
position i in A, then C [1 . . . i − 1] corresponds to the nearest
smaller values of A[1 . . . i − 1] and C [i + 1 . . . n] corresponds
to the nearest smaller values of A[i + 1 . . . n] increased by i .

I Conversely, given any C , we can construct an A generating it
by placing 1 at the index of the rightmost 0, and recursively
constructing the two subarrays.

I This gives us a bijection from nsv(Sn+1) to⋃n
i=0 nsv(Si)× nsv(Sn−i)

5 / 28

Sum of all Values

I If we sum over all values of all arrays generated by each array
from Sn, we get

I Theorem: Let Tn denote the sum of all elements of all
entries corresponding to all arrays generated by A ∈ (Sn).
Then Tn = (n + 1)!(n + 2− 2Hn+1)/2, where
Hn = 1 + 1

2 + . . . + 1
n , the n’th Harmonic Number

I For any value we fix at the last index of A, the first n − 1
values can be arranged to be any ordering of Sn; the sum of
the first n − 1 values of C is nTn−1.

I The sum of the last values of C over Sn is n!(n − Hn).

I We can verify
(n+ 1)!(n+ 2− 2Hn+1)/2 = n!(n−Hn) + n!n(n+ 1− 2Hn)/2.

6 / 28

Standard Algorithm for Nearest Smaller Value

The stack consists of (value, index) pairs.

1. C := array[1..n] of integer;

2. Initialize stack S with pair (−∞, 0).

3. For i := 1 to n do

4. While (top(S))[1] ≥ A[i] do pop(S);

5. C [i] := (top(S))[2];

6. push(S , (A[i], i));

7. Return(C)

7 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = []

I Stack = (−∞, 0)

8 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0]

I Stack = (4, 1), (−∞, 0)

9 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0]

I Stack = (4, 1), (−∞, 0)

10 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0]

I Stack = (−∞, 0)

11 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0]

I Stack = (1, 2), (−∞, 0)

12 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0]

I Stack = (1, 2), (−∞, 0)

13 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2]

I Stack = (3, 3), (1, 2), (−∞, 0)

14 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2]

I Stack = (3, 3), (1, 2), (−∞, 0)

15 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2]

I Stack = (1, 2), (−∞, 0)

16 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2, 2]

I Stack = (2, 4), (1, 2), (−∞, 0)

17 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2, 2]

I Stack = (2, 4), (1, 2), (−∞, 0)

18 / 28

Example of the Algorithm

I A = [4, 1, 3, 2, 5]

I C = [0, 0, 2, 2, 4]

I Stack = (5, 5), (2, 4), (1, 2), (−∞, 0)

19 / 28

The Stack at the End of the Algorithm

I Define i0 = 0 and iteratively define ij+1 to be the position of
the smallest element in A[ij + 1..n], to get an increasing
sequence i0 = 0, i1, i2, . . . , it = n.

I Lemma: On input A = A[1..n] the stack contents at the end
of the algorithm is

(A[it], it), (A[it−1], it−1), . . . , (A[i1], i1), (−∞, 0)

20 / 28

Cycles from the Stack

I Theorem: The number of permutations for which the
algorithm has stack height k at the end of the computation is[n
k−1

]
for 2 ≤ k ≤ n + 1, a stirling number of the first kind.

I A value is permanently added to the stack from A when it is
less than all values to its right; this motivates a natural
bijection for A into cycles, where we end each cycle with the
least remaining value in the list.

I e.g. [41325]→ (41)(32)(5) .

I Corollary: The number of size-n permutations for which the
algorithm performs k stack pops is

[n
n−k

]
, 0 ≤ k < n.

21 / 28

Expected Height

I What is the expected height of the stack at the end of the
algorithm?

1

n!

∑
2≤k≤n+1

k

[
n

k − 1

]
=

1

n!

∑
1≤j≤n

(j + 1)

[
n

j

]

=

 1

n!

∑
1≤j≤n

j

[
n

j

]+ 1

= Hn + 1

= Θ(log(n))

22 / 28

Limited Space

I If we limit the maximum height of the stack during the entire
computation, how many permutations achieve the limit?

I let M(n, i) denote the number of permutations in Sn which
have max stack height at most i during the algorithm.

n\i 1 2 3 4 5 6 7 8 9

1 0 1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2 2 2
3 0 1 5 6 6 6 6 6 6
4 0 1 15 23 24 24 24 24 24
5 0 1 52 106 119 120 120 120 120
6 0 1 203 568 700 719 720 720 720
7 0 1 877 3459 4748 5013 5039 5040 5040
8 0 1 4140 23544 36403 39812 40285 40319 40320

23 / 28

Furthest Smaller Value

I We’ll now look at B, the array of furthest smaller values
generated from A.

I How many distinct arrays B can we generate from A over Sn?

I Let fsv(Sn) denote the set of furthest smaller value arrays
generated from Sn.

24 / 28

Furthest Smaller Value

I Successive minima of A are a set of values where each is least
among all values to its left. E.g. in [4, 3, 1, 5, 2], the
successive minima are [4, 3, 1].

I We’ll define T (n, k) to be the number of distinct furthest
smaller arrays over A ∈ Sn where A has k successive minima.

I Lemma: T (n + 1, k) = kT (n, k) + T (n, k − 1) for all n and
2 ≤ k ≤ n.

25 / 28

T (n + 1, k) = kT (n, k) + T (n, k − 1)

I Let A be any permutation of Sn+1 with k successive minima,
which generates B as its furthest smaller value array.

I If B[n + 1] = n + 1, then the last value of A must be 1 and it
is a successive minimum. If we subtract 1 from all other
values of A and remove the last value, we get a permutation
of Sn with k − 1 successive minima which generates B[1..n].
This gives us a bijection to count T (n, k − 1) values of B.

I Otherwise, then the last value of A is not 1 and not a
successive minimum. If we subtract 1 from values of A greater
than A[n + 1] and remove the last value, we preserve the
relative orders and generate the same B[1..n] except at the
last value. Since each furthest smallest value is also a
successive minimum, there are k possible B[n + 1] and we get
kT (n, k) values of B.

26 / 28

Counting Distinct Arrays

I The result of T (n + 1, k) = kT (n, k) + T (n, k − 1) resembles
the recurrence relations for the Stirling number of the
second kind, which counts the number of ways to parition n
values into k sets:{

n + 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
I We can verify that T (1, 1) =

{1
1

}
and use induction to show

that T (n, k) =
{n
k

}
.

I Then |fsv(Sn)| =
∑n

k=0 T (n, k) =
∑n

k=0

{n
k

}
= Bn, the Bell

numbers, which also count the ways to partition a set.

27 / 28

Further Work - Asymptotic Estimate

I We end with an unsolved question: Returning to our stack
height question from the nearest smaller value algorithm,
what is our expected maximum stack height?

I Theorem: We have M(1, i) = 1 for i ≥ 2; M(n, 2) = 1 for
n ≥ 1; and M(n + 1, i) =

∑
0≤k≤n

(n
k

)
M(k , i)M(n − k , i − 1)

for n ≥ 1 and i ≥ 1.

E(StackHeight(An)) =
1

n!

n+1∑
i=1

i(M(n, i)−M(n, i − 1))

=
1

n!
[(n + 1)n!−

n+1∑
i=1

M(n, i − 1)]

= n + 1− 1

n!

n∑
i=0

M(n, i)

28 / 28

