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Nearest Smaller Value

> Given A, an array of integers, we consider two corresponding
arrays:

» C, the nearest smaller value array, where C[i] is the position
of the nearest smaller (or equal) element of A[i] on its left, or
0 if all elements to its left are larger. Formally, we set
A[0] = —o0, and

Cli] == max {0 <j < i: A} <A},

» E.g. if A=[3,4,1,5,2], then C =[0,1,0,3,3].



Furthest Smaller Value

» B, the furthest smaller value array, where B[i] is the
position of the furthest smaller (or equal) element of A[i] on
its left, or / if all elements to its left are larger. Formally,

Bli] = min {1<j <i: A}j] <A[i]}

» eg., if A=1[3,4,1,5,2], then B=[1,1,3,1,3].

» Let S, denote the set of all permutations of {1,2,...,n}. For
each A in S,,, we consider generating the corresponding arrays
B and C.



Distinct Nearest Smaller Value Arrays

Result of generating C for all A in S3:

[1,2,3] = [0,1,2]  [1,3,2] = [0,1,1]
[2,1,3] = [0,0,2]  [2,3,1] = [0,1,0]
[3,1,2] = [0,0,2]  [3,2,1] — [0,0,0].

How many distinct arrays can we generate over 5,7

Let us denote the set of C over all Ain a set S by nsv(S). If we
compute the values of |nsv(S,)| for small n, we get 1, 2, 5, 14, 42,
... the first few terms of the Catalan numbers.



Cn+1 — Zogign GG

» We'll prove that |nsv(S,)| = C, using the recurrence relation.

» Consider the possible positions of 1 inany A€ S,. If 1is at
position i in A, then C[1.../ — 1] corresponds to the nearest
smaller values of A[1...i—1] and C[i + 1...n] corresponds
to the nearest smaller values of A[i +1...n] increased by i.

» Conversely, given any C, we can construct an A generating it
by placing 1 at the index of the rightmost 0, and recursively
constructing the two subarrays.

» This gives us a bijection from nsv(Sp4+1) to

Ui nsv(S;) x nsv(Ss—j)



Sum of all Values

> If we sum over all values of all arrays generated by each array
from S,, we get

» Theorem: Let T, denote the sum of all elements of all
entries corresponding to all arrays generated by A € (S,).
Then T, = (n+1)I(n+2 —2Hx11)/2, where
H,=1+ % +... .+ % the n'th Harmonic Number

» For any value we fix at the last index of A, the first n — 1
values can be arranged to be any ordering of S,; the sum of
the first n — 1 values of C is nT,_1.

» The sum of the last values of C over S, is nl(n— Hp).

» We can verify
(n+1)(n+2—-2Hp41)/2 =n(n—H,)+nln(n+1—-2H,)/2.



Standard Algorithm for Nearest Smaller Value

The stack consists of (value, index) pairs.

1. C := array[l..n] of integer;

2. Initialize stack S with pair (—o0,0).
3. For i :=1to ndo

4. While (top(S))[1] > A[i] do pop(S);
5. Cli]:= (top(5))[2;

6. push(S, (A[],));

7. Return(C)




Example of the Algorithm

> A=[4,1,3,2,5]
» C=]

» Stack = (—o0,0)



Example of the Algorithm

> A=[4,1,3,2,5]
» C=[0]

» Stack = (4,1), (—o0,0)



Example of the Algorithm

> A=[4,1,3,2,5]
» C=[0]

» Stack = (4,1), (—o0,0)
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Example of the Algorithm

> A=[4,1,3,2,5]
» C=[0]

» Stack = (—o0,0)
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Example of the Algorithm

> A=1[4,1,3,2,5]
» C=10,0]
» Stack = (1,2),(—o0,0)
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Example of the Algorithm

> A=[4,1,3,2,5]
» C=10,0]
» Stack = (1,2),(—o0,0)
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Example of the Algorithm

» A=[4,1,3,2,5]
> C=10,0,2]
> Stack = (3,3),(1,2), (—o0, 0)
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Example of the Algorithm

» A=[4,1,3,2,5]
> C=10,0,2]
> Stack = (3,3),(1,2), (—o0, 0)
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Example of the Algorithm

> A=[4,1,3,2,5]
» C=10,0,2]
» Stack = (1,2),(—o0,0)
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Example of the Algorithm

> A=[4,1,3,2,5]
> C=1[0,0,2,2]
» Stack = (2,4),(1,2),(—o0,0)
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Example of the Algorithm

> A=1[4,1,3,2,5]
> C=1[0,0,2,2]
» Stack = (2,4),(1,2),(—o0,0)
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Example of the Algorithm

» A=1[4,1,3,2,5]
» C=10,0,2,2,4]

» Stack = (5,5),(2,4),(1,2), (-0, 0)
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The Stack at the End of the Algorithm

» Define ip = 0 and iteratively define i;;1 to be the position of
the smallest element in A[j; + 1..n], to get an increasing
sequence ig = 0,111,002, ..., 0t = n.

» Lemma: On input A = A[l..n] the stack contents at the end
of the algorithm is

(Alie], it), (Alie=1], it=1), - - -, (Ali1], 1), (—00,0)
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Cycles from the Stack

» Theorem: The number of permutations for which the
algorithm has stack height k at the end of the computation is
[kfl] for 2 < k < n+ 1, a stirling number of the first kind.

> A value is permanently added to the stack from A when it is
less than all values to its right; this motivates a natural
bijection for A into cycles, where we end each cycle with the
least remaining value in the list.

> e.g. [41325] — (41)(32)(5) .

» Corollary: The number of size-n permutations for which the
algorithm performs k stack pops is [nfk}, 0< k<n.
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Expected Height

> What is the expected height of the stack at the end of the
algorithm?

7,2, b = S ]

" 2<k<n+1 " 1<j<n

22/28



> If we limit the maximum height of the stack during the entire
computation, how many permutations achieve the limit?

> let M(n, i) denote the number of permutations in S, which
have max stack height at most / during the algorithm.
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Furthest Smaller Value

» We'll now look at B, the array of furthest smaller values
generated from A.

» How many distinct arrays B can we generate from A over 5,7

» Let fsv(S,) denote the set of furthest smaller value arrays
generated from S,,.
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Furthest Smaller Value

» Successive minima of A are a set of values where each is least
among all values to its left. E.g. in [4, 3, 1, 5, 2], the
successive minima are [4, 3, 1].

» We'll define T(n, k) to be the number of distinct furthest
smaller arrays over A € S, where A has k successive minima.

» Lemma: T(n+1,k) = kT (n, k) + T(n, k —1) for all n and
2< k<n.
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T(n,k)+ T(n,k —1)

> Let A be any permutation of 5,41 with k successive minima,
which generates B as its furthest smaller value array.

» If B[n+ 1] = n+ 1, then the last value of A must be 1 and it
is a successive minimum. If we subtract 1 from all other
values of A and remove the last value, we get a permutation
of S, with k — 1 successive minima which generates B[1..n].
This gives us a bijection to count T(n, k — 1) values of B.

» Otherwise, then the last value of A is not 1 and not a
successive minimum. If we subtract 1 from values of A greater
than A[n + 1] and remove the last value, we preserve the
relative orders and generate the same B[1..n] except at the
last value. Since each furthest smallest value is also a
successive minimum, there are k possible B[n + 1] and we get
kT (n, k) values of B.
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Counting Distinct Arrays

» The result of T(n+1,k) = kT(n, k) + T(n, k — 1) resembles
the recurrence relations for the Stirling number of the
second kind, which counts the number of ways to parition n
values into k sets:

n+1] P n . n
k | 7k k—1
» We can verify that T(1,1) = {i} and use induction to show

that T(n, k) = {/}.

> Then [fu(S,)| = Yo T(n k) = S {2} = By, the Bell
numbers, which also count the ways to partition a set.
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Further Work - Asymptotic Estimate

» We end with an unsolved question: Returning to our stack
height question from the nearest smaller value algorithm,
what is our expected maximum stack height?

» Theorem: We have M(1,i) =1 for i > 2; M(n,2) =1 for
n>1;and M(n+1,i) =Yg pen, () Mk, i)M(n — k,i — 1)
forn>1andi>1. -

n+1
IM&%HR@MMQ%:MEZ M(n,i—1))
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= —l(n+1)nl =3 M(n, i~ 1)]
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